

Disclosure Slide

for Samuel S. Kim

I have nothing to disclose

Improving the informativeness of Mendelian disease-derived pathogenicity scores for common disease using AnnotBoost

Samuel Kim

Alkes Price Group 10.28.2020

Kim et al. bioRxiv 2020 (accepted in principle, Nat. Commun.)

Outline

- Motivation
- Methods: assessing informativeness of existing pathogenicity scores
- Methods: improving the informativeness of existing pathogenicity scores
- Results

Outline

- Methods: <u>assessing</u> informativeness of existing pathogenicity scores
- Methods: improving the informativeness of existing pathogenicity scores
- Results

Mendelian disease and common disease: the big divide?

Mendelian disease-derived pathogenicity scores prioritize pathogenic, rare variants for gene discovery / diagnosis

What is the contribution of Mendelian disease-derived pathogenicity scores to common diseases?

Shared genetic architecture between Mendelian disease and common disease

- Gene overlap between monogenic diseases and complex traits
- e.g. LDLR: monogenic hypercholesterolemia and cardiovascular diseases
- Significant comorbidities
- Mendelian disease genes are enriched in GWAS closest genes
- *Limitation*: previous analyses were either gene-based or limited to genome-wide significant SNPs

Our goals: pathogenicity score \rightarrow common disease

1. <u>Assess</u> informativeness of Mendelian disease-derived pathogenicity scores for 41 common diseases and complex traits

Our goals: pathogenicity score \rightarrow common disease

1. <u>Assess</u> informativeness of Mendelian disease-derived pathogenicity scores for 41 common diseases and complex traits

2. Develop a framework to <u>improve</u> their informativeness for common disease

Outline

- Motivation
- Methods: <u>assessing</u> informativeness of existing pathogenicity scores
- Methods: improving the informativeness of existing pathogenicity scores
- Results

Method building Mendelian disease-derived pathogenicity annotations

- Pathogenicity scores overwhelmingly predict pathogenic rare SNPs.
- Hypothesis: Mendelian disease variants and common disease variants share <u>similar properties</u>.

To evaluate this hypothesis,

 Given a pathogenicity score, applied S-LDSC on binary annotations to 41 complex traits (avg. N = 320K; 30 from UK Biobank)

To evaluate disease heritability enrichment, used stratified LD score regression (S-LDSC)

Output

- 1. Enrichment = Prop. h^2g / Prop. SNPs
- 2. Standardized effect size $(\tau^*) = M\tau_c sd(c) / h^2g$

That is, proportionate change in per-SNP heritability associated to a one sd(annotation_c) increase, conditional on all other annotations in the model.

 $E\left[\chi_j^2\right] = N \sum \tau_c \ell(j,c) + 1$

To evaluate disease heritability enrichment, used stratified LD score regression (S-LDSC)

- Annotations with $\tau^* = 0$: no unique information
- Annotations with significantly positive or negative τ^* are conditionally informative, after considering all other annotations in the model.

Outline

- Motivation
- Methods: assessing informativeness of existing pathogenicity scores
- Methods: improving the informativeness of existing pathogenicity scores
- Results

AnnotBoost: a gradient boosting-based ML framework to impute and denoise existing pathogenicity scores

^{*}Not phenotype-specific

^{*}Implements XGBoost to take account of nonlinearity

AnnotBoost: a gradient boosting-based ML framework to impute and denoise existing pathogenicity scores

Example shown with CADD score.

SNPs	CADD (Kircher et al. NG 2014)
rs184094753	55
rs11588155	0.001
rs28359608	20

SNPs	CADD
rs184094753	55
•••	•••
rs28359608	20

SNPs	CADD
rs184094753	55
rs11588155	0.001

- → Top 10%: label '1' (positive SNPs)
- Bottom 40%: label '0' (control SNPs)

(Without using external disease data)

SNPs	CADD
rs184094753	55
•••	•••
rs28359608	20

SNPs	CADD		
rs184094753	55		
rs11588155	0.001		

→ Top 10%: label '1' (positive SNPs)

Bottom 40%: label '0' (control SNPs)

AnnotBoost training

Even (resp. odd) chr SNPs	GERP	Coding	H3K27ac	CpG	CADD (binary label)
rs184094753	0	0	0	 0.3	1
	1	0	1	 0.1	
rs11588155	0	1	0	 0.5	0

baseline-LD features [X_{train}]

SNPs	CADD
rs184094753	55
•••	•••
rs28359608	20

SNPs	CADD
rs184094753	55
rs11588155	0.001

→ Top 10%: label '1' (positive SNPs)

Bottom 40%: label '0' (control SNPs)

AnnotBoost training

Even (resp. odd) chr SNPs	GERP	Coding	H3K27ac	CpG	CADD (binary label)
rs184094753	0	0	0	 0.3	1
	1	0	1	 0.1	
rs11588155	0	1	0	 0.5	0

baseline-LD features [X_{train}]

Outline

- Motivation
- Methods: assessing informativeness of existing pathogenicity scores
- Methods: improving the informativeness of existing pathogenicity scores

• Two missense scores are conditionally informative (with significant τ^*)

- PrimateAI: eliminating common missense variants identified in other primate species
- MPC: identifying regions within genes that are depleted for missense variants in ExAC data

AnnotBoost generates orthogonal signals from published scores

- PrimateAI: eliminating common missense variants identified in other primate species
- MPC: identifying regions within genes that are depleted for missense variants in ExAC data

Non-significant (published) \rightarrow significant (boosted) Imputed non-coding SNPs (driven by conservation features): >85% signals

M-CAP: ensemble model trained on HGMD pathogenic vs. ExAC benign variants

Neg τ^* = Enriched but less enriched than expected e.g. REVEL: 4.7x enriched (expected enrichment 8.0x)

Which genomic features are driving AnnotBoost predictions?

Improve interpretability; signed impact of features driving PrimateAI ①:

- Eigen, Eigen-PC, NCBoost, ncER: imputed SNPs 17-54% overall signals
- CADD, ReMM: denoised previously scored SNPs

AnnotBoost improves the Informativeness of constraint, epigenetic, gene scores

• Imputed SNPs retained 55% of overall signal, on average

Boosted scores significant improved heritability model fit $(\Delta \log l_{SS})$ by +23.9% in all 30/30 UK Biobank traits

Heritability model

AnnotBoost can help identify biologically important genes

Conclusions

- Developed AnnotBoost to study shared variant properties between
 Mendelian disease variants and common disease variants.
- Our new annotations significantly improved the heritability model (+23.9%), motivating their inclusion in future fine-mapping studies.
- AnnotBoost can be applied to future pathogenicity scores to improve our understanding of genetic architecture of complex traits and identify biologically important genes.

Acknowledgements

• Bryce van de Geijn

Kushal Dey

• Farhad Hormozdiari

Omer Weissbrod

Huwenbo Shi

Carla Márquez-Luna

• UK Biobank

Steven Gazal

NIH for funding

Price Group @ HSPH

Thank you!

- sungil [at] mit.edu
- y samsungilkim
- in samuel-s-kim

github.com/samskim/annotboost

Kim SS, Dey KK, Weissbrod O, Marquez-Luna C, Gazal S, Price AL. Improving the informativeness of Mendelian disease-derived pathogenicity scores for common disease. 2020 bioRxiv. (accepted in principle, *Nat. Commun.*)

Supplementary slides

AnnotBoost implements gradient boosting to leverage nonlinearity among features

- S-LDSC takes account of linear interactions in the model.
- Gradient boosting (decision tree-based) accounts for nonlinearity.

Classification model H = $\alpha h_1(x) + \beta h_2(x) + ... + \gamma h_n(x)$ where α, β, γ are optimal weights

Applied AnnotBoost to missense + genome-wide pathogenicity scores

Score	Description	Coverage (% SNPs scored)
PolyPhen-2	Impact of missense variants using protein sequence and structure using HumDiv	0.28%
PolyPhen-2-HVAR	Impact of missense variants using protein sequence and structure using HumVar	0.28%
MetaLR	Deleterious missense mutations using ensemble scoring (logistic regression)	0.32%
MetaSVM	Deleterious missense mutations using ensemble scoring (support vector machine)	0.32%
PROVEAN	Impact of an amino acid change on protein function	0.31%
SIFT 4G	Impact of an amino acid change on protein function	0.31%
REVEL	Pathogenic missense variants using ensemble scoring	0.32%
M-CAP	Pathogenic rare missense variants	0.03%
PrimateAI	Impact of missense variants using deep neural networks	0.26%
MPC	Regional missense constraint	0.10%
MVP	Impact of missense variants using deep neural networks	0.29%
CADD	Predicted deleterious variants using ensemble scoring	100%
Eigen	Putatively causal variants using unsupervised learning	83.79%
Eigen-PC	Putatively causal variants using unsupervised learning using the lead eigenvector	83.79%
ReMM	Pathogenic regulatory variants using ensemble scoring	100%
NCBoost	Pathogenic non-coding variants using ensemble scoring	28.55%
ncER	Essential regulatory variants using ensemble scoring	61.94%

Evaluating different heritability models

- baseline-LD: 86 existing annotations
- baseline-LD+joint: +11 new jointly significant annotations
- baseline-LD+marginal: +64 new marginally significant annotations
- Improvement: relative to baseline-LD-nofunct (only MAF/LD annotations)

Score	# scores	''	lly significant otations	# significant annotations in a combined joint model		
	" " " " " " " " " " " " " " " " " " " "			published	boosted	
Mendelian missense	11	2*	10	1*	2	
Genome-wide Mendelian	6	3	6	2	3	
Additional scores	18	6**	13	0**	0	
Baseline-LD model annotations	47	n/a	24	n/a	3	

82 scores analyzed 64 new annotations

11 new annotations

Improved heritability model better predicts disease-associated fine-mapped SNPs by +4.9% to +21.3%

Weissbrod et al. fine-mapped SNPs across 49 UKBB traits

Improved heritability model better predicts disease-associated fine-mapped SNPs by +4.9% to +21.3%

• baseline-LD+marginal significantly improves classification accuracy of fine-mapped SNPs

Boosted scores better classifies fine-mapped SNPs

- Compared 82 published vs. 82 boosted scores in classifying fine-mapped SNPs from LD-, MAF-, genomic-element-matched control SNPs.
- r(AUROCs, S-LDSC τ^*) = 0.38 0.48

A. Farh et al. fine-mapped SNPs

B. Huang et al. fine-mapped SNPs C. Weissbrod et al. fine-mapped SNPs

Boosted scores better classifies fine-mapped SNPs

Similar findings using AUPRCs instead of AUROCs.

F. Farh et al. fine-mapped SNPs G. Huang et al. fine-mapped SNPs H. Weissbrod et al. fine-mapped SNPs AUPRC(boosted score)
0.32
0.32
0.32 AUPRC(boosted score) AUPRC(boosted s 71/82 scores 80/82 scores 66/82 scores avg. improvement = 0.02 avg. improvement = 0.02 avg. improvement = 0.04 0.2 L 0.2 0.15 0.2 0.25 0.25 0.3 0.35 0.1 0.2 0.3 AUPRC(published score) AUPRC(published score) AUPRC(published score)

AnnotBoost can help identify biologically important genes

