
##
MIDAS-CCDD Outreach Conference ###
March 4th 2024 ###
Breakout session #1 : SIR Basics ###
##

Adapted from material by Mathew Kiang and Stephen Kissler

Install required package
You only need to do this once on any computer.
install.packages("deSolve", dep = TRUE)

Load deSolve package (so we can use the lsoda() command below)
You'll need to do this very time you open a new R session.
library(deSolve)

##
TUTORIAL ###
'BASIC SIR MODEL' ###
(Questions 1, 2 and 3) ###
##

Set time steps, initial values, and parameters based on information provided in the question
Hint: Make sure all the parameters are coded in days.
Also make sure that the time steps are in the same time units as your parameters (days).

dt <- seq(from = , to= , by=) ## this is a vector with the time steps of the simulation
Hint: If you don't know what this function does in R, type '?seq()' in the console below.
A help page describing this function and the inputs required will appear on the right.

inits <- c(S= , I= , R=) ## this is a vector with the number of people starting in each compartment
S = Number of Susceptible individuals at the first time point
I = Number of Infected individuals at the first time point
R = Number of Recovered individuals at the first time point

parms <- c(b= , k= , r=) ## this is a vector with the parameters of the model
b = probability of transmission given infectious contact
k = average number of contacts per time step
r = recovery rate (rate at which individuals transition out of the I compartment into the R compartment)

Create an ODE model
The solver needs your model written as a function that takes in a vector of times, initial values, and parameters
(in that order) and returns a list with derivatives of your compartments relative to time.

SIR <- function(t, x, parms){ # do not change the order of these inputs
 # t is the vector of time-steps;
 # x is the current state of the model;
 # parms is the vector of parameters

 with(as.list(c(parms,x)),{ # "with" allows us to refer to parms and x by shorthand

 N <- S+I+R # N : total number of individuals in the population at each time step. Here, it remains constant because we make the simplifying assumptions that there are no births and no deaths.
 dS <- - (b*k*S*I)/N # dS : the difference in the number of individuals in the 'Susceptible' compartment at each time point.
 dI <- + (b*k*S*I)/N - r*I # dI : the difference in the number of individuals in the 'Infected' compartment at each time point.
 dR <- r*I # dS : the difference in the number of individuals in the 'Recovered' compartment at each time point.

 der <- c(dS, dI,dR)
 list(der) # the output must be returned as a list
 }) # end of 'with'
} # end of function definition

Run the ode model
simulation <- as.data.frame(lsoda(y = inits,
 times = dt,
 func = SIR,
 parms = parms))

Check first few rows of the simulation results
head(simulation, 10)
Check final values of the simulation results
tail(simulation, 10)

Plot results
matplot(x = simulation[,1], y = simulation[,2:4],
 type= "l", lty = 1,
 xlab = "Time", ylab = "People (count)",
 main = "Simulation results")

Add a legend
legend(x = "right", legend = c('S', 'I', 'R'),
 col = 1:3, lty = 1)

##
TUTORIAL ###
'SEIR MODEL' ###
(Question 4) ###
##

Only move on to this part after completing questions 1,2 and 3

Set time steps, initial values, and parameters based on information provided in the question
dt <- seq(from = , to= , by=)
inits <- c(S= , E= , I= , R=) # E: new 'Exposed' compartment
parms <- c(b= , k= , a=, r=) # a = latency period

Create an ODE model
SEIR <- function(t, x, parms){ # do not change the order of these inputs
 # t is the vector of time-steps;
 # x is the current state of the model;
 # parms is the vector of parameters

 with(as.list(c(parms,x)),{ # "with" allows us to refer to parms and x by shorthand

 N <- S+E+I+R
 dS <- - (b*k*S*I)/N
 dE <- + (b*k*S*I)/N - a*E # New compartment
 dI <- + (a*E) - r*I
 dR <- r*I

 der <- c(dS, dE, dI, dR)
 list(der) # the output must be returned as a list
 }) # end of 'with'
} # end of function definition

Run the ode model
simulation <- as.data.frame(lsoda(y = inits,
 times = dt,
 func = SEIR,
 parms = parms))

Plot results
matplot(x = simulation[,1], y = simulation[,2:5],
 type= "l", lty = 1,
 xlab = "Time", ylab = "People (count)",
 main = "Simulation results",
 col = c(1,4,2,3))

Add a legend
legend(x = "right", legend = c('S', 'E', 'I', 'R'),
 col = c(1,4,2,3), lty = 1)

##
TUTORIAL ###
'Adding birth and deaths' ###
(Question 5) ###
##

Only move on to this part after completing questions 4

Set time steps, initial values, and parameters based on information provided in the question
dt <- seq(from = , to= , by=)
inits <- c(S= , I= , R=)
parms <- c(b= , k= , r= , birth = , death =) # Add birth and death rates

Create an ODE model
SIR_steadystate <- function(t, x, parms){
 with(as.list(c(parms,x)),{

 N <- S+I+R
 dS <- - (b*k*S*I)/N + (birth*N) - (death*S) # Add births and deaths
 dI <- + (b*k*S*I)/N - r*I - (death*I) # Add deaths
 dR <- r*I - (death*R) # Add deaths

 der <- c(dS, dI,dR)
 list(der)
 })
}

Run the ode model
simulation <- as.data.frame(lsoda(y = inits,
 times = dt,
 func = SIR_steadystate,
 parms = parms))

Plot results
matplot(x = simulation[,1], y = simulation[,2:4],
 type= "l", lty = 1,
 xlab = "Time", ylab = "People (count)",
 main = "Simulation results")

Add a legend
legend(x = "right", legend = c('S', 'I', 'R'),
 col = 1:3, lty = 1)
