Functionally informed fine-mapping and polygenic localization of complex trait heritability

Omer Weissbrod (presented by Farhad Hormozdiari)
Alkes Price Group
Harvard School of Public Health
10.17.2019

@oweissb

Weissbrod et al. 2019 bioRxiv

Outline

▶ Motivation

Methods

Results

▶ Polygenic localization

GWAS identify associations, not causality

We want causality, not associations

Fine-mapping identifies causal SNPs

Functional annotations tease apart SNPs in strong LD

Kichaev *et al.* 2014 PLOS Genet Chen *et al.* 2016 Genetics Wen *et al.* 2016 AJHG Mahajan *et al.* 2018b Nat Genet

PolyFun: fine-mapping with polygenic functional priors

<u>Problem:</u> previous functionally-informed fine-mapping methods can either:

- Analyze information from only a few loci (<20)</p>
- Use only a few functional annotations (<20)</p>

<u>PolyFun</u> leverages modern fine-mapping methods and stratified LD-score regression to:

- ✓ Analyze genome-wide information
- Use hundreds of functional annotations

Kichaev et al. 2014 PLOS Genet

Chen et al. 2016 Genetics

Wen et al. 2016 AJHG

Mahajan et al. 2018b Nat Genet

FINEMAP: Benner et al. 2016 Bioinformatics, 2018 bioRxiv

SuSiE: Wang et al. 2018 bioRxiv

S-LDSC: Finucane *et al.* 2015 Nat Genet PolyFun: Weissbrod *et al.* 2019 bioRxiv

Outline

Motivation

▶ Methods

Results

▶ Polygenic localization

PolyFun leverages the fine-mapping model and the stratified LD-score regression (S-LDSC) baseline-LF model

Fine-mapping model:

SNP effect β_i is either zero (null SNP) or normally distributed (causal SNP)

annotation

model

S-LDSC model:

coefficient annotations
$$\sum_{c} \frac{1}{\tau^{c} \cdot a_{i}^{c}} = \underbrace{\text{var}[\beta_{i} | \boldsymbol{a}_{i}]}_{\text{per-SNP } h^{2}} = \underbrace{P(\beta_{i} \neq 0 \mid a_{i})}_{\text{prior causal probability}} \cdot \underbrace{\text{var}[\beta_{i} \mid \beta_{i} \neq 0]}_{\text{causal variance}}$$

Finucane *et al.* 2015 Nat Genet Gazal *et al.* 2017,2018,2019 Nat Genet

PolyFun is robust to modeling misspecification

PolyFun procedure:

- 1. Estimate per-SNP heritabilities on even (resp. odd) chromosomes using <u>L2-regularized</u> stratified LD score regression
- 2. Partition SNPs into bins of similar per-SNP heritability
- 3. Re-estimate per-SNP heritabilities in each bin using odd (resp. even) chromosomes
- 4. Compute prior causal probabilities

Outline

Motivation

Methods

▶ Results

▶ Polygenic localization

Data analysis details

Data:

- 47 UK Biobank traits (average N=317K)
- 19M SNPs with MAF≥0.1% (excluding MHC)

Annotations:

187 functional annotations from baseline-LF model

 (a broad set of coding, conserved, regulatory, MAF and LD-related annotations)

PolyFun finds 32% more fine-mapped SNPs (PIP>0.95) than non-functionally informed fine-mapping

Functional annotations improve fine-mapping resolution

Functional annotations improve fine-mapping resolution

PolyFun identifies over 3,000 fine-mapped (PIP>0.95) SNP-trait pairs across anthropometric, blood, disease and lipid traits in the UK Biobank

PolyFun finds 223 pleiotropic fine-mapped SNPs (PIP>0.95) across genetically uncorrelated traits

Outline

Motivation

Methods

Results

▶ Polygenic localization

Polygenic localization: localizing heritability

- Motivation: PIP>0.95 SNPs causally explain a small $\%h_g^2$. Where is the rest?
- **Definition**: Identify a **minimal** set of SNPs causally explaining (e.g.) 50% of h_q^2

Polygenic localization: method

Cannot reuse PolyFun estimates of per-SNP heritability

Beware of winners curse...

Instead:

- Estimate per-SNP heritabilities with PolyFun
- Partition SNPs into bins of similar per-SNP heritability
- Re-estimate heritability in each bin with S-LDSC, using different data (N=122K UK Biobank individuals not in the N=337K PolyFun dataset)

Minimal SNP sets causally explaining 50% $h_{\mathcal{G}}^2$ vary in size across orders of magnitude

Hair color: strong polygenic localization

Height: intermediate polygenic localization

Chronotype (morning person): weak polygenic localization

Conclusions

We propose:

- **PolyFun**: Functionally-informed fine-mapping with polygenic priors
- Polygenic localization: Find minimal SNP sets causally explaining a given proportion of SNP heritability

Results:

- PolyFun + SuSiE finds >3,000 fine-mapped SNP-trait pairs
- Many SNPs are pleiotropic for multiple traits
- 50% of SNP heritability is causally explained by 25-550,000 SNPs

Acknowledgements

Weissbrod et al. 2019 bioRxiv

Alkes Price

Farhad Hormozdiari Steven Gazal Armin Schoech **Price Group**

Hilary Finucane Ran Cui Jacob Ulirsch Luke O'Connor

Christian Benner

