Monthly Archives: October 2013

Challenges in Exposure Assessment: From Nanoparticles to Bioaerosols, by Dr. Gediminas “Gedi” Mainelis

Title: Challenges in Exposure Assessment: From Nanoparticles to Bioaerosols

Speaker: Dr. Gediminas “Gedi” Mainelis 

Associate Professor

Department of Environmental Sciences, Rutgers University,

The State University of New Jersey, NJ, USA

Date: October 17, 2013
Time: 12:30 pm – 1:30 pm
Place: 665 Huntington Ave, Building 1, Room 1302, Boston, MA 02115

Abstract:  Health-relevant aerosols present a challenging and multi-faceted aerosol research area ranging from nanoparticles, to environmental exposures to indoor aerosols. Mainelis’ lab at Rutgers University has been actively investigating potential exposures to engineered nanoparticles from consumer products and developing novel tools for bioaerosol exposure assessment. We recently began investigation of potential consumer exposures to nanoparticles due to the use of nanotechnology-based consumer products. To realistically simulate potential exposures, we used a manikin head with simulated inhalation through its nostrils, while the products were used nearby (sprays) or applied to the manikin’ face (cosmetic powders). We found that the tested nanotechnology-based products released particles not only in the nanosize range but also in coarse and for some products in super-coarse particle size ranges. The release and inhalation of nanoparticles and their agglomerates in such a wide size range would result in particle deposition in all regions of the respiratory system and thus, health studies should focus not only on single nanoparticles, but also on deposition and health effects of larger agglomerates. To improve bioaerosol exposure assessment, we have been developing a novel electrostatic collector for bioaerosols, where biological particles are electrostatically deposited onto a narrow electrode covered by a superhydrophobic substance and then removed and collected by a rolling water droplet (5 to 40 microliters) to achieve an unprecedented sample concentration rate, whichrate allows detecting lower bioaerosol concentrations. It is hoped that this technique will improve our ability to assess exposures to bioaerosols in various air environments.