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Inferring causal tissues is an important goal
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???

Heart Muscle Stomach

Knowing the causal disease tissue is crucial to
1)  Describing the biological mechanism of disease
2)  Selecting the cellular context in which to perform experiments
3)  Determining the physiological target of pharmaceuticals

Disease variant
(from GWAS)

Claussnitzer 2020 Nature, Umans 2020 Trends in Genetics, Hekselman 2020 Nat Rev Genet

Putative Disease Gene
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For most diseases, disease-associated cell types 
have been identified

6Finucane 2015 Nat Genet
Also see, Trynka 2013 Nat Genet, Hao 2018 Plos Genet

Using chromatin accessibility, bone chondrocytes are the most strongly associated cell type for height. 

-log10P Enrichment



For most diseases, disease-associated cell types 
have been identified

7Ongen 2017 Nat Genet
Also see, Finucane 2018 Nat Genet, Gamazon 2018 Nat Genet, Hormozdiari 2018 Nat Genet, Arvanitis 2022 AJHG

Using gene expression, the frontal cortex (BA9) of the brain is the most strongly associated tissue for schizophrenia.



For most diseases, disease-associated cell types 
have been identified

8Amariuta, Ishigaki 2020 Nat Genet
Also see, Amariuta 2019 AJHG, Reshef 2018 Nat Genet

Using enhancer predictions, CD4+ Th1 is the most strongly associated cell type for asthma. 
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High co-regulation across tissues means that many 
disease-associated tissues may not be causal

9GTEx Consortium 2020 Science
Also see Ongen 2017 Nat Genet, Wainberg 2019 Nat Genet, Arvanitis 2022 AJHG

Gene expression is highly 
correlated across GTEx tissues 
(co-expression)

brain

all other 
tissues

cis regulatory effects are highly 
correlated across GTEx tissues 
(co-regulation)

brain

all other 
tissues

tissue abbreviations tissue abbreviations



Colocalization of eQTLs with GWAS variants can implicate 
disease-critical genes and tissues
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Gene XBrain

Allele affecting gene 
expression levels (eQTL)

Allele with no effect on 
gene expression

Disease-associated variant from GWAS

AA AT TT

Gene X 
expression

is an expression quantitative trait locus (eQTL)

Giambartolomei 2014 Plos Genet, Hormozdiari 2016 AJHG
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Gene XBrain disease

Disease-associated variant from GWAS

Wainberg 2019 Nat Genet
Siewert-Rocks 2022 AJHG

Colocalization analysis is complicated by co-regulation

Allele affecting gene 
expression levels (eQTL)
Allele with no effect on 
gene expression
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Gene X

Gene X

Brain

Heart

disease

Disease-associated variant from GWAS

diseasex

Having the same causal variant 

Wainberg 2019 Nat Genet
Siewert-Rocks 2022 AJHG

Colocalization analysis is complicated by co-regulation

Allele affecting gene 
expression levels (eQTL)
Allele with no effect on 
gene expression
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Gene X

Gene X

Gene X

Brain

Heart

Muscle

disease

Having causal variants in high linkage disequilibrium 

Disease-associated variant from GWAS

disease

diseasex

x

Wainberg 2019 Nat Genet
Siewert-Rocks 2022 AJHG

Colocalization analysis is complicated by co-regulation

Allele affecting gene 
expression levels (eQTL)
Allele with no effect on 
gene expression



3. Compute correlation of genetic component of gene expression with disease status in GWAS cohort. 
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Transcriptome-wide association studies (TWAS) perform 
polygenic colocalization of genes with disease

Gamazon 2015 Nat Genet, Gusev 2016 Nat Genet
14
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TWAS association statistics are proportional to the 
amount of tagged causal effects due to co-regulation

15Wainberg 2019 Nat Genet
Amariuta 2022 bioRxiv

TWAS statistics include direct causal effects and tagging effects of co-regulated genes and tissues. 
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Co-regulation across tissues and genes can be estimated using 
gene expression prediction models and a reference panel

17

3. Compute co-regulation score for a gene-tissue pair with a tissue t’.
r2 = squared correlation of W between two genes.

Gene g
Tissue t

Gene g Gene g+1Gene g-1

r2g;g-1 r2g;g r2g;g+1

Tissue t’: cis locus (+/- 1Mb of index gene) 

+ +

Amariuta 2022 bioRxiv
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Tissue co-regulation score regression (TCSC) estimates 
tissue-specific contributions to disease  

Estimand: Disease 
heritability explained 
by predicted gene 

expression in tissue t’

Amariuta 2022 bioRxiv
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Tissue co-regulation score regression (TCSC) estimates 
tissue-specific contributions to disease  

Our method determines that tissue t’ causally contributes to disease if 
genes with high co-regulation to tissue t’ have higher TWAS 𝝌𝟐 statistics and 

genes with low co-regulation to tissue t’ have lower TWAS 𝝌𝟐 statistics.

We may identify tissue-specific contributions to the covariance of two diseases by 
regressing products of TWAS z-scores on co-regulation scores.  

Amariuta 2022 bioRxiv



TCSC is powerful, well-calibrated, and unbiased in 
simulations

20

Bars represent 95% CI.
Mancuso Lab TWAS simulator
Amariuta 2022 bioRxiv (see manuscript for many more simulations)
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Applying TCSC to real gene expression and trait data
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1. We built gene expression prediction models across 48 GTEx tissues, retaining 
heritable protein coding genes.

2. We analyzed 78 European GWAS summary statistics (average N = 302K). 

3. TCSC
• Finds 27 causal tissue-disease pairs at 10% FDR.
• Increases the specificity of known tissue-disease associations. 



TCSC identifies causal tissue-disease pairs

23

1. Aorta artery      Glaucoma: 
• High blood pressure is a known risk 

factor for glaucoma. 
2. Esophagus muscularis     FEV1/FVC: 

• Strength of esophageal muscles likely 
impacts air expulsion rate (FEV1). 
Analysis of composite traits identified 
no association with lung capacity 
(FVC).  

3. Heart ventricle      Platelet count:
• Platelets cause blood clots in response 

to damaged blood vessels; the left 
ventricle pumps blood out of the heart 
potentially modifying platelet counts in 
serum.
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Where 𝜋 𝑡! =	proportion of disease heritability 
explained by predicted expression in tissue t’
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1. Adipose (subcutaneous)      HDL: 
• No causal link to adipose visceral omentum. 

Link between HDL and subcutaneous may 
involve adiponectin. 

2. Adipose (subcutaneous)      WHRadjBMI: 
• No causal link with any other metabolic 

tissue.  
3. Brain (cerebellum)     BMI:

• Previous studies have identified generic 
associations with the central nervous 
system. 
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TCSC increases specificity of known tissue-disease pairs

Where 𝜋 𝑡! =	proportion of disease heritability 
explained by predicted expression in tissue t’



Other methods are less specific in implicating tissue-disease pairs
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Black lines separate tissues with high genetic correlation. Purple circle is TCSC tissue-disease pair.

The remaining complex traits and diseases have similar patterns. 
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Higher resolution makes causal inference more difficult, 
but TCSC can be applied here

26

from Nathan 2022 Nature
Perez 2022 Science
Yazar 2022 Science

GTEx Consortium 2020 Science 

Tissues Cell types Populations of single cells

Ulirsch 2019 Nature Genetics



Cross-trait TCSC identifies tissue-disease covariance pairs
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Where 𝜋 𝑡! (𝑟𝑒𝑠𝑝. 	𝜉 𝑡! ) 	=	proportion of disease heritability (resp. covariance) explained by predicted expression in tissue t’



Conclusions

28

1. Co-regulation scores and TWAS statistics can be used to infer the 
causal tissue(s) underlying disease heritability (covariance).

2. TCSC identifies new, biologically plausible tissue-disease pairs 
including the aorta artery and glaucoma.  

3. TCSC may be more informative when applied to dynamic eQTL 
datasets, case/control eQTL, and single cell gene expression 
datasets. 
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