Monthly Archives: September 2013

Joel Cohen Defended his Doctoral Thesis


On September 23, Joel Cohen defended  his doctoral thesis    on Nanotoxicology. Joel over the course of his studies published several peer reviewed papers, one book chapter and awarded one patent (with his coworkers).

Join us in congratulating Joel Cohen for successfully defending his ScD thesis and obtaining his doctoral degree!

Thesis Abstract: There is a great need for screening tools capable of rapidly and accurately assessing engineered nanomaterial (ENM) toxicity. One impediment to the development of reliable in vitro screening methods is the need for accurate and relevant dosimetry. In a typical in vitro cytotoxicity study ENM powders are suspended in liquid media for application to cells. ENMs in liquid suspension can form large fractal agglomerates thereby altering (1) the total number of free particles, (2) the total surface area available for biointeractions, and (3) the effective size and density of the particles, two properties that influence their fate and transport and determine the effective dose actually delivered to cells in culture over the duration of exposure. I present here a methodology for in vitro nanotoxicology that takes into consideration particokinetics and enables accurate determination and reporting of effective dosimetry. This methodology is based upon (1) standardization of ENM liquid suspension preparation; (2) careful characterization of critical ENM transformations in exposure media including agglomerate effective density; and (3) numeric calculation of the delivered to cell dose as a function of exposure time.

This methodology is then employed to investigate ENM translocation across cellular monolayers in vitro. Relatively little is known about the fate of industrially relevant engineered nanomaterials (ENMs) in the lungs. These interactions are important when considering inhalation exposure and subsequent translocation of ENMs across the thin epithelial lining layer of the lung. I present a novel method for tracking well-characterized industrially relevant metal oxide ENMs made radioactive in vitro. Nano-sized CeO2 of various primary particle diameter (27 and 119nm), ZnO, SiO2-coated-CeO2 and SiO2-coated-ZnO particles generated by flame spray pyrolysis were neutron activated in a nuclear reactor, forming the gamma emitting isotopes 141Ce and 65Zn respectively. To investigate ENM translocation using an in vitro model for the alveolar epithelium, we cultured Calu-3 lung epithelial cells cultured to confluency on transwell inserts with 3μm pores and exposed them to neutron activated ENM dispersions below the pre-determined toxic dose. The effects of ENM exposure on monolayer barrier integrity and tight junctions were evaluated, and ENM translocation across the cellular monolayer was assessed following 2, 4 and 24 hours of exposure by gamma spectrometry. My results demonstrate that industrially relevant ENM agglomerates translocate predominantly via a transcellular pathway without compromising monolayer integrity or disrupting tight junctions. In order from greatest to least translocation the ENMs investigated rank as follows: ZnO> SiO2 coated ZnO > SiO2 coated CeO2 > CeO2 large > CeO2 small. I also demonstrate the effects of particle transport translocation across the alveolar epithelium, emphasizing the importance of accurate dosimetry when comparing ENM-cellular interactions for large panels of materials.