Lesson 5.2: Time-Varying Treatments
 
1.      Does this causal diagram represent a situation with a time varying-treatment?
[image: ]
a.      True
b.      False
 
 
2.      Does this causal diagram represent a situation with a time varying-confounder?
[image: ]
a.      True
b.      False
 


Lesson 5.3: Time-Varying Confounder
 
1.      A researcher is interested in the causal effect of cumulative statin therapy through time 1 on the cumulative risk of heart disease through time 2. Suppose the causal DAG below is an adequate representation of the problem.
[image: ]
Which is the minimum set of variable(s) that need to be adjusted for in the statistical analysis to validly estimate the causal effect?
a.      L0 only
b.      L1 only
c.       L0 and L1
d.      L0, L1 and U
 

 


Lesson 5.4: Treatment-Confounder Feedback
 
1.      This causal DAG below shows treatment-confounder feedback.
[image: ]
a.      True
b.      False
 
 
2.      A researcher is interested in the causal effect of statin therapy through time 1 on the cumulative risk of heart disease through time 2. According to the causal DAG below, conventional methods (e.g., stratification, outcome-regression, propensity score matching) to adjust for L0 and L1 are expected to result in unbiased estimates.
[image: ]
a.      True
b.      False
 
 


Lesson 5.5: Bias of Conventional Methods
 
1.      Given the causal DAG below, what is the consequence of conditioning on L1 in our statistical analysis? Check all that apply.
[image: ]
a.      It will block part of the causal effect of A0 on Y2.
b.      It will introduce selection bias for the effect of A0 on Y2.
c.       It will adjust for confounding for the effect of A0 on Y2.
d.      It will adjust for confounding for the effect of A1 on Y2
 

 
2.       
[image: ]
Given the causal DAG above, which of the following adjustment methods can we use to get a valid estimate of the causal effect of a treatment strategy involving A0 and A1 on the risk of heart disease?
a.      G-methods (g-formula, g-estimation, or inverse probability weighting).
b.      Outcome Regression.
c.       Propensity score matching.
d.      All of the above.
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