Identifying loci with different allele frequency among cases of eight psychiatric disorders with CC-GWAS

W.J. Peyrot and A.L. Price 2020 bioRxiv

World Congress of Psychiatric Genetics October 20, 2020 Wouter Peyrot

Nothing to disclose

Biological differences between psychiatric disorders are poorly understood

Relevance

- May improve distinction of clinical diagnoses
- Long-term aim: more disorder-specific treatment

Challenge

- Case-case GWAS requires individual level data
- Only Two loci associated to SCZ case vs. BIP case

SCZ = schizophrenia BIP = bipolar disorder

Ruderfer et al. 2018 Cell

No methods exist for case-case comparison based on both case-control GWAS

i.e. existing methods do not test H_0 : $p_{A1} = p_{B1}$

GWIS (Nieuwboer et al. 2015 AJHG)

Not directly applicable to case-case comparison

• MTAG (Turley et al. 2018 Nat Genet)

• Compares case-control rather than case-case

- Disorder specific SNPs (Lee et al. 2019 Cell)
 o Loci impacting both traits can have p_{A1} ≠ p_{B1}
- mtCOJO (Zhu et al. 2018 Nat Comm; Byrne et al. 2020 Mol Psychiatry)
 Corrects for causal link of disorders on each other

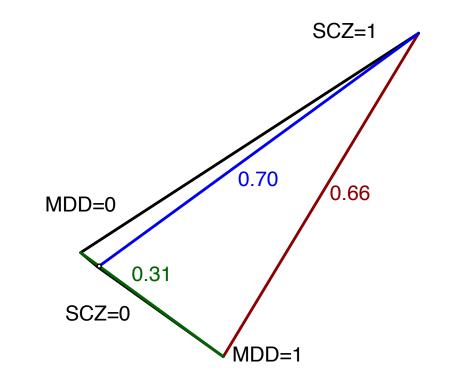
See also: Qi et al. 2018 Plos Genetics Baselmans et al. 2019 Nat Genetics

 p_{A1}/p_{B1} = allele freq. A/B cases

Outline

- 1. CC-GWAS method
- 2. Simulations
- 3. Application to 8 psychiatric disorders
- 4. Replication of empirical results

Outline


1. CC-GWAS method

- 2. Simulations
- 3. Application to 8 psychiatric disorders
- 4. Replication of empirical results

- Weighted difference between case-control GWAS results
- Combine two components

- Weighted difference between case-control GWAS results
- Combine two components
 - 1. CC-GWAS_{OLS}

Optimizes power

- Weighted difference between case-control GWAS results
- Combine two components
 - 1. CC-GWAS_{OLS}

Optimizes power & controls type I error at *null-null* SNPs

Null-null SNP: no impact either disorder, no case-case difference

- Weighted difference between case-control GWAS results
- Combine two components
 - 1. CC-GWAS_{OLS}

Optimizes power & controls type I error at *null-null* SNPs

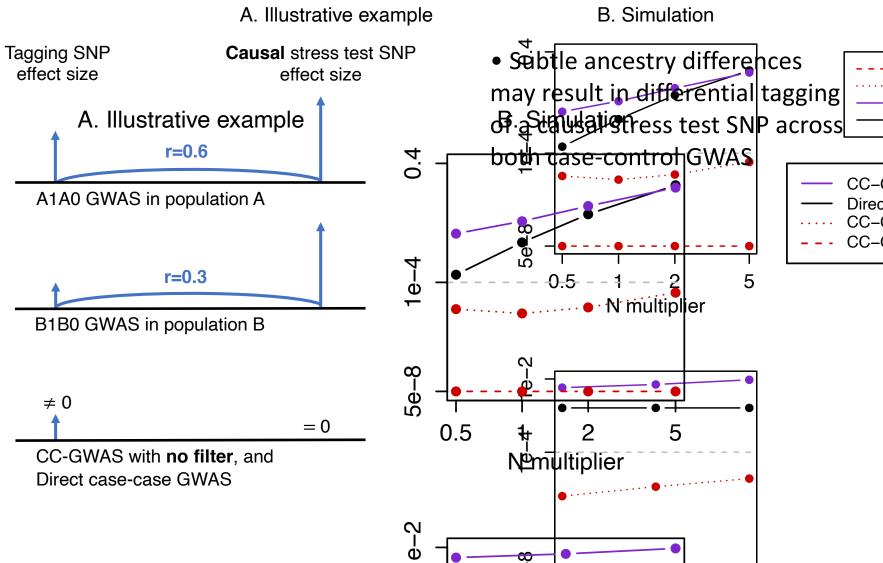
2. CC-GWAS_{Exact}

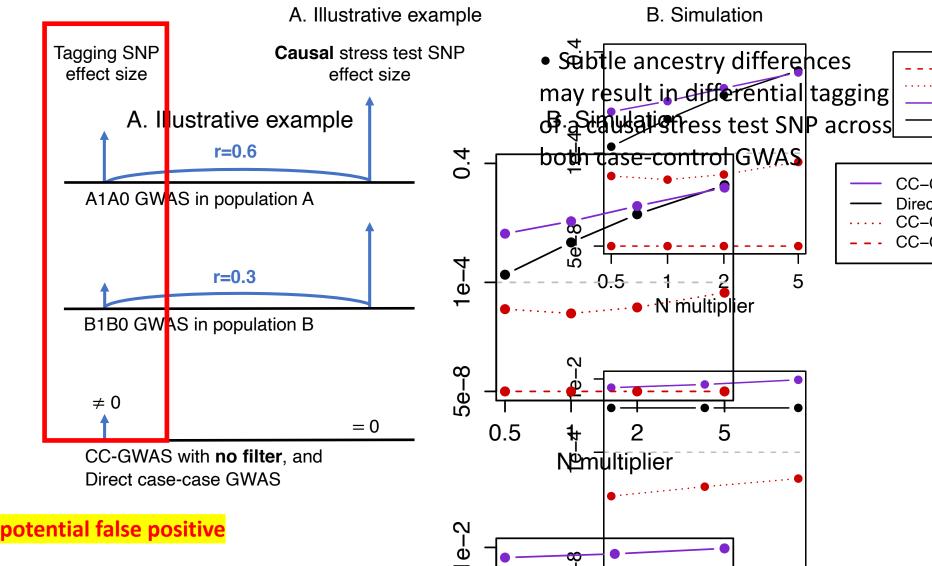
Controls type I error at stress test SNPs

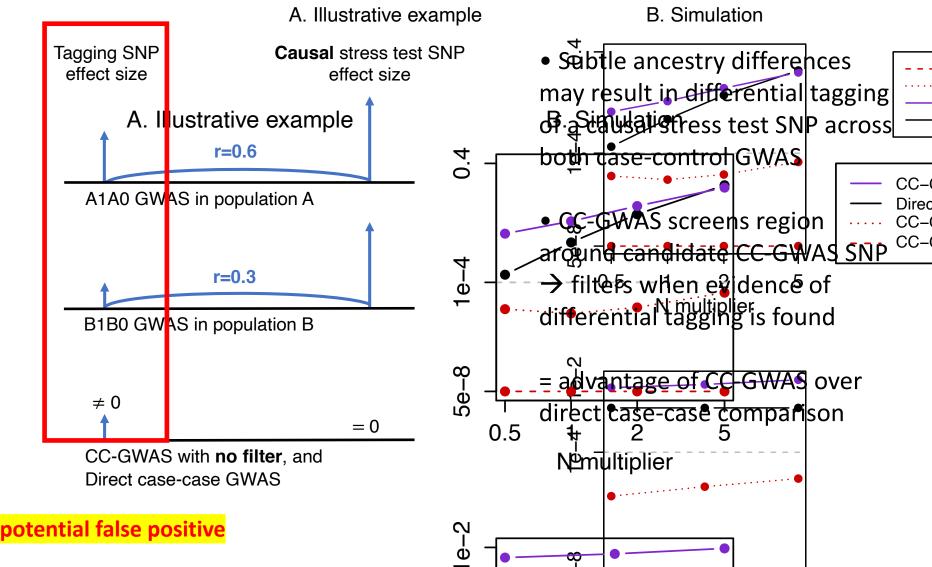
Null-null SNP: no impact either disorder, no case-case difference *Stress test* SNP: impacts both disorders, no case-case difference

- Weighted difference between case-control GWAS results
- Combine two components
 - 1. CC-GWAS_{OLS}

Optimizes power & controls type I error at *null-null* SNPs


2. CC-GWAS_{Exact}

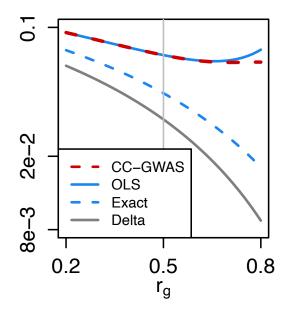

Controls type I error at *stress test* SNPs


 \rightarrow Significant when p-OLS < 5x10⁻⁸ <u>and</u> p-Exact < 10⁻⁴

Null-null SNP: no impact either disorder, no case-case difference *Stress test* SNP: impacts both disorders, no case-case difference

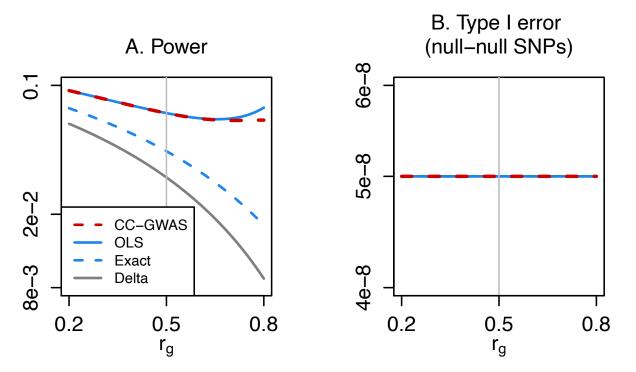
• Subtle ancestry differences may result in differential tagging of a causal stress test SNP across both case-control GWAS

Outline

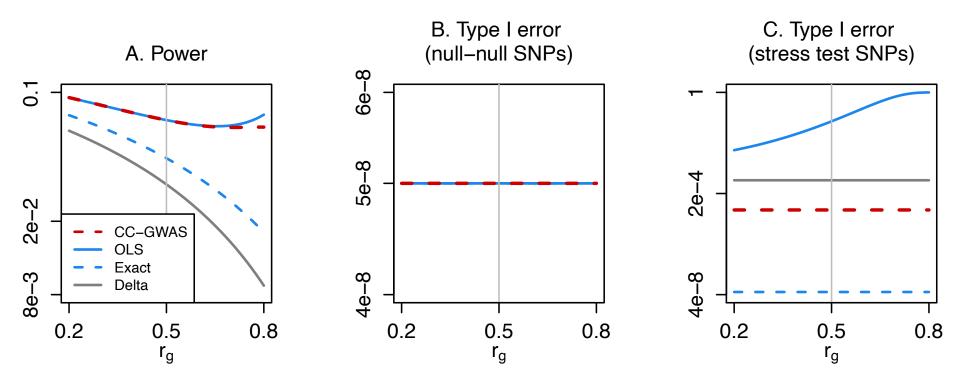

1. CC-GWAS method

2. Simulations

- 3. Application to 8 psychiatric disorders
- 4. Replication of empirical results

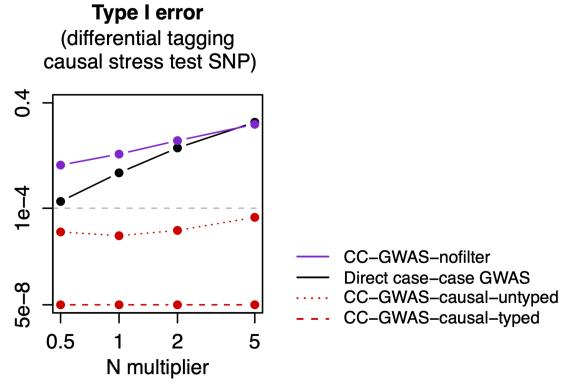

CC-GWAS: Is well powered

 $h_{l,A}^2 = 0.2; K_A = 0.01; N_{A1} = N_{A0} = 100k$ $h_{l,B}^2 = 0.1; K_B = 0.15; N_{B1} = N_{B0} = 100k$ $r_g = 0.5; m = 5e3$


CC-GWAS: Controls type I error at *null-null* SNPs

Null-null SNP: no impact either disorder, no case-case difference

 $h_{l,A}^2 = 0.2; K_A = 0.01; N_{A1} = N_{A0} = 100k$ $h_{l,B}^2 = 0.1; K_B = 0.15; N_{B1} = N_{B0} = 100k$ $r_g = 0.5; m = 5e3$


CC-GWAS: Controls type I error at *stress test* SNPs

Stress test SNP: impacts both disorders, no case-case difference

Stress test SNPs explain 0.1% variance in A $h_{l,A}^2 = 0.2$; $K_A = 0.01$; $N_{A1} = N_{A0} = 100k$ $h_{l,B}^2 = 0.1$; $K_B = 0.15$; $N_{B1} = N_{B0} = 100k$ $r_g = 0.5$; m = 5e3

CC-GWAS: controls type I error due to *differential tagging of a causal stress test SNP*

Stress test SNPs explain 0.1% variance in A $h_{l,A}^2 = 0.2$; $K_A = 0.01$; $N_{A1} = N_{A0} = 100k$ $h_{l,B}^2 = 0.1$; $K_B = 0.15$; $N_{B1} = N_{B0} = 100k$ $r_g = 0.5$; m = 5e3 *Stress test* SNP: impacts both disorders, no case-case difference

Simulations based on real-life LD patters in 25k UKB British vs. 25k UKB non-British

Outline

- 1. CC-GWAS method
- 2. Simulations
- 3. Application to 8 psychiatric disorders
- 4. Replication of empirical results

CC-GWAS identifies 196 loci distinguishing cases of 8 psychiatric disorders

SCZ, BIP and MDD

- 121 loci summed across 3 pairs \rightarrow 116 independent loci
- 21 CC-GWAS-specific loci (=not significant in case-control GWAS)

CC-GWAS identifies 196 loci distinguishing cases of 8 psychiatric disorders

SCZ, BIP and MDD

- 121 loci summed across 3 pairs \rightarrow 116 independent loci
- 21 CC-GWAS-specific loci (=not significant in case-control GWAS)

SCZ, BIP, MDD, ADHD, AN, ASD, OCD and TS

- 313 loci summed across 28 pairs \rightarrow 196 independent loci
- 72 CC-GWAS-specific loci (=not significant in case-control GWAS)

Most CC-GWAS loci in comparisons with SCZ cases (most powerful case-control GWAS)

# loci	SCZ	BIP	MDD	ADHD	ANO	ASD	OCD	TS
SCZ	-	12 (7)	99 (10)	43 (14)	41 (5)	40 (10)	0 (0)	13 (4)
BIP		-	10 (4)	8 (6)	5 (2)	3 (0)	1 (1)	5 (3)
MDD			-	9 (2)	6 (1)	3 (2)	0 (0)	0 (0)
ADHD				-	4 (3)	1 (0)	2 (2)	2 (2)
AN					-	1 (1)	0 (0)	2 (1)
ASD						-	1 (1)	1 (1)
OCD							-	1 (1)
TS								-

() = CC-GWAS-specific, i.e. not significant in input case-control GWAS results

Most CC-GWAS loci in comparisons with SCZ cases (most powerful case-control GWAS)

# loci	SCZ	BIP	MDD	ADHD	ANO	ASD	OCD	TS
SCZ	- (12 (7)	99 (10)	43 (14)	41 (5)	40 (10)	0 (0)	13 (4)
BIP		-	10 (4)	8 (6)	5 (2)	3 (0)	1 (1)	5 (3)
MDD			-	9 (2)	6 (1)	3 (2)	0 (0)	0 (0)
ADHD				-	4 (3)	1 (0)	2 (2)	2 (2)
AN					-	1 (1)	0 (0)	2 (1)
ASD						-	1 (1)	1 (1)
OCD							-	1 (1)
TS								-

() = CC-GWAS-specific, i.e. not significant in input case-control GWAS results

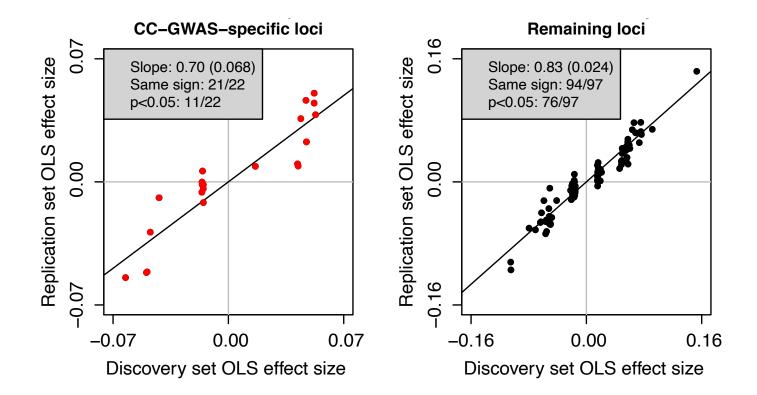
CC-GWAS identifies 12 SCZ vs. BIP loci

			Number of significa			ant loci	
					CC-GWAS		
A1A0	B1B0	OLS weights	A1A0	B1B0	all	specific	
SCZ (41k/65k)	BIP (20k/31k)	0.55/-0.43	139	15	12	7	
specific = not si	gnificant in A1A0/E	31B0					
			case-control effect size מי מי			•	
Pardinas et al. 20	ol summary statist 18 Nat Genetics fo Nat Genetics for Bl	or SCZ	BIP	-0.03	0.0 case_cont	0 0.0 rol effect size	

CC-GWAS identifies 12 SCZ vs. BIP loci

			Number of significant loci				
					CC-GWAS		
A1A0	B1B0	OLS weights	A1A0	B1B0	all	specific	
SCZ (41k/65k)	BIP (20k/31k)	0.55/-0.43	139	15	12	7	
specific = not si	gnificant in A1A0/E	31B0					
Ruderfer et al. 2 - 24k SCZ cases - 2 loci - rg = 1.02 (0.02	vs. 15k BIP cases		case-control effect size				
Pardinas et al. 20	ol summary statist 18 Nat Genetics fo Nat Genetics for Bl	or SCZ	BIP	; 1, _0.03	-	00 0.0	

CC-GWAS-specific loci implicate role of Kruppel Like Factors in Schizophrenia


- SCZ vs. BIP lead SNP in exon *KLF16* (chr 19)
- SCZ vs. MDD lead SNP in exon *KLF6* (chr 10)
- *KLF* play role in DNA-binding transcription factor activity
- May play role in neurite outgrowth & axon regeneration

Moore DL et al. 2011 Mol. Cell. Neurosci

Outline

- 1. CC-GWAS method
- 2. Simulations
- 3. Application to 8 psychiatric disorders
- 4. Replication of empirical results

CC-GWAS results replicate well in independent data

SCZ vs. MDD and 3 comparisons of 3 autoimmune diseases (Crohn's disease, Ulcerative colitis, Rheumatoid arthritis)

Conclusion

- 1. CC-GWAS compares cases of two disorders based on the respective case-control GWAS results
- 2. CC-GWAS attains good power and accurate type I error control
- 3. CC-GWAS identifies 196 loci distinguishing cases of eight psychiatric disorders, including 72 CC-GWAS-specific loci
- 4. CC-GWAS results replicate well in independent data

Further reading: W.J. Peyrot and A.L. Price 2020 bioRxiv

bioRχiv

Thank you

Alkes Price

PGC working groups of SCZ, BIP, MDD, ADHD, AN, ASD, and OCD&TS

Douglas Ruderfer Armin Schoech Omer Weissbrod Luke 'O Connor Steven Gazal Jordan Smoller Eli Stahl Naomi Wray Kenneth Kendler James Walters Enda Byrne Andrew McQuillin Arianna Di Florio

Contact: wpeyrot@hsph.harvard.edu

