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Inferring causal tissues is an important goal
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Knowing the causal disease tissue is crucial to

1) Describing the biological mechanism of disease

2) Selecting the cellular context in which to perform experiments
3) Determining the physiological target of pharmaceuticals

Claussnitzer 2020 Nature, Umans 2020 Trends in Genetics, Hekselman 2020 Nat Rev Genet



For most diseases, disease-associated cell types
have been identified

Using chromatin accessibility, bone chondrocytes are the most strongly associated cell type for height.
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For most diseases, disease-associated cell types
have been identified

sieubis SYMD
Buizieo0]09 Jo JaquinN

o O O O O
© O < O

BA9) of the brain is the most strongly associated tissue for schizophrenia.
Schizophrenia

(

n <« ® NN ~ O
[INU 8Y} JOAO JuBWYOLUT 4

Using gene expression, the frontal cortex
Also see, Finucane 2018 Nat Genet, Gamazon 2018 Nat Genet, Hormozdiari 2018 Nat Genet, Arvanitis 2022 AJHG
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For most diseases, disease-associated cell types
have been identified

Using enhancer predictions, CD4+ Th1 is the most strongly associated cell type for asthma.
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Also see, Amariuta 2019 AJHG, Reshef 2018 Nat Genet



High co-regulation across tissues means that many
disease-associated tissues may not be causal
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Colocalization of eQTLs with GWAS variants can implicate
disease-critical genes and tissues
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Colocalization analysis is complicated by co-regulation

T Disease-associated variant from GWAS
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Wainberg 2019 Nat Genet
Siewert-Rocks 2022 AJHG



Colocalization analysis is complicated by co-regulation

T Disease-associated variant from GWAS
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Having the same causal variant
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Wainberg 2019 Nat Genet 12
Siewert-Rocks 2022 AJHG



Colocalization analysis is complicated by co-regulation

Disease-associated variant from GWAS
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Transcriptome-wide association studies (TWAS) perform
polygenic colocalization of genes with disease

1. Learn SNP-gene weights from eQTL model. 2. Predict gene expression using new genotypes.
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3. Compute correlation of genetic component of gene expression with disease status in GWAS cohort.
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TWAS association statistics are proportional to the
amount of tagged causal effects due to co-regulation
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Total co-regulation across genes and tissues

TWAS statistics include direct causal effects and tagging effects of co-regulated genes and tissues.

Wainberg 2019 Nat Genet
Amariuta 2022 bioRxiv
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Co-regulation across tissues and genes can be estimated using
gene expression prediction models and a reference panel

1. Learn SNP-gene weights from eQTL model. 2. Predict gene expression using new genotypes.
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3. Compute co-regulation score for a gene-tissue pair with a tissue t'.
r2 = squared correlation of W between two genes.
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Tissue co-regulation score regression (TCSC) estimates
tissue-specific contributions to disease

E[xs:] = Nzt [1(g.t, ] +1
Gene-tissue I _ I Estimand: Disease
association with Tissue heritability explained
disease (TWAS) co-regulation by predicted gene
Scores expression in tissue t’

GWAS sample size
# heritable genes
in tissue t’

Amariuta 2022 bioRxiv



Tissue co-regulation score regression (TCSC) estimates
tissue-specific contributions to disease

h% /.
t
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Our method determines that tissue t’ causally contributes to disease if
genes with high co-regulation to tissue t' have higher TWAS x? statistics and
genes with low co-regulation to tissue t' have lower TWAS x? statistics.

We may identify tissue-specific contributions to the covariance of two diseases by
regressing products of TWAS z-scores on co-regulation scores.

Amariuta 2022 bioRxiv



TCSC is powerful, well-calibrated, and unbiased in
simulations
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TCSC has substantially higher power than the Ongen 2017 Nat Genet method.

Bars represent 95% CI.
Mancuso Lab TWAS simulator

Amariuta 2022 bioRxiv (see manuscript for many more simulations) *
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Applying TCSC to real gene expression and trait data

1. We built gene expression prediction models across 48 GTEX tissues, retaining
heritable protein coding genes.

2. We analyzed 78 European GWAS summary statistics (average N = 302K).

3. TCSC
* Finds 27 causal tissue-disease pairs at 10% FDR.
» Increases the specificity of known tissue-disease associations.



TCSC identifies causal tissue-disease pairs
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1. Aorta artery > Glaucoma:

« High blood pressure is a known risk
factor for glaucoma.

2. Esophagus muscularis = FEV1/FVC:

» Strength of esophageal muscles likely
impacts air expulsion rate (FEV1).
Analysis of composite traits identified
no association with lung capacity
(FVC).

3. Heart ventricle = Platelet count:

» Platelets cause blood clots in response
to damaged blood vessels; the left
ventricle pumps blood out of the heart
potentially modifying platelet counts in
serum.

Where m(t") = proportion of disease heritability
explained by predicted expression in tissue t’
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TCSC increases specificity of known tissue-disease pairs
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Where m(t") = proportion of disease heritability
explained by predicted expression in tissue t’

1. Adipose (subcutaneous) = HDL.:

* No causal link to adipose visceral omentum.
Link between HDL and subcutaneous may
involve adiponectin.

2. Adipose (subcutaneous) - WHRadjBMI.:

* No causal link with any other metabolic
tissue.

3. Brain (cerebellum)— BMI:

* Previous studies have identified generic
associations with the central nervous
system.

24



Other methods are less specific in implicating tissue-disease pairs
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Black lines separate tissues with high genetic correlation. Purple circle is TCSC tissue-disease pair.

The remaining complex traits and diseases have similar patterns.

Amariuta 2022 bioRxiv 25



Higher resolution makes causal inference more difficult,
but TCSC can be applied here
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Cross-trait TCSC identifies tissue-disease covariance pairs
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Where (t")(resp. £(t")) = proportion of disease heritability (resp. covariance) explained by predicted expression in tissue t’
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Conclusions

1. Co-regulation scores and TWAS statistics can be used to infer the
causal tissue(s) underlying disease heritability (covariance).

2. TCSC identifies new, biologically plausible tissue-disease pairs
including the aorta artery and glaucoma.

3. TCSC may be more informative when applied to dynamic eQTL
datasets, case/control eQTL, and single cell gene expression
datasets.
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