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1. LD differences

2. Allele frequency differences

Marquez-Luna et al. 2017 Genet Epidem. Martin et al. 2019 Nat Genet

Duncan et al. 2019 Nat Commun. Wang et al. 2020 Nat Commun.
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European pop. Non-European pop.

1. LD differences
(when using non-causal SNPs to predict) @ @

LD no LD

2. Allele frequency differences
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European pop. Non-European pop.
1. LD differences
(when using non-causal SNPs to predict)

rare/ common
2. Allele frequency differences absent
(even when using causal SNPs)
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Two strategies to mitigate loss Asé'lG
of polygenic risk score accuracy =20
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Predict using
causal SNPs
(fine-mapping)

1. LD differences
(when using non-causal SNPs to predict)

Combine data
from Europeans
and non-Europeans

2. Allele frequency differences
(even when using causal SNPs)
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Fine-mapping is closely related
to PRS applied to all SNPs
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Fine-mapping:
Estimate effect sizes for all SNPs
* [3; represents a causal effect

Estimate effect sizes for a subset of SNPs
* [5; represents a causal+tagging effect

AS' IG
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(accounts for LD differences)

large European sample

model 1 PolyPred
PRS PRS model
ine-mapping| model 2 ’
PRS

Small training sample

from target cohort (N>100
Standard PRS: BOLT-LMM (Loh et al. 2015a Nat Genet, 2018) Fine-mapping PRS: PolyFun + SuSiE AS G

SBayesR (Lloyd-Jones et al. 2019 Nat Commun) (Weissbrod et al. accepted in principle Na*t“G‘e*rTe’c
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PolyPred+ extends PolyPredto &
include a non-European PRS  ASHG

(accounts for LD,

large European sample
(N>100,000)

Trreryemn

fine-mapping
PRS

PRS ‘
model 1
PolyPred+

PRS model
PRS

-

model 2 | P I

b

(if available)
MAF, effect size differences)

PRS
model 3

Small training sample

from target cohort (N>100)

meering 20
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large non-European
sample (N>100,000)

PRS
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\0. 94 (32% improvement in Africans vs BOLT) """
- s PolyPred 1;r?r:isependent
=0 s BOLT complex traits
Bm SBayesR
0.81 * . P4T

training data:
N=325K UKB British

* p<0.05 (diff vs BOLT)

EUR-normalized relative-R?
o
(@)]

0.4 A
0.2 -
conservative

0.0- block-jackknife s.e.

Non-British South Asian East Asian African

European (N=7.7K) (N=0.9K) (N=6.2K)

(N=41.8K)

Ethnicit

BOLT: BOLT-LMM (Loh et al. 2015a Nat Genet, 2018)

SBayesR (Lloyd-Jones et al. 2019 Nat Commun)
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&~  (13.4% improvement vs BOLT)

L

& 0.30 M PolyPred | training data:
‘f.) ' msm BOLT N=325K UKB British
2 0.25
0
£ 0.20
©
Q
2 0.15
(o]
g 0.10
e Large drop in absolute
% 0.05 accuracy compared to
w within-UKB PRS
0.00
Japan Uganda
(N=5.0K) (N=1.3K)
Ethnicity

Biobank Japan: Nagai et al. 2017 J. Epidemiol

Uganda-APCDR: Asiki et al. 2013 Int. J. Epidemiol
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(24% improvement vs BOLT)

PolyPred+ training data:
N=325K UKB British +
PolyPred

N=124K BBJ Japanese
BOLT

P+T
*

East Asian
(N=0.9K)

American Society of Human Geneties




T3y S0 s

l’ﬁ L)

'

ﬂ ﬁ'ﬁ

&

Conclusions ASHG

VIRTUAL
MEETING

OCTOBER 27 30

PolyPred leverages fine-mapping to improve trans-ethnic PRS
(32% improvement vs BOLT in UKB Africans,
11% improvement vs. BOLT in UKB East Asians)

PolyPred+ leverages fine-mapping and non-European data
(24% improvement vs BOLT in UKB East Asians)
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