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(Figure from Manolio et al. Nature 2009; Antonarakis et al. Nat Rev Genet 2010)

Mendelian disease and common disease: the big divide?

Effect size

Allele frequency



Effect size

Allele frequency

(Adzhubei et al. Nat Methods 2010, Kircher et al. NG 2014, Eilbeck et al. Nat Rev Genet 2017)

Mendelian disease-derived pathogenicity scores prioritize 
pathogenic, rare variants for gene discovery / diagnosis

Variant scores

SNVs CADD

chr1: 225528175 G>T 53

... …

chr1: 1152488 A>G 4

• Can be genome-wide
or missense variants only



(CADD: Kircher et al. NG 2014, DeepSEA: Zhou et al. Nat Methods 2015
Reviewed in Eilbeck et al. Nat Rev Genet 2017, Figure from Kircher et al. Nat Commun 2019)

What is the contribution of Mendelian disease-derived 
pathogenicity scores to common diseases?
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Shared genetic architecture between
Mendelian disease and common disease

• Gene overlap between monogenic diseases and complex traits

- e.g. LDLR: monogenic hypercholesterolemia and cardiovascular diseases

• Significant comorbidities

• Mendelian disease genes are enriched in GWAS closest genes

• Limitation: previous analyses were either gene-based or limited to 

genome-wide significant SNPs

(Peltonen et al. HMG 2006, Blair et al. Cell 2013, Chong et al. AJHG 2015, Freund et al. AJHG 2018)



Our goals: pathogenicity score  common disease

1. Assess informativeness of Mendelian disease-derived 
pathogenicity scores for 41 common diseases and complex traits



Our goals: pathogenicity score  common disease

1. Assess informativeness of Mendelian disease-derived 
pathogenicity scores for 41 common diseases and complex traits

2. Develop a framework to improve their informativeness for 
common disease
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Method building Mendelian disease-derived
pathogenicity annotations

(S-LDSC: Finucane et al. Nat Genet 2015, baseline-LD model: Gazal et al. Nat Genet 2017)

• Pathogenicity scores overwhelmingly predict pathogenic rare SNPs.

• Hypothesis: Mendelian disease variants and common disease variants 
share similar properties. 

To evaluate this hypothesis,

• Given a pathogenicity score, applied S-LDSC on binary annotations to 41 
complex traits (avg. N = 320K; 30 from UK Biobank)



To evaluate disease heritability enrichment, used 
stratified LD score regression (S-LDSC)

(Finucane et al. Nat. Genet. 2015)

Output
1. Enrichment = Prop. h2g / Prop. SNPs
2. Standardized effect size (*) = Mcsd(c) / h2g

That is, proportionate change in per-SNP heritability associated to a one sd(annotationc) 
increase, conditional on all other annotations in the model.

Summary statistics Reference panel (1000G EUR) Functional annotations

Input

http://www.ebi.ac.uk/birney-srv/medaka-ref-panel/viz.html


To evaluate disease heritability enrichment, used 
stratified LD score regression (S-LDSC)

(Finucane et al. Nat. Genet. 2015)

• Annotations with * = 0: no unique information
• Annotations with significantly positive or negative * are conditionally 

informative, after considering all other annotations in the model.

Summary statistics Reference panel (1000G EUR) Functional annotations

Input

http://www.ebi.ac.uk/birney-srv/medaka-ref-panel/viz.html
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*Not phenotype-specific 

*Implements XGBoost to take account of nonlinearity

Pathogenicity score to boost 75 baseline-LD features

Input
SNPs Annotation X

rs575272151 1

... ...

rs540538026 1

Training set

Validation set

AnnotBoost: a gradient boosting-based ML framework 
to impute and denoise existing pathogenicity scores

(XGBoost: Chen & Guestrin. KDD 2016, Features: Finucane et al. NG 2015, Gazal et al. NG 2017)

Coding

H3K27ac

GERP

LD



Pathogenicity score to boost 75 baseline-LD features

Input
SNPs Annotation X

rs575272151 1

... ...

rs540538026 1

Training set

Validation set

Boosted score

Output
SNPs Annotation X

rs575272151 0.80

rs540538026 0.25

Feature importance

Heritability enrichment (S-LDSC)

Heritability model fit (loglSS)

Analysis

AnnotBoost: a gradient boosting-based ML framework 
to impute and denoise existing pathogenicity scores



AnnotBoost model training

AnnotBoost works regardless binary or continuous-valued score.

SNPs CADD
(Kircher et al. NG 2014)

rs184094753 55

rs11588155 0.001

rs28359608 20

Example shown with CADD score.



AnnotBoost model training

Sort

SNPs CADD

rs184094753 55

… …

rs11588155 0.001

Top 10%: label ‘1’

(positive SNPs)

Bottom 40%: label ‘0’

(control SNPs)

SNPs CADD

rs184094753 55

... …

rs28359608 20

AnnotBoost achieved robust results with different training ratios.

(Without using external disease data)



AnnotBoost model training

AnnotBoost training

Even (resp. odd) 

chr SNPs

GERP Coding H3K27ac CpG CADD

(binary label) 

rs184094753 0 0 0 … 0.3 1

… 1 0 1 … 0.1 …

rs11588155 0 1 0 … 0.5 0

baseline-LD features Ytrain

[Xtrain]

Sort

SNPs CADD

rs184094753 55

… …

rs11588155 0.001

Top 10%: label ‘1’

(positive SNPs)

Bottom 40%: label ‘0’

(control SNPs)

SNPs CADD

rs184094753 55

... …

rs28359608 20

Even (resp. odd) chr SNPs are used for training to score odd (resp. even) chr SNPs.



AnnotBoost model training

AnnotBoost training

Even (resp. odd) 

chr SNPs

GERP Coding H3K27ac CpG CADD

(binary label) 

rs184094753 0 0 0 … 0.3 1

… 1 0 1 … 0.1 …

rs11588155 0 1 0 … 0.5 0

baseline-LD features Ytrain

[Xtrain]

Sort

SNPs CADD

rs184094753 55

… …

rs11588155 0.001

Top 10%: label ‘1’

(positive SNPs)

Bottom 40%: label ‘0’

(control SNPs)

SNPs CADD

rs184094753 55

... …

rs28359608 20

Boosted CADD 

S-LDSC
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AnnotBoost improves the Informativeness of Mendelian-
derived missense scores

(conditional on baseline-LD)

(conditional on baseline-LD + published annotations)

(Sundaram et al. Nat Genet 2018, Samocha et al. biorxiv)

• PrimateAI: eliminating common missense variants identified in other primate species
• MPC: identifying regions within genes that are depleted for missense variants in ExAC data

• Two missense scores are conditionally informative (with significant *)

* Bonferroni significant



AnnotBoost improves the Informativeness of Mendelian-
derived missense scores

(conditional on baseline-LD)

(conditional on baseline-LD + published annotations)

(Sundaram et al. Nat Genet 2018, Samocha et al. biorxiv)

• PrimateAI: eliminating common missense variants identified in other primate species
• MPC: identifying regions within genes that are depleted for missense variants in ExAC data

• AnnotBoost generates orthogonal signals from published scores



AnnotBoost improves the Informativeness of Mendelian-
derived missense scores

Non-significant (published)  significant (boosted)
Imputed non-coding SNPs (driven by conservation features): >85% signals

(conditional on baseline-LD)

(conditional on baseline-LD + published annotations)

(Adzhubei et al. Nat Methods 2010, Dong et  al. HMG 2014, Choi et al. Bioinformatics 2015
Vaser et al. Nat Protocols 2016, Jagadeesh et al. NG 2016)

• M-CAP: ensemble model trained on HGMD pathogenic vs. ExAC benign variants



AnnotBoost improves the Informativeness of Mendelian-
derived missense scores

Neg * = Enriched but less enriched than expected
e.g. REVEL: 4.7x enriched (expected enrichment 8.0x)

(Neg *: Hormozdiari et al. Nat. Comm. 2019)

(conditional on baseline-LD)

(conditional on baseline-LD + published annotations)



(SHAP feature importance: Lundberg & Lee. NIPS 2017)
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Impact on model output

Conservation-related

LD-related

Which genomic features are driving AnnotBoost predictions?
• Improve interpretability; signed impact of features driving PrimateAI: 



AnnotBoost improves the Informativeness of Mendelian-
derived genome-wide scores

(Kircher et al. NG 2014, Ionita-Laza et al. NG 2016, Smedley et al. AJHG 2016,
Caron et al. Gen Bio 2019, Wells et al. Nat Comm 2019)

• Eigen, Eigen-PC, NCBoost, ncER: imputed SNPs 17-54% overall signals
• CADD, ReMM: denoised previously scored SNPs



AnnotBoost improves the Informativeness of 
constraint, epigenetic, gene scores

(di Iulio et al. NG 2018, Havrilla et al. NG 2019, Zhou et al. Nat Methods 2015, Kim et al. AJHG 2019)

• Imputed SNPs retained 55% of overall signal, on average



(Speed et al. Nat Genet 2020: log𝑙SS consistent with REML and leave-one-chr-out 𝜒2 )

Boosted scores significant improved heritability model fit 
(∆log𝑙𝑆𝑆) by +23.9% in all 30/30 UK Biobank traits

∆log𝑙𝑆𝑆 = log𝑙𝑆𝑆(model) - log𝑙𝑆𝑆(MAF+LD model)

• baseline-LD+marginal better predicted disease-associated 
fine-mapped SNPs by +4.9% to +21.3%.

 +64 new annotations



AnnotBoost can help identify biologically important genes

(Lek et al. Nature 2016, Samocha et al. Nat Genet 2014,  Cassa et al. Nat Genet 2017)

AnnotBoost



Conclusions

• Developed AnnotBoost to study shared variant properties between 

Mendelian disease variants and common disease variants. 

• Our new annotations significantly improved the heritability model 

(+23.9%), motivating their inclusion in future fine-mapping studies. 

• AnnotBoost can be applied to future pathogenicity scores to improve our 

understanding of genetic architecture of complex traits and identify 

biologically important genes. 

Kim et al. biorxiv 2020 (accepted in principle, Nature Commun)
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• S-LDSC takes account of linear interactions in the model.

• Gradient boosting (decision tree-based) accounts for nonlinearity.

(Chen & Guestrin, KDD 2016)

S1 = {(xi, yi)}
N
i=1 S2 = {(xi, yi – h1(xi))}

N
i=1 Sn = {(xi, yi – h1:n-1(xi))}

N
i=1

…

h1 (x) h2 (x) hn (x)

Classification model H = αh1(x) + βh2(x) + … + γhn(x)
where α,β,γ are optimal weights 

AnnotBoost implements gradient boosting to leverage 
nonlinearity among features



Applied AnnotBoost to missense + genome-wide
pathogenicity scores

(Complete reference: see Kim et al. 2020)



Evaluating different heritability models

• baseline-LD: 86 existing annotations
• baseline-LD+joint: +11 new jointly significant annotations
• baseline-LD+marginal: +64 new marginally significant annotations
• Improvement: relative to baseline-LD-nofunct (only MAF/LD annotations)

64 new annotations 11 new annotations82 scores analyzed



Improved heritability model better predicts disease-
associated fine-mapped SNPs by +4.9% to +21.3%

+21.3% using Farh et al. fine-mapped SNPs for ADs
+17.8% using Huang et al. fine-mapped SNPs for IBD

(Weissbrod et al. biorxiv 2020 – accepted in principle Nat Genet)

Weissbrod et al. fine-mapped SNPs across 49 UKBB traits

+4.9%, relative to baseline-LD-nofunct



Improved heritability model better predicts disease-
associated fine-mapped SNPs by +4.9% to +21.3%

• baseline-LD+marginal significantly improves classification accuracy of fine-mapped SNPs

P(baseline-LD, baseline-LD+marginal) < 1e-100

(Farh et al. Nature 2015, Huang et al. Nature 2017, Weissbrod et al. biorxiv 2020 – accepted in principle Nat Genet)

21 autoimmune diseases IBD 49 UKBB traits



Boosted scores better classifies fine-mapped SNPs

• Compared 82 published vs. 82 boosted scores in classifying fine-mapped 
SNPs from LD-, MAF-, genomic-element-matched control SNPs.

• r(AUROCs, S-LDSC *) = 0.38 – 0.48



Boosted scores better classifies fine-mapped SNPs

• Similar findings using AUPRCs instead of AUROCs.



AnnotBoost can help identify biologically important genes

AnnotBoost

(Lek et al. Nature 2016, Samocha et al. Nat Genet 2014,  Cassa et al. Nat Genet 2017)


