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Mendelian disease and common disease: the big divide?
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(Figure from Manolio et al. Nature 2009; Antonarakis et al. Nat Rev Genet 2010) éA“SHG



Mendelian disease-derived pathogenicity scores prioritize
pathogenic, rare variants for gene discovery / diagnosis

Variant scores

SNVs CADD
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(Adzhubei et al. Nat Methods 2010, Kircher et al. NG 2014, Eilbeck et al. Nat Rev Genet 2017) ééSHG




What is the contribution of Mendelian disease-derived
pathogenicity scores to common diseases?

— CADD v1.4— DeepSEA— Eigen — FATHMM-MKL— JASPAR
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Type 2 Diabetes Common disease Schizophrenia
Height (low-frequency and common variants) Autism
Rheumatoid arthritis LDL, HDL

(CADD: Kircher et al. NG 2014, DeepSEA: Zhou et al. Nat Methods 2015 éASHG

Reviewed in Eilbeck et al. Nat Rev Genet 2017, Figure from Kircher et al. Nat Commun 2019) ~



Shared genetic architecture between
Mendelian disease and common disease

* Gene overlap between monogenic diseases and complex traits

- e.g. LDLR: monogenic hypercholesterolemia and cardiovascular diseases

* Significant comorbidities

* Mendelian disease genes are enriched in GWAS closest genes

* Limitation: previous analyses were either gene-based or limited to

genome-wide significant SNPs

(Peltonen et al. HMG 2006, Blair et al. Cell 2013, Chong et al. AJHG 2015, Freund et al. AJHG 2018) %QSI;I(}




Our goals: pathogenicity score = common disease

-
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1. Assess informativeness of Mendelian disease-derived
pathogenicity scores for 41 common diseases and complex traits
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Our goals: pathogenicity score = common disease

-

1. Assess informativeness of Mendelian disease-derived

~N

pathogenicity scores for 41 common diseases and complex traits

\_ ,
4 )
2. Develop a framework to improve their informativeness for
common disease
\_ ,
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Method building Mendelian disease-derived
pathogenicity annotations

e Pathogenicity scores overwhelmingly predict pathogenic rare SNPs.

* Hypothesis: Mendelian disease variants and common disease variants
share similar properties.

To evaluate this hypothesis,

* Given a pathogenicity score, applied S-LDSC on binary annotations to 41
complex traits

(S-LDSC: Finucane et al. Nat Genet 2015, baseline-LD model: Gazal et al. Nat Genet 2017) éASl:lg

merican Socety of



To evaluate disease heritability enrichment, used
stratified LD score regression (S-LDSC)

Summary statistics Reference panel (1000G EUR) Functional annotatiory
2 .
Output E| 1} |=NYr.l(jic)+1
1. Enrichment = Prop. h?g / Prop. SNPs ¢

2. Standardized effect size (t*) = Mt_sd(c) / h’g

That is, proportionate change in per-SNP heritability associated to a one sd(annotation,)
increase, conditional on all other annotations in the model.

(Finucane et al. Nat. Genet. 2015) éASl:lg

merican Sockety of Hu


http://www.ebi.ac.uk/birney-srv/medaka-ref-panel/viz.html

To evaluate disease heritability enrichment, used
stratified LD score regression (S-LDSC)

52 h 2 AN 3
y Rl =¥ N .lf o Y40
g‘ gt T
= i =
QPEST ORI \ 8T TP

Summary statistics Reference panel (1000G EUR) Functional annotatiory

Annotations with T = 0: no unique information
Annotations with significantly positive or negative t* are conditionally
informative, after considering all other annotations in the model.

(Finucane et al. Nat. Genet. 2015) #ASHG

merican Sockety of Hu


http://www.ebi.ac.uk/birney-srv/medaka-ref-panel/viz.html
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AnnotBoost: a gradient boosting-based ML framework
to impute and denoise existing pathogenicity scores

/, Input

SNPs Annotation X o
r$575272151 1 s Training set
40538026 ) _—" Validation set C -
\Pathogenicity score to boost 75 baseline-LD features/

*Not phenotype-specific
*Implements XGBoost to take account of nonlinearity

(XGBoost: Chen & Guestrin. KDD 2016, Features: Finucane et al. NG 2015, Gazal et al. NG 2017) %ﬁSHg



AnnotBoost: a gradient boosting-based ML framework
to impute and denoise existing pathogenicity scores

/, Input
SNPs Annotation X
rs575272151 1 \ Training set
rs540538026 1 / Validation set

\Pathogenicity score to boost

75 baseline-LD features/

~

4 Output )
Impact on AnnotBoost prediction .

SNPs Annotation X1 gl of PrnaleA) "
Conserved_Vertebrate —ap— N %

rs575272151 0.80 Conserved Mammal - M= :
P 2

GERP RS24 (binary) s §

r5540538026 025 CpG content = cm— 3

\_

Boosted score

Feature importancy
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Heritability enrichment (S-LDSC)
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Analysis

Heritability model fit (logl)
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AnnotBoost model training

Example shown with CADD score.

SNPs CADD
(Kircher et al. NG 2014)
rs184094753 55
rs11588155 0.001
rs28359608 20

AnnotBoost works regardless binary or continuous-valued score.



AnnotBoost model training

SNPs CADD SNPs CADD Top 10%: label ‘1’
(positive SNPs)

rs184094753 55 Sort rs184094753 55

= —s Bottom 40%: label ‘0’
rs28359608 20 rs11588155 | 0.001 (control SNPs)
(Without using external disease data)

AnnotBoost achieved robust results with different training ratios.




AnnotBoost model training

SNPs CADD SNPs CADD TOp 10% |abe| ‘1’

rs184094753 | 55 Sort rs184094753 55 (positive SNPs)

—s Bottom 40%: label ‘0’
rs28359608 20 rs11588155 | 0.001 (control SNPs)

l

AnnotBoost training

Even (resp. odd) | GERP | Coding | H3K27ac CpG CADD
chr SNPs (binary label)
rs184094753 0 0 0 ...| 0.3 1
...| 0.1 .
rs11588155 0 1 0 ...| 0.5 0
T baseline-LD features — Y train
[Xtrain]

Even (resp. odd) chr SNPs are used for training to score odd (resp. even) chr SNPs.



AnnotBoost model training

SNPs CADD SNPs CADD Top 10%: label ‘1’

rs184094753 | 55 Sort rs184094753 55 (positive SNPs)

—s Bottom 40%: label ‘0’
rs28359608 20 rs11588155 | 0.001 (control SNPs)

l

AnnotBoost training

Even (resp. odd) | GERP | Coding | H3K27ac CpG CADD
chr SNPs (binary label)
Boosted CADD  <—— ™ 154094753 0 0 o |[..| 03 1
.| 0.1 .
l rs11588155 0 1 0 ...l 0.5 0

T paseline-LD features — Y

S-LDSC X

train]
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AnnotBoost improves the Informativeness of Mendeli
derived missense scores

 Two missense scores are conditionally informative (with significant t*)

1
0.5 -

0-
-0.5 -

Meta ™™

| Il Published

Boosted

*

*

-1

0.07% 0.17%

0.06% 0.18%

0.03% 0.09%

0.11% 1.13% 0.09% 0.54% 0.09% 0.22% 0.09% 0.26% nfa 0.07% 0.08% 0.06% 0.04% 0.03%

PolyPhen-2 PolyPhen-2 MetaLR MetaSVM PROVEAN SIFT4G  REVEL M-CAP  PrimateAl MPC

HVAR

PrimateAl: eliminating common missense variants identified in other primate species
MPC: identifying regions within genes that are depleted for missense variants in EXAC data

merican Sockety of Hu

(Sundaram et al. Nat Genet 2018, Samocha et al. biorxiv) ASHG




AnnotBoost improves the Informativeness of Mendeli
derived missense scores

* AnnotBoost generates orthogonal signals from published scores

1 mmPublished
¥/Z)Boosted N
X 05 ]
~
] 7
= 0
= 05 : 1
-1 0.07% 0.17% 0.06% 0.18% 0.03% 0.09% 0.11% 1.13% 0.09% 0.54% 0.09% 0.22% 0.09% 01.*26% n/a 0.07% 0.08% 0.06% 0.04% 0.03%
PolyPhen-2 PolyPhen-2 MetaLR MetaSVM PROVEAN SIFT 4G REVEL M-CAP PrimateAl MPC

HVAR

* PrimateAl: eliminating common missense variants identified in other primate species
 MPC: identifying regions within genes that are depleted for missense variants in EXAC data

mericam Sochety o

(Sundaram et al. Nat Genet 2018, Samocha et al. biorxiv) ASHG




AnnotBoost improves the Informativeness of Mendeli
derived missense scores

T EmPublished
¥/ZBoosted *
-kb 05 ] 7/
g o W\ B i , Z
G 7\ (% 2\ 7\
= 77 .
'05 ] * *
*
*
-1 0.07% 0T7%  0.06% 018%  0.03% 009%  0.11% 1.73% 0.09% 0.54% 0.09% 0.22% 0.09% 0.26% nfa 0.07%  0.08% 0.06% 0.04% 0.03%

PolyPhen-2 PolyPhen-2 MetaLR MetaSVM PROVEAN SIFT4G  REVEL M-CAP  PrimateAl MPC
HVAR

Non-significant (published) = significant (boosted)
Imputed non-coding SNPs (driven by conservation features): >85% signals

* M-CAP: ensemble model trained on HGMD pathogenic vs. EXAC benign variants

(Adzhubei et al. Nat Methods 2010, Dong et al. HMG 2014, Choi et al. Bioinformatics 2015 éASHG

Vaser et al. Nat Protocols 2016, Jagadeesh et al. NG 2016) *



AnnotBoost improves the Informativeness of Mendeli
derived missense scores

1 I Published (conditional on baseline-LD) | . *
" 05 P/7Z)Boosted (conditional on baseline-LD + published annotations) 7/ * % %/
S o EO\ Wy A\ O\ O\ O\ % W u
; 7\ (% @\ %\ 4\ Y (%
> 17 %* s/

-05 I * * "
-1 0.07% 017%  0.06% 0.18%  0.03% 006%  0.11% 1.13% 0.09% 0.54% 0.09% 0.22% uw%ﬁ%% nfa 0.07%  0.08% 0.06%  0.04% 0.03%
PolyPhen-2 PolyPhen-2 MetaLR MetaSVM PROVEAN SIFT 4G REVEL M-CAP PrimateAl MPC

HVAR

Neg t* = Enriched but less enriched than expected
e.g. REVEL: 4.7x enriched (expected enrichment 8.0x)

merican Soc [

(Neg t*: Hormozdiari et al. Nat. Comm. 2019) éASHG




Which genomic features are driving AnnotBoost predictions?

* Improve interpretability; sighed impact of features driving PrimateAl {:
High

Conserved_Vertebrate_phastCons46way

Conserved_Mammal_phastCons46way
Conservation-related GERP.NS
GERP.RSsup4
CpG_Content_50kb

Conserved_Primate_phastCons46way
TSS_Hoffman

MAF_Adj Predicted_Allele_Age
BivFInk.extend.500

Nucleotide_Diversity_10kb
LD-related Transcr_Hoffman.extend.500
Conserved_Primate_phastCons46way.extend.500
Conserved_LindbladToh

Repressed_Hoffman.extend.500

Intron_UCSC.extend.500
BivFInk

Feature value

H3K4me3_peaks_Trynka
TSS_Hoffman.extend.500
TFBS_ENCODE

FetalDHS Trynka

Low

~1.0 —05 0.0 0.5 1.0 15

Impact on model output

(SHAP feature importance: Lundberg & Lee. NIPS 2017) 8ASHG

Aneiicen Socety of Human Genetlcs



AnnotBoost improves the Informativeness of Mendeli
derived genome-wide scores

1.5 -

* B Published
77 Boosted
11 .
-kl_~ *
8
=
0.5 -
0 -
-0.2

0.40% 5.72% 0.05% 4.39% 3.58% 4.62% 0.34% 0.76% 4.55% 0.81% 4.62% 4.53%

CADD Eigen Eigen-PC ReMM NCBoost ncER
* Eigen, Eigen-PC, NCBoost, ncER: imputed SNPs 17-54% overall signals
* CADD, ReMM: denoised previously scored SNPs

(Kircher et al. NG 2014, lonita-Laza et al. NG 2016, Smedley et al. AJHG 2016, éASHG

Caron et al. Gen Bio 2019, Wells et al. Nat Comm 2019) st



AnnotBoost improves the Informativeness of
constraint, epigenetic, gene scores

* Imputed SNPs retained 55% of overall signal, on average

B Published - constraint [_]Published - regulatory [_]Published - gene-based
V/ZZBoosted - constraint  [ZZ7]Boosted - regulatory  [Z]Boosted - gene-based

1

05 1 T W ﬂ * {—| ﬁ :

E T - T - *

% 0 % 4 * 7A7) +___ /7 ==/ W/ /7 m . |
I

_05 0.51% 0.43% 0.03% 0.46% 4.96% 9.75% 4.84% 9.72% 4.81% 0.91% 0.94% 0.93% 4.78% 0.92% 4.81% 0.91% nfa 9.82% 3.09% 9.42%
CDTS CCR DeepSEA- DeepSEA- DeepSEA- DeepSEA- DeepSEA- DeepSEA- DIS- Gene network-

CTCF DNase H3K27ac H3K4me1 H3K4me3 H3K9ac DNA Greene

(di lulio et al. NG 2018, Havrilla et al. NG 2019, Zhou et al. Nat Methods 2015, Kim et al. AJHG 2019) 8ASHG

Anerican Sodety ¢



Boosted scores signhificant improved heritability model fit
(Aloglcs) by +23.9% in all 30/30 UK Biobank traits

2000

P < 2e-99

Aloglss = loglss(model) - loglss(MAF+LD model)

—
o)
o
o

* baseline-LD+marginal better predicted disease-associated

1000 - fine-mapped SNPs by +4.9% to +21.3%.

500-

Average Alogl .

< +64 new annotations

Heritability model
(Speed et al. Nat Genet 2020: loglgs consistent with REML and leave-one-chr-out y* ) 8SASHG



AnnotBoost can help identify biologically important genes

CADD gene quintile

D W
! I

(a»] —
| |

l AnnotBoost

Excess overlap Excess overlap

B 1st quintile (lowest) [ 2nd quintile [ ] 3rd quintile [ 4th quintile M 5th quintile (highest score)

(Lek et al. Nature 2016, Samocha et al. Nat Genet 2014, Cassa et al. Nat Genet 2017) éASHG

merican Soc [
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* Developed AnnotBoost to study shared variant properties between
Mendelian disease variants and common disease variants.

* Our new annotations significantly improved the heritability model
(+23.9%), motivating their inclusion in future fine-mapping studies.

* AnnotBoost can be applied to future pathogenicity scores to improve our
understanding of genetic architecture of complex traits and identify
biologically important genes.

Kim et al. biorxiv 2020 (accepted in principle, Nature Commun) éASHg

merican Socety of
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AnnotBoost implements gradient boosting to leverage
nonlinearity among features

e S-LDSC takes account of linear interactions in the model.

e Gradient boosting (decision tree-based) accounts for nonlinearity.

S, ={(x; yi)}l\il=1 S, ={(x, y;i— hl(xi))}l\il=1 S ={(x, v, — hl:n-l(xi))}l\ilﬂ
4 ) 4 ) 4 )
\_ J \ J \_ J

h; (x) h, (x) h, (x)

Classification model H = ah,(x) + Bh,(x) + ... + yh(x)

(Chen & Guestrin, KDD 2016) #ASHG



Applied AnnotBoost to missense + genome-wide
pathogenicity scores

Score Description (% §£;Zr2§§re d)
PolyPhen-2 Impact of missense variants using protein sequence and structure using HumDiv 0.28%
PolyPhen-2-HVAR Impact of missense variants using protein sequence and structure using HumVar 0.28%
MetaLLR Deleterious missense mutations using ensemble scoring (logistic regression) 0.32%
MetaSVM Deleterious missense mutations using ensemble scoring (support vector machine) 0.32%
PROVEAN Impact of an amino acid change on protein function 0.31%
SIFT 4G Impact of an amino acid change on protein function 0.31%
REVEL Pathogenic missense variants using ensemble scoring 0.32%
M-CAP Pathogenic rare missense variants 0.03%
PrimateAl Impact of missense variants using deep neural networks 0.26%
MPC Regional missense constraint 0.10%
MVP Impact of missense variants using deep neural networks 0.29%
CADD Predicted deleterious variants using ensemble scoring 100%
Eigen Putatively causal variants using unsupervised learning 83.79%
Eigen-PC Putatively causal variants using unsupervised learning using the lead eigenvector 83.79%
ReMM Pathogenic regulatory variants using ensemble scoring 100%
NCBoost Pathogenic non-coding variants using ensemble scoring 28.55%
ncER Essential regulatory variants using ensemble scoring 61.94%

(Complete reference: see Kim et al. 2020) éASHG

Aneiicen Socety of Human Genetlcs



Evaluating different heritability models

* baseline-LD: 86 existing annotations
* baseline-LD+joint: +11 new jointly significant annotations
* baseline-LD+marginal: +64 new marginally significant annotations

* Improvement: relative to baseline-LD-nofunct (only MAF/LD annotations)

# marginally significant | # significant annotations
Score # scores annotations in a combined joint model

published boosted published boosted
Mendelian missense 11 2% 10 1* 2
Genome-wide Mendelian 6 3 6 2 3
Additional scores 18 6** 13 O** 0
Baseline-LLD model annotations A7 n/a 24 n/a 3

82 scores analyzed

64 new annotations

11 new annotations




Improved heritability model better predicts disease-
associated fine-mapped SNPs by +4.9% to +21.3%

Weissbrod et al. fine-mapped SNPs across 49 UKBB traits
1n . . . .

baseline-LD+marginal = 0.440

- ~ = baseline-LD+joint = 0.434 +4.9%, relative to baseline-LD-nofunct
= 08 — haseline-LD = 0.427
:_"" baseline-LD-nofunct = 0.180
=
W
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D
w
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c
O
R
(&
@
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am

0 ] | | |

0 0.2 0.4 0.6 0.8 1

+21.3% using Farh et al. fine-mapped SNPs for ADs
Recall (PPV) +17.8% using Huang et al. fine-mapped SNPs for IBD

(Weissbrod et al. biorxiv 2020 — accepted in principle Nat Genet) %QSI;IQ



Improved heritability model better predicts disease-
associated fine-mapped SNPs by +4.9% to +21.3%

1 A. Farh et al. fine-mapped SNPs 1B. Huang et al. fine-mapped SNPs C.1 Weissbrod et al. fine-mapped SNPs
baseline-LD+marginal = 0.381 baseline-LD+marginal = 0.482 baseline-LD+marginal = 0.440

’;‘ = == baseline-LD+joint = 0.367 ; == == baseline-LD+joint = 0.468 ; = == baseline-LD+joint = 0.434
= 08 baseline-LD = 0.362 = 08 baseline-LD = 0.459 = 08 baseline-LD = 0.427
= baseline-LD-nofunct = 0.276 = baseline-LD-nofunct = 0.328 = baseline-LD-nofunct = 0.180
C C C
o) 0.6 o 06 o 06
2] 2] 2]
S— S— S -
c c c S
o 04 o 04 o 04
0 0 2
O O O
o 02} ) 0.2 o) 0.2
o o o

0 : : ' : 0 : ' ' : 0 ' ' : '

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Recall (PPV) Recall (PPV) Recall (PPV)

* baseline-LD+marginal significantly improves classification accuracy of fine-mapped SNPs

(Farh et al. Nature 2015, Huang et al. Nature 2017, Weissbrod et al. biorxiv 2020 — accepted in principle Nat Genet) éASHG
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Boosted scores better classifies fine-mapped SNPs

 Compared 82 published vs. 82 boosted scores in classifying fine-mapped
SNPs from LD-, MAF-, genomic-element-matched control SNPs.
* r(AUROCs, S-LDSC t*) =0.38 — 0.48

A. Farh et al. fine-mapped SNPs B. Huang et al. fine-mapped SNPs C. Weissbrod et al. fine-mapped SNPs

» Mendelian missense scores *
’a‘ * Genome-wide Mendelian scores ’a‘ ’0-5‘ *
— » Others: constraint scores e — * * *ﬁ*#
8 0.7 t - Others: regulatory scores 8 0.7 8 0.7+ % o - **
w Others: gene-based scores w W 5 g Fok * ¥ *
8 * Others: baseline-LD annotations 8 8 * o R L
*

O * ¥ MWege @] P O
2 06 [x, X * = L 06K ” K Q06+ ¥,
O grAFF . O #Fx ¥ O *
O  hxew O B o
¥ e 7282 X 3%V 6o/82 i 4 782
S . ﬁ; e SCOores S * #* SCores S e SCOores
< % * avg. improvement = 0.04 < o, avg. improvement = 0.04 < | *  avg. improvement = 0.08

0.5 : ' 0.5% : ' 0.5 ' '

0.5 0.6 0.7 0.5 0.6 0.7 0.5 0.6 0.7

AUROC(published score) AUROC(published score) AUROC(published score)




Boosted scores better classifies fine-mapped SNPs

e Similar findings using AUPRCs instead of AUROCs.

F. Farh et al. fine-mapped SNPs

~0.25¢ e
o x
(o] T
3 St
8 ¥ i:* * Ak ok
D 3 .t
8 0 2 ¥* %*—***
2 ¥
%
o 71/82 scores
?l: avg. |mprovement =0. 02
0.15
0.15 0.2 0. 25

AUPRC(published score)
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G. Huang et al. fine-mapped SNPs H. Weissbrod et al. fine-mapped SNPs
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avg. improvement = 0.02
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AnnotBoost can help identify biologically important genes
PolyPhen-2 (published) gene quintile

o -~ N W
| ! ! |

p Excess overlap

3_

a

l AnnotBoost

Excess overl

B 1st quintile (lowest) [ 2nd quintile [ ] 3rd quintile [ 4th quintile M 5th quintile (highest score)

(Lek et al. Nature 2016, Samocha et al. Nat Genet 2014, Cassa et al. Nat Genet 2017) 8ASHG
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