Leveraging single-cell ATAC-seq to identify disease-critical fetal and adult brain cell types

Samuel Kim
Alkes Price Group
10.19.2021
Kim et al. bioRxiv 2021
Disclosure Slide

Financial Disclosure for:
Samuel Kim

I have nothing to disclose
Outline

• Motivation

• Methods

• Results: disease-critical cell types using fetal brain data

• Results: disease-critical cell types using adult brain data
Outline

✓ Motivation

• Methods

• Results: disease-critical cell types using fetal brain data

• Results: disease-critical cell types using adult brain data
Disease-critical cell types \rightarrow disease mechanisms

(Figure from Hekselman & Yeger-Lotem. Nat Rev Genet 2020)
Disease-critical cell types → disease mechanisms

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Affected tissue</th>
<th>Unaffected tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Expression-based mechanisms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>① Exclusive expression</td>
<td>![Image]</td>
<td></td>
</tr>
<tr>
<td>② Preferential expression</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>b Regulatory mechanisms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>① Disrupted regulatory elements</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>② Effects of eQTLs</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
</tbody>
</table>

(Figure from Hekselman & Yeger-Lotem. Nat Rev Genet 2020, shown in part)
Identifying disease-critical cell types, leveraging the emergence of single-cell profiling of diverse cell types

A human cell atlas of fetal gene expression

Leveraging mouse chromatin data for heritability enrichment informs common disease architecture and reveals cortical layer contributions to schizophrenia

Paul W. Hook¹ and Andrew S. McCallion¹,2,3

Scaling single-cell genomics from phenomenology to mechanism

Amos Tanay & Aviv Regev

HUMAN GENOMICS

A human cell atlas of fetal chromatin accessibility

Single-cell genomics identifies cell type-specific molecular changes in autism

Dmitry Velmeshev¹,², Lucas Schirmer¹,²,⁴, Diane Jung¹,², Maximilian Haeussler², Yonatan Perez¹,², Simone Mayer¹,²,⁴, Aparna Bhaduri¹,²,³, Nitasha Goyal¹,²,⁷, David H. Rowitch¹,³,⁸,⁹, Arnold R. Kriegstein¹,²

Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases

M. Ryan Corces²,³, Anna Shcherbina²,³, Soumya Kundu⁴,⁵, Michael J. Gloudemans⁴,³, Laure Frésard¹, Jeffrey M. Granja⁴,⁵, Bryan H. Louie¹,³, Tiffany Eulalio³, Shadi Shams²,⁴, S. Tansu Bagdatli²,⁴, Maxwell R. Mumbach²,⁴, Boxiang Liu⁵,⁶, Kathleen S. Montine¹, William J. Greenleaf²,⁴,⁶,⁹, Anshul Kundaje⁴,³, Stephen B. Montgomery⁴,³, Howard Y. Chang²,⁴,¹⁰,¹¹ and Thomas J. Montine¹,¹²
Our goals

1. To identify disease-critical cell types using scATAC-seq data (and compare with scRNA-seq data)
Our goals

1. To identify disease-critical cell types using scATAC-seq data (and compare with scRNA-seq data)

2. To assess the impact on disease risk of cell types in different developmental stages of the brain (by comparing fetal vs. adult brain cell-type)
Outline

• Motivation

✓ Methods

• Results: disease-critical cell types using fetal brain data
• Results: disease-critical cell types using adult brain data
Analyzed **28 brain-related traits** (avg. N = 298K)

28 Brain traits
- Major depressive disorder
- Ischemic stroke
- Anorexia
- Alzheimer’s disease
- Autism spectrum disorder
- Schizophrenia
- Bipolar disorder
- ADHD
- Schizophrenia vs. Bipolar
- BMI
- Years of education
- Smoking status
- Intelligence
- Neuroticism
- Morning person
- Age at menarche
- Worry
- Reaction time
- # Children ever born
- Smoking initiation
- Sleep duration
- General risk tolerance
- Insomnia
- Drinks per week
- Medication use
- Cigarettes per day
- Smoking cessation
- Age of drinking initiation

6 Control traits
- Coronary artery disease
- Bone mineral density
- Rheumatoid arthritis
- Type 2 diabetes
- Sunburn occasion
- Breast cancer
Analyzed 4 single-cell atlases of human brain

Fetal

A human cell atlas of fetal gene expression

N (donors) = 28; 2M cells; 34 brain cell types

HUMAN GENOMICS

A human cell atlas of fetal chromatin accessibility

N = 26; 720k cells; 14 brain cell types

Adult

Single-cell genomics identifies cell type-specific molecular changes in autism

Dmitry Velmeshev2,3, Lucas Schirrer3,4,4, Diane Jung1,3, Maximilian Haussler5, Yonatan Perez2,4, Simone Mayer2,4, Aparna Bhaduri1,4, Nitasha Goyal1,3,7, David H. Rowitch1,4,8,9, Arnold R. Kriegstein1,3,7

N = 31; 104K cells; 17 brain cell types

Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases

M. Ryan Corces1,2, Anna Shcherbina3,4, Soumya Kundu4,5, Michael J. Gloude1,2,4, Laure Frésard1,4, Jeffrey M. Granja4,5, Bryan H. Louie1,4, Tiffany Eulialio1,3, Shadi Shams4,5, S. Tansu Bagdatli2,4, Maxwell R. Mummbah2,4, Boxiang Liu1,2,3, Kathleen S. Montine1, Thomas J. Montine1,2,3, Anshul Kundaje1,2, Stephen B. Montgomery1,4, Howard Y. Chang2,4,12,13,14 and Thomas J. Montine1,2,3

N = 10; 70K cells; 18 brain cell types
Overview of methods: building and assessing cell-type annotations

Specifically expressed genes

<table>
<thead>
<tr>
<th>Genes</th>
<th>FDR for cell type A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene_1</td>
<td>0.02</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Gene_{20k}</td>
<td>0.005</td>
</tr>
</tbody>
</table>

scRNA-seq cell-type annotations

- Brain enhancer-gene links (Roadmap U ABC)

Chromatin accessible regions

<table>
<thead>
<tr>
<th>Peak regions</th>
<th>FDR for cell type A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region_1</td>
<td>0.01</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Region_N</td>
<td>0.02</td>
</tr>
</tbody>
</table>

scATAC-seq cell-type annotations

- SNPs under accessible peaks

S-LDSC: Disease heritability enrichment for disease X, conditioning on other annotations

To evaluate disease heritability enrichment, applied stratified LD score regression (**S-LDSC**)

Summary statistics

Reference panel

Cell-type annotations

Input

1. **Enrichment** = Prop. h_2g / Prop. SNPs
2. **Standardized effect size** (τ^*) = $M\tau \cdot \text{csd}(c)$ / h_2g

That is, proportionate change in per-SNP heritability associated to a one $sd(annot)$ increase, conditional on 53 annotations (baseline model) and background annotation.

(Finucane et al. Nat. Genet. 2015)
Assessed τ^* after additionally conditioning on background annotation.

- Additionally conditioned on the background annotation as a conservative metric to ensure cell-type specificity.
 - scATAC-seq data: union of per-dataset open chromatin regions.
 - scRNA-seq data: union of brain enhancer-gene links across all genes analyzed.

(Finucane et al. Nat. Genet. 2015)
Outline

• Motivation

• Methods

✔ Results: disease-critical cell types using fetal brain data

• Results: disease-critical cell types using adult brain data
Identified more significant disease-cell type pairs from scATAC-seq*

For 13 cell types appearing in both data

<table>
<thead>
<tr>
<th></th>
<th>Fetal scATAC</th>
<th>Fetal scRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain cell types</td>
<td>14</td>
<td>34</td>
</tr>
<tr>
<td>Total disease-cell type pairs</td>
<td>392</td>
<td>952</td>
</tr>
<tr>
<td>Significant disease-cell-type pairs</td>
<td>152</td>
<td>9</td>
</tr>
<tr>
<td>Significant diseases (out of 28)</td>
<td>22</td>
<td>8</td>
</tr>
</tbody>
</table>

- Identified no significant enrichments for control traits

*for the datasets we have analyzed
Confirming associations: SCZ/MDD/ADHD – excitatory neurons

(Finucane et al. NG 2018, Bryois et al. NG 2020, Corces et al. NG 2020; Moriguchi et al. Mol. Psychiatry 2019)
Interesting associations: insomnia - photoreceptor cells

Interesting associations: insomnia - photoreceptor cells

Photoreceptor cells convert light into signals to the brain and thus play an essential role in circadian rhythms.

Interesting associations: BMI - ganglion cells

Interesting associations: BMI - ganglion cells

- Ganglion cells relay information from bipolar and amacrine cells to the brain
- Patents with morbid obesity display significant differences in retinal ganglion cells

Outline

• Motivation
• Methods
• Results: disease-critical cell types using fetal brain data

✓ Results: disease-critical cell types using adult brain data
Identified more significant disease-cell type pairs from scATAC-seq*

<table>
<thead>
<tr>
<th></th>
<th>Adult scATAC</th>
<th>Adult scRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain cell types</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Total disease-cell type pairs</td>
<td>504</td>
<td>476</td>
</tr>
<tr>
<td>Significant disease-cell-type pairs</td>
<td>168</td>
<td>64</td>
</tr>
<tr>
<td>Significant diseases (out of 28)</td>
<td>23</td>
<td>17</td>
</tr>
</tbody>
</table>

- Identified no significant enrichments for control traits

*for the datasets we have analyzed
Confirming associations: SCZ/BP – excitatory neurons

(Finucane et al. NG 2018, Hook et al. GR 2020, Corces et al. NG 2020, Ziffra et al. biorxiv 2020)
Interesting associations: SCZ/MDD - BDNF excitatory neurons

Interesting associations: SCZ/MDD - BDNF excitatory neurons

<table>
<thead>
<tr>
<th>Adult brain scATAC-seq</th>
<th>Adult brain scRNA-seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD</td>
<td></td>
</tr>
<tr>
<td>SCZ</td>
<td>! * * * *</td>
</tr>
<tr>
<td>Bipolar disorder</td>
<td>! * * * *</td>
</tr>
<tr>
<td>SCZ vs bipolar</td>
<td>! * *</td>
</tr>
<tr>
<td>MDD</td>
<td>! * *</td>
</tr>
<tr>
<td>Insomnia</td>
<td>! * !</td>
</tr>
<tr>
<td>Reaction time</td>
<td>! * ! * ! !</td>
</tr>
<tr>
<td>Age at menarche</td>
<td>! * * ! * !</td>
</tr>
<tr>
<td>BMI</td>
<td>! * * * ! *</td>
</tr>
<tr>
<td>Intelligence</td>
<td>! * * * *</td>
</tr>
</tbody>
</table>

- Involved in supporting survival of existing neurons and differentiating new neurons
- Decreased BDNF levels have been observed in untreated MDD, BP, and SCZ cases

Interesting associations: Bipolar/SCZ – parvalbumin interneurons

<table>
<thead>
<tr>
<th></th>
<th>Adult brain scATAC-seq</th>
<th>Adult brain scRNA-seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCZ</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Bipolar disorder</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>SCZ vs bipolar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDD</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Insomnia</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Reaction time</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Age at menarche</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BMI</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Intelligence</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Interesting associations: Bipolar/SCZ – parvalbumin interneurons

• Decreased expression and diminished function of parvalbumin interneurons in regulating balance of E/I have been observed in BP and SCZ cases

Table: Adult brain scATAC-seq

<table>
<thead>
<tr>
<th>Condition</th>
<th>ADC</th>
<th>SCZ</th>
<th>Bipolar disorder</th>
<th>SCZ vs bipolar</th>
<th>MDD</th>
<th>Insomnia</th>
<th>Reaction time</th>
<th>Age at menarche</th>
<th>BMI</th>
<th>Intelligence</th>
</tr>
</thead>
<tbody>
<tr>
<td>somatostatin interneurons</td>
<td>*</td>
</tr>
<tr>
<td>VIP interneurons</td>
<td>*</td>
</tr>
<tr>
<td>Excitatory interneurons</td>
<td>*</td>
</tr>
<tr>
<td>Astrocytes</td>
<td>*</td>
</tr>
<tr>
<td>Inhibitory neurons</td>
<td>*</td>
</tr>
<tr>
<td>BDNF excitatory neurons</td>
<td>*</td>
</tr>
<tr>
<td>VGLUT2 excitatory spiny neurons</td>
<td>*</td>
</tr>
<tr>
<td>Dopaminergic neurons</td>
<td>*</td>
</tr>
</tbody>
</table>

Table: Adult brain scRNA-seq

<table>
<thead>
<tr>
<th>Condition</th>
<th>ADC</th>
<th>SCZ</th>
<th>Bipolar disorder</th>
<th>SCZ vs bipolar</th>
<th>MDD</th>
<th>Insomnia</th>
<th>Reaction time</th>
<th>Age at menarche</th>
<th>BMI</th>
<th>Intelligence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somatostatin interneurons</td>
<td>*</td>
</tr>
<tr>
<td>VIP interneurons</td>
<td>*</td>
</tr>
<tr>
<td>Excitatory interneurons</td>
<td>*</td>
</tr>
<tr>
<td>Astrocytes</td>
<td>*</td>
</tr>
<tr>
<td>Inhibitory neurons</td>
<td>*</td>
</tr>
<tr>
<td>BDNF excitatory neurons</td>
<td>*</td>
</tr>
<tr>
<td>VGLUT2 excitatory spiny neurons</td>
<td>*</td>
</tr>
<tr>
<td>Dopaminergic neurons</td>
<td>*</td>
</tr>
</tbody>
</table>

Interesting associations: intelligence – corticofugal projection neuron

Interesting associations: intelligence – corticofugal projection neuron

• CPN connects neocortex and the subcortical regions and transmits axons from the cortex
• Imbalance in neuronal activity has been hypothesized to lead to deficits in learning

Conclusions

• Identified significant trait-cell type pairs that can confirm previously associated critical cell types for disease and suggest distinct associations

• Determined that cell-type annotations derived from scATAC-seq were particularly powerful in the data that we analyzed

• Highlight the benefits of analyzing data from different sequencing platforms and different developmental stages to identify disease-critical cell types
Thank you!

Email: sungil [at] mit.edu
Twitter: samsungilkim
LinkedIn: samuel-s-kim

Acknowledgements

• Alkes Price

• Karthik Jagadeesh

• Kushal Dey

• Amber Shen

• Manolis Kellis

• Soumya Raychaudhuri

• UK Biobank

• NIH for funding

Price Group @ HSPH

samsungilkim sungil@mit.edu