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INTRODUCTION: TOWARDS LESS CASUAL CAUSAL INFERENCES

Causal Inference is an admittedly pretentious title for a book. A complex
scientific task, causal inference relies on triangulating evidence from multiple
sources and on the application of a variety of methodological approaches. No
book can possibly provide a comprehensive description of all methodologies for
causal inference across the sciences. The authors of any Causal Inference book
will have to choose which aspects of causal inference methodology they want
to emphasize.

The title of this introduction reflects our own choices: a book that helps
scientists—especially health and social scientists—generate and analyze data
to make causal inferences that are explicit about both the causal question and
the assumptions underlying the data analysis. Unfortunately, the scientific
literature is plagued by studies in which the causal question is not explicitly
stated and the investigators’ unverifiable assumptions are not declared. This
casual attitude towards causal inference has led to a great deal of confusion.
For example, it is not uncommon to find studies in which the effect estimates
are hard to interpret because the data analysis methods cannot appropriately
answer the causal question (were it explicitly stated) under the investigators’
assumptions (were they declared).

In this book, we stress the need to take the causal question seriously enough
to articulate it, and to delineate the separate roles of data and assumptions for
causal inference. Once these foundations are in place, causal inferences become
necessarily less casual, which helps prevent confusion. The book describes
various data analysis approaches to estimate the causal effect of interest under
a particular set of assumptions when data are collected on each individual in
a population. A key message of the book is that causal inference cannot be
reduced to a collection of recipes for data analysis.

This is not a philosophy book. We remain largely agnostic about metaphys-
ical concepts like causality and cause. Instead, we focus on the identification
and estimation of causal effects in populations, i.e., numerical quantities that
measure changes in the distribution of an outcome under different interven-
tions. For example, we discuss how to estimate the risk of death in patients
with serious heart failure if they received a heart transplant versus if they did
not. Through actionable causal inference, we want to help decision makers
make better decisions.

The book is divided in three parts of increasing difficulty: Part I is about
causal inference without models (i.e., nonparametric identification of causal ef-
fects), Part II is about causal inference with models (i.e., estimation of causal
effects with parametric models), and Part III is about causal inference from
complex longitudinal data (i.e., estimation of causal effects of time-varying
treatments). Throughout the text, we have interspersed Fine Points and Tech-
nical points that elaborate on certain topics mentioned in the main text. Fine
Points are designed to be accessible to all readers while Technical Points are
designed for readers with intermediate training in statistics. The book provides
a cohesive presentation of concepts and methods for causal inference that are
currently scattered across journals in several disciplines. We expect that it
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will be of interest to all professionals that make causal inferences, including
epidemiologists, statisticians, psychologists, economists, sociologists, political
scientists, computer scientists. . .

This book grew out of our teaching and research activities. Several gener-
ations of inquisitive Harvard students helped us sharpen the contents of the
book. Decades of methodological work to quantify causal effects in health
applications helped us identify what matters in practice and distinguish the
essential from the incidental in our research. Therefore, this book needs to
be viewed as a (hopefully helpful) synthesis of our teaching and research ex-
perience rather than as a systematic review of all prior work. The book in-
cludes hundreds of citations—about a third to our own work—but we have, of
course, failed to reference every single important contribution to causal infer-
ence methodology. Also, because the field is vast and growing, no textbook can
stay totally up to date. We preemptively apologize to any colleagues who may
not see their work cited here and invite them to contact us. (Many did so dur-
ing the approximately two decades during which this book was available online
before its publication, and the book is better as a result). Readers interested
in the history of a particular methodological development are encouraged to
read the academic papers that are referenced throughout the book.

We are grateful to many people who have made this book possible. Stephen
Cole, Issa Dahabreh, Sander Greenland, Jay Kaufman, Eleanor Murray, Thomas
Richardson, Sonja Swanson, Tyler VanderWeele, and Jan Vandenbroucke pro-
vided detailed comments. Goodarz Danaei, Kosuke Kawai, Martin Lajous,
and Kathleen Wirth helped create the NHEFS dataset. The sample code in
Part II was developed by Roger Logan in SAS, Eleanor Murray and Roger Lo-
gan in Stata, Joy Shi and Sean McGrath in R, and James Fiedler in Python.
Roger Logan has also been our LaTeX wizard. Randall Chaput helped create
the figures in Chapters 1 and 2. Josh McKible designed the book cover. Rob
Calver, our patient publisher, encouraged us to write the book and supported
our decision to make it freely available online.

In addition, multiple colleagues have helped us improve the book by de-
tecting typos and identifying unclear passages. We especially thank Kafui
Adjaye-Gbewonyo, Alvaro Alonso, Katherine Almendinger, Ingelise Ander-
sen, Juan José Beunza, Karen Biala, Joanne Brady, Alex Breskin, Shan Cai,
Yu-Han Chiu, Alexis Dinno, John Ferguson, James Fiedler, Birgitte Fred-
eriksen, Tadayoshi Fushiki, Leticia Grize, Dominik Hangartner, Michael Hud-
gens, John Jackson, Marshall Joffe, Luke Keele, Laura Khan, Dae Hyun Kim,
Lauren Kunz, Martin Lajous, Angeliki Lambrou, Wen Wei Loh, Haidong
Lu, Mohammad Ali Mansournia, Giovanni Marchetti, Lauren McCarl, Shira
Mitchell, Louis Mittel, Hannah Oh, Ibironke Olofin, Robert Paige, Jeremy
Pertman, Melinda Power, Bruce Psaty, Brian Sauer, Tomohiro Shinozaki, Ian
Shrier, Yan Song, Qystein Sgrensen, Etsuji Suzuki, Denis Talbot, Mohammad
Tavakkoli, Sarah Taubman, Evan Thacker, Kun-Hsing Yu, Vera Zietemann,
Helmut Wasserbacher, Jessica Young, and Dorith Zimmermann.
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Chapter 1
A DEFINITION OF CAUSAL EFFECT

As a human being, you are already familiar with causal inference’s fundamental concepts. Through sheer
existence, you know what a causal effect is, understand the difference between association and causation, and you
have used this knowledge consistently throughout your life. Had you not, you’d be dead. Without basic causal
concepts, you would not have survived long enough to read this chapter, let alone learn to read. As a toddler, you
would have jumped right into the swimming pool after seeing those who did were later able to reach the jam jar.
As a teenager, you would have skied down the most dangerous slopes after seeing those who did won the next ski
race. As a parent, you would have refused to give antibiotics to your sick child after observing that those children
who took their medicines were not at the park the next day.

Since you already understand the definition of causal effect and the difference between association and causation,
do not expect to gain deep conceptual insights from this chapter. Rather, the purpose of this chapter is to introduce
mathematical notation that formalizes the causal intuition that you already possess. Make sure that you can match
your causal intuition with the mathematical notation introduced here. This notation is necessary to precisely define
causal concepts, and will be used throughout the book.

1.1 Individual causal effects

Zeus is a patient waiting for a heart transplant. On January 1, he receives a
new heart. Five days later, he dies. Imagine that we can somehow know—
perhaps by divine revelation—that had Zeus not received a heart transplant
on January 1, he would have been alive five days later. Equipped with this
information most would agree that the transplant caused Zeus’s death. The
heart transplant intervention had a causal effect on Zeus’s five-day survival.
Another patient, Hera, also received a heart transplant on January 1. Five
days later she was alive. Imagine we can somehow know that, had Hera not
received the heart on January 1, she would still have been alive five days later.
Hence the transplant did not have a causal effect on Hera’s five-day survival.
These two vignettes illustrate how humans reason about causal effects: We
compare (usually only mentally) the outcome when an action A is taken versus
the outcome when the action A is withheld. If the two outcomes differ, we say
that the action A has a causal effect, causative or preventive, on the outcome.
Otherwise, we say that the action A has no causal effect on the outcome.
Karma is another commonly used Epidemiologists, statisticians, economists, and other social scientists refer to
term for actions that result in out-  the action A as an intervention, an exposure, a policy, or a treatment.
comes. To make our causal intuition amenable to mathematical and statistical
analysis we will introduce some notation. Consider a dichotomous treatment
variable A (1: treated, 0: untreated) and a dichotomous outcome variable ¥
Capital letters represent random  (1: death, 0: survival). In this book we refer to variables such as A and Y
variables. Lower case letters denote  that may have different values for different individuals as random wvariables.
particular values of a random vari- Let Y%=! (read Y under treatment a = 1) be the outcome variable that would
able. have been observed under the treatment value a = 1, and Y%=° (read Y under
treatment a = 0) the outcome variable that would have been observed under



Sometimes we abbreviate the ex-
pression “individual ¢ has outcome
Y =1" bywriting Y;® = 1. Tech-
nically, when ¢ refers to a specific
individual, such as Zeus, Y,* is not
a random variable because we are
assuming that individual counter-
factual outcomes are deterministic
(see Technical Point 1.2).

Causal effect for individual i:
Y;a:l ?é Y;u:O

Consistency:
if A; =a,thenY?=Y" =Y,

1.2 Average causal effects

A definition of causal effect

the treatment value @ = 0. Y*=! and Y%=0 are also random variables. Zeus
has Y2=! = 1 and Y*=Y = 0 because he died when treated but would have
survived if untreated, while Hera has Y%=! = 0 and Y*=° = 0 because she
survived when treated and would also have survived if untreated.

We can now provide a formal definition of a causal effect for an individ-
ual: The treatment A has a causal effect on an individual’s outcome Y if
Y=t #£ Y2=0 for the individual. Thus, the treatment has a causal effect on
Zeus’s outcome because Y271 = 1 # 0 = Y279 but not on Hera’s outcome
because Y°=! = 0 = Y*=0, The variables Y*=! and Y= are referred to
as potential outcomes or as counterfactual outcomes. Some authors prefer the
term “potential outcomes” to emphasize that, depending on the treatment that
is received, either of these two outcomes can be potentially observed. Other
authors prefer the term “counterfactual outcomes” to emphasize that these
outcomes represent situations that may not actually occur (that is, counter-
to-the-fact situations).

For each individual, one of the counterfactual outcomes—the one that cor-
responds to the treatment value that the individual did receive—is actually
factual. For example, because Zeus was actually treated (A = 1), his counter-
factual outcome under treatment Y*=! = 1 is equal to his observed (actual)
outcome Y = 1. That is, an individual with observed treatment A equal to a,
has observed outcome Y equal to his counterfactual outcome Y. This equality
can be succinctly expressed as Y = Y4 where Y4 denotes the counterfactual
Y ® evaluated at the value a corresponding to the individual’s observed treat-
ment A. The equality Y = Y4 is referred to as consistency.

Individual causal effects are defined as a contrast of the values of counterfac-
tual outcomes, but only one of those outcomes is observed for each individual—
the one corresponding to the treatment value actually experienced by the in-
dividual. All other counterfactual outcomes remain unobserved. Because of
missing data, individual effects cannot be identified, i.e., they cannot be ex-
pressed as a function of the observed data (See Fine Point 2.1 for a possible
exception.)

We needed three pieces of information to define an individual causal effect:
an outcome of interest, the actions a = 1 and a = 0 to be compared, and the
individual whose counterfactual outcomes Y =% and Y*=! are to be compared.
However, because identifying individual causal effects is generally not possible,
we now turn our attention to an aggregated causal effect: the average causal
effect in a population of individuals. To define it, we need three pieces of
information: an outcome of interest, the actions ¢ = 1 and a = 0 to be
compared, and a well-defined population of individuals whose outcomes Y =0
and Y%= are to be compared.

Take Zeus’s extended family as our population of interest. Table 1.1 shows
the counterfactual outcomes under both treatment (¢ = 1) and no treatment
(a = 0) for all 20 members of our population. Focus on the last column: the
outcome Y%=! that would have been observed for each individual if they had
received the treatment (a heart transplant). Half of the members of the popu-
lation (10 out of 20) would have died if they had received a heart transplant.
That is, the proportion of individuals that would have developed the outcome
had all population individuals received a = 1 is Pr[Y*=! = 1] = 10/20 = 0.5.
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Fine Point 1.1

Interference. Our definition of a counterfactual outcome implicitly assumes that an individual’s counterfactual outcome
under treatment value a does not depend on other individuals’ treatment values. For example, we implicitly assumed
that Zeus would die if he received a heart transplant, regardless of whether Hera also received a heart transplant. That
is, Hera’s treatment value did not interfere with Zeus's outcome. On the other hand, suppose that Hera's getting
a new heart upsets Zeus to the extent that he would not survive his own heart transplant, even though he would
have survived had Hera not been transplanted. In this scenario, Hera's treatment interferes with Zeus's outcome.
Interference between individuals is common in studies that deal with contagious agents or educational programs, in
which an individual’s outcome is influenced by their social interaction with other population members.

In the presence of interference, the counterfactual Y;* for an individual ¢ is not well defined because an individual's
outcome depends on other individuals' treatment values. When there is interference, “the causal effect of heart transplant
on Zeus's outcome” is not well defined. Rather, one needs to refer to “the causal effect of heart transplant on Zeus's
outcome when Hera does not get a new heart” or “the causal effect of heart transplant on Zeus's outcome when Hera
does get a new heart.” If other relatives and friends' treatment also interfere with Zeus's outcome, then one may need
to refer to the causal effect of heart transplant on Zeus's outcome when “no relative or friend gets a new heart,” “when
only Hera gets a new heart,” etc. because the causal effect of treatment on Zeus's outcome may differ for each particular
allocation of hearts. The assumption of no interference was labeled “no interaction between units” by Cox (1958), and
is included in the “stable-unit-treatment-value assumption (SUTVA)" described by Rubin (1980). See Halloran and
Struchiner (1995), Sobel (2006), Rosenbaum (2007), and Hudgens and Halloran (2009) for a more detailed discussion
of the role of interference in the definition of causal effects. Unless otherwise specified, we will assume no interference
throughout this book.

Similarly, from the other column of Table 1.1, we can conclude that half of
Table 1.1 the members of the population (10 out of 20) would have died if they had not

ya=0 ya=I received a heart transplant. That is, the proportion of individuals that would
Rheia 0 1 have developed the outcome had all population individuals received a = 0 is
Kronos 1 0 Pr[ye=% = 1] = 10/20 = 0.5. We have computed the counterfactual risk under
Demeter 0 0 treatment to be 0.5 by counting the number of deaths (10) and dividing them
Hades 0 0 by the total number of individuals (20), which is the same as computing the
Hestia 0 0 average of the counterfactual outcomes across all individuals in the population.
Poseidon 1 0 To see the equivalence between risk and average for a dichotomous outcome,
Hera 0 0 use the data in Table 1.1 to compute the average of Y 2=1.
Zeus 0 1 We are now ready to provide a formal definition of the average causal effect
Artemis 1 1 in the population: An average causal effect of treatment A on outcome Y
Apollo 1 0 is present if Pr[Y2=! = 1] # Pr[Y?=" = 1] in the population of interest.
Leto 0 1 Under this definition, treatment A does not have an average causal effect on
Ares 1 1 outcome Y in our population because both the risk of death under treatment
Athena 1 1 Pr[Ye=! = 1] and the risk of death under no treatment Pr[Y*=" = 1] are
Hephaestus 0 1 0.5. It does not matter whether all or none of the individuals receive a heart
Aphrodite 0 1 transplant: Half of them would die in either case. When, like here, the average
Polyphemus 0 1 causal effect in the population is null, we say that the null hypothesis of no
Persephone 1 1 average causal effect is true. Because the risk equals the average and because
Hermes 1 0 the letter E is usually employed to represent the population average or mean
Hebe 1 0 (also referred to as ‘E’xpectation), we can rewrite the definition of a non-null
Dionysus 1 0 average causal effect in the population as E[Y*=!] # E[Y%7Y] so that the

definition applies to both dichotomous and nondichotomous outcomes.

The presence of an “average causal effect of heart transplant A” is defined
by a contrast that involves the two actions “receiving a heart transplant (a =
1)” and “not receiving a heart transplant (¢ = 0).” When more than two
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Fine Point 1.2

Multiple versions of treatment. Our definition of a counterfactual outcome under treatment value a also implicitly
assumes that there is only one version of treatment value A = a. For example, we said that Zeus would die if he
received a heart transplant. This statement implicitly assumes that all heart transplants are performed by the same
surgeon using the same procedure and equipment. That is, there is only one version of the treatment “heart transplant.”
If there were multiple versions of treatment (e.g., surgeons with different skills), then it is possible that Zeus would
survive if his transplant were performed by Asclepios, and would die if his transplant were performed by Hygieia. In
the presence of multiple versions of treatment, the counterfactual Y;* for an individual ¢ is not well defined because an
individual's outcome depends on the version of treatment a. When there are multiple versions of treatment, “the causal
effect of heart transplant on Zeus's outcome” is not well defined. Rather, one needs to refer to “the causal effect of
heart transplant on Zeus's outcome when Asclepios performs the surgery” or “the causal effect of heart transplant on
Zeus's outcome when Hygieia performs the surgery.” If other components of treatment (e.g., procedure, place) are also
relevant to the outcome, then one may need to refer to “the causal effect of heart transplant on Zeus's outcome when
Asclepios performs the surgery using his rod at the temple of Kos” because the causal effect of treatment on Zeus's
outcome may differ for each particular version of treatment.

Like the assumption of no interference (see Fine Point 1.1), the assumption of no multiple versions of treatment
is included in the SUTVA described by Rubin (1980). Robins and Greenland (2000) made the point that if the
versions of a particular treatment (e.g., heart transplant) had the same causal effect on the outcome (survival), then the
counterfactual Y*=! would be well-defined. VanderWeele (2009a) formalized this point as the assumption of “treatment
variation irrelevance,” i.e., the assumption that multiple versions of treatment A = a may exist but they all result in
the same outcome Y,*. We return to this issue in Chapter 3 but, unless otherwise specified, we will assume treatment
variation irrelevance throughout this book.

actions are possible (i.e., the treatment is not dichotomous), the particular

Average causal effect in population:  contrast of interest needs to be specified. For example, “the causal effect of

E[Ye=1] £ E[ye=Y) aspirin” is meaningless unless we specify that the contrast of interest is, say,
“taking, while alive, 150 mg of aspirin by mouth (or nasogastric tube if need be)
daily for 5 years” versus “not taking aspirin.” This causal effect is well defined
even if counterfactual outcomes under other interventions are not well defined
or do not exist (e.g., “taking, while alive, 500 mg of aspirin by absorption
through the skin daily for 5 years”).

Absence of an average causal effect does not imply absence of individual
effects. Table 1.1 shows that treatment has an individual causal effect on
12 members (including Zeus) of the population because, for each of these 12
individuals, the value of their counterfactual outcomes Y*=! and Y*=0 differ.
Of the 12, 6 were harmed by treatment, including Zeus (Y*=! —Y*=0 = 1),
and 6 were helped (Y*=!—Y“=0 = —1). This equality is not an accident:
The average causal effect E[Y2=!] — E[Y*='] is always equal to the average
E[Y*=! — Y2=9] of the individual causal effects Y?=! — Y%=0_ as a difference
of averages is equal to the average of the differences. When there is no causal
effect for any individual in the population, i.e., Y2=! = Y%=9 for all individuals,
we say that the sharp causal null hypothesis is true. The sharp causal null
hypothesis implies the null hypothesis of no average effect.

As discussed in the next chapters, average causal effects can sometimes be
identified from data, even if individual causal effects cannot. Hereafter we refer
to ‘average causal effects’ simply as ‘causal effects’ and the null hypothesis of
no average effect as the causal null hypothesis. We next describe different
measures of the magnitude of a causal effect.



1.3 Measures of causal effect 7

Technical Point 1.1

Causal effects in the population. Let E[Y“] be the mean counterfactual outcome had all individuals in the population
received treatment level a. For discrete outcomes, the mean or expected value E[Y %] is defined as the weighted sum
>, Ypya(y) over all possible values y of the random variable Y'*, where py (-) is the probability mass function of Y,
i.e., pya (y) = Pr[Y® = y]. For dichotomous outcomes, E[Y?] = Pr[Y* = 1]. For continuous outcomes, the expected
value E[Y?] is defined as the integral [y fy« (y) dy over all possible values y of the random variable Y, where fy (-)
is the probability density function of Y*. A common representation of the expected value that applies to both discrete
and continuous outcomes is E[Y*| = [ydFy. (y), where Fya (-) is the cumulative distribution function (cdf) of the
random variable Y®. We say that there is a non-null average causal effect in the population if E[Y?] # E[Y*] for any
two values a and a’.

The average causal effect, defined by a contrast of means of counterfactual outcomes, is the most commonly used
population causal effect. However, a population causal effect may also be defined as a contrast of functionals (including
the median, variance, hazard, or cdf) of counterfactual outcomes. In general, a population causal effect can be defined
as a contrast of any functional of the marginal distributions of counterfactual outcomes under different actions or
treatment values. For example the population causal effect on the variance is defined as Var(Y%=!) — Var(Y*=9),
which is zero for the population in Table 1.1 since the distribution of Y*=! and Y%=C are identical—both having 10
deaths out of 20. In fact, the equality of these distributions imply that for any functional (e.g., mean, variance, median,
hazard,etc.), the population causal effect on the functional is zero. However, in contrast to the mean, the difference in
population variances Var(Y*=!) — Var(Y*=") does not in general equal the variance of the individual causal effects
Var(Ye=t — Y2=Y). For example, in Table 1.1, since Y*=! — Y2=0 is not constant (—1 for 6 individuals, 1 for 6
individuals and 0 for 8 individuals), Var(Y=! — Y=0) > 0 = Var(Y*=1) — Var(Y*=°). We will be able to identify
(i.e., compute) Var(Y2=1) — Var(Y2=°) from the data collected in a randomized trial, but not Var(Y*=! — y*=0)
because we can never simultaneously observe both Y2=! and Y%= for any individual, and thus the covariance of Y¢=!
and Y%=0 is not identified. The above discussion is true not only for the variance but for for any nonlinear functional
(e.g., median, hazard).

1.3 Measures of causal effect

We have seen that the treatment ‘heart transplant’” A does not have a causal
effect on the outcome ‘death’ Y in our population of 20 family members of
Zeus. The causal null hypothesis holds because the two counterfactual risks
Pr[ye=! = 1] and Pr[Y%=° = 1] are equal to 0.5. There are equivalent ways
of representing the causal null. For example, we could say that the risk
Pr[Y*=! = 1] minus the risk Pr[Y*=% =1] is zero (0.5 — 0.5 = 0) or that
the risk Pr[Y*=! = 1] divided by the risk Pr [Y*=Y = 1] is one (0.5/0.5 = 1).

The causal risk difference in the That is, we can represent the causal null by

population is the average of the in-

dividual causal effects Yo=! —ye=0 (i) Pry*=t = 1] —Pr[y*=0 =1] =0

on the difference scale, i.e., it is . Pr[ye=l =1

a measure of the average individ-  (ii) Pyt =1

r[Ye=0 = 1]

ual causal effect. By contrast, the

causal risk ratio in the population .oy Pr[Y?=1 =1]/Pr[ye=! =0

is not the average of the individual (iif) Pr[Ye=0 = 1]/ Pr[Ye=0 = (]

causal effects Y971 /Y20 on the

ratio scale, i.e., it is a measure of Where the left-hand side of the equalities (i), (ii), and (iii) is the causal risk

causal effect in the population but  difference, risk ratio, and odds ratio, respectively.

is not the average of any individual Suppose now that another treatment A, cigarette smoking, has a causal

causal effects. effect on another outcome Y, lung cancer, in our population. The causal null
hypothesis does not hold: Pr[Y%=! = 1] and Pr[Y*=% = 1] are not equal. In
this setting, the causal risk difference, risk ratio, and odds ratio are not 0, 1,

=1

=1
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Fine Point 1.3

Number needed to treat. Consider a population of 100 million patients in which 20 million would die within five years
if treated (¢ = 1), and 30 million would die within five years if untreated (a = 0). This information can be summarized
in several equivalent ways:

e the causal risk difference is Pr[Y*=! = 1] - Pr[Y*=0 =1] =0.2-0.3 = -0.1

e if one treats the 100 million patients, there will be 10 million fewer deaths than if one does not treat those 100
million patients.

e one needs to treat 100 million patients to save 10 million lives

e on average, one needs to treat 10 patients to save 1 life

We refer to the average number of individuals that need to receive treatment a = 1 to reduce the number of cases
Y = 1 by one as the number needed to treat (NNT). In our example the NNT is equal to 10. For treatments that
reduce the average number of cases (i.e., the causal risk difference is negative), the NNT is equal to the reciprocal of
the absolute value of the causal risk difference:

—1

NNT =
Pr[ye=1 = 1] — Pr[Y =0 = 1]

For treatments that increase the average number of cases (i.e., the causal risk difference is positive), one can sym-
metrically define the number needed to harm. The NNT was introduced by Laupacis, Sackett, and Roberts (1988). Like
the causal risk difference, the NNT applies to the population and time interval on which it is based. For a discussion of
the relative advantages and disadvantages of the NNT as an effect measure, see Grieve (2003).

and 1, respectively. Rather, these causal parameters quantify the strength of
the same causal effect on different scales. Because the causal risk difference,
risk ratio, and odds ratio (and other summaries) measure the causal effect, we
refer to them as effect measures.

Each effect measure may be used for different purposes. For example,
imagine a large population in which 3 in a million individuals would develop the
outcome if treated, and 1 in a million individuals would develop the outcome if
untreated. The causal risk ratio is 3, and the causal risk difference is 0.000002.
The causal risk ratio (multiplicative scale) is used to compute how many times
treatment, relative to no treatment, increases the disease risk. The causal risk
difference (additive scale) is used to compute the absolute number of cases of
the disease attributable to the treatment. The use of either the multiplicative
or additive scale will depend on the goal of the inference.

1.4 Random variability

At this point you could complain that our procedure to compute effect measures
is somewhat implausible. Not only did we ignore the well known fact that the
immortal Zeus cannot die, but—more to the point—our population in Table
1.1 had only 20 individuals. The populations of interest are typically much
larger.

In our tiny population, we collected information from all the individuals. In
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15 source of random error:
Sampling variability

An estimator 6 of 6 is consistent
if, with probability approaching 1,
the difference 6 —0 approaches zero
as the sample size increases towards
infinity.

Caution: the term ‘consistency’
when applied to estimators has a
different meaning from that which
it has when applied to counterfac-
tual outcomes.

20d gource of random error:
Nondeterministic counterfactuals

practice, investigators only collect information on a sample of the population
of interest. Even if the counterfactual outcomes of all study individuals were
known, working with samples prevents one from obtaining the exact proportion
of individuals in the population who had the outcome under treatment value a
the probability of death under no treatment Pr[Y =Y = 1] cannot be directly
computed. One can only estimate this probability.

Consider the individuals in Table 1.1. We have previously viewed them
as forming a twenty-person population. Suppose we view them as a random
sample from a much larger, near-infinite super-population (e.g., all immor-
tals). We denote the proportion of individuals in the sample who would have
died if unexposed as f’\r[Y“ZO = 1] = 10/20 = 0.50. The sample proportion
lg}[Y“:O = 1] does not have to be exactly equal to the proportion of individ-
uals who would have died if the entire super-population had been unexposed,
Pr[Ye=Y = 1]. For example, suppose Pr[Y =% = 1] = 0.57 in the population
but, because of random error due to sampling variability, f’;[Y“ZO =1]=0.5in
our particular sample. We use the sample proportion 13;[Y“ = 1] to estimate
the super-population probability Pr[Y® = 1] under treatment value a. The
“hat” over Pr indicates that the sample proportion ls\r[Ya = 1] is an estimator
of the corresponding population quantity Pr[Y® = 1]. We say that ls;[Y“ =1]
is a consistent estimator of Pr[Y® = 1] because the larger the number of in-
dividuals in the sample, the smaller the difference between Pr[Y® = 1] and
Pr[Y® = 1] is expected to be. This occurs because the error due to sampling
variability is random and thus obeys the law of large numbers.

Because the super-population probabilities Pr[Y® = 1] cannot be com-
puted, only consistently estimated by the sample proportions ﬁ[Y“ = 1], one
cannot conclude with certainty that there is, or there is not, a causal effect.
Rather, a statistical procedure must be used to evaluate the empirical evi-
dence regarding the causal null hypothesis Pr[Y %=1 = 1] = Pr[Y 20 = 1] (see
Chapter 10 for details).

So far we have only considered sampling variability as a source of random
error. But there may be another source of random variability: perhaps the
values of an individual’s counterfactual outcomes are not fixed in advance. We
have defined the counterfactual outcome Y'* as the individual’s outcome had he
received treatment value a. For example, in our first vignette, Zeus would have
died if treated and would have survived if untreated. As defined, the values
of the counterfactual outcomes are fixed or deterministic for each individual
Ye=!l = 1 and Y0 = 0 for Zeus. In other words, Zeus has a 100% chance
of dying if treated and a 0% chance of dying if untreated. However, we could
imagine another scenario in which Zeus has a 90% chance of dying if treated,
and a 10% chance of dying if untreated. In this scenario, the counterfactual
outcomes are stochastic or nondeterministic because Zeus’s probabilities of dy-
ing under treatment (0.9) and under no treatment (0.1) are neither zero nor
one. The values of Y*=! and Y ?=° shown in Table 1.1 would be possible real-
izations of “random flips of mortality coins” with these probabilities. Further,
one would expect that these probabilities vary across individuals because not
all individuals are equally susceptible to develop the outcome. Quantum me-
chanics, in contrast to classical mechanics, holds that outcomes are inherently
nondeterministic. That is, if the quantum mechanical probability of Zeus dy-
ing is 90%, the theory holds that no matter how much data we collect about
Zeus, the uncertainty about whether Zeus will actually develop the outcome if
treated is irreducible.

Thus, in causal inference, random error derives from sampling variability,
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Technical Point 1.2

Nondeterministic counterfactuals. For nondeterministic counterfactual outcomes, the mean outcome under treatment
value a, E[Y?], equals the weighted sum > ypya(y) over all possible values y of the random variable Y%, where the

Y
probability mass function py. (-) = E[Qye (+)], and Qv (y) is a random probability of having outcome Y = y under
treatment level a. In the example described in the text, Qya=1 (1) = 0.9 for Zeus. (For continuous outcomes, the
weighted sum is replaced by an integral.)

More generally, a nondeterministic definition of counterfactual outcome does not attach some particular value of
the random variable Y* to each individual, but rather an individual-specific statistical distribution Oya (-) of Y.
The nondeterministic definition of causal effect is a generalization of the deterministic definition in which Oy () is
now a random cdf that may take values between 0 and 1. The average counterfactual outcome in the population
E[Y] equals E{E[Y® | ©ya (-)]}. Therefore, E[Y*] = E [[y dOy« (y)] = [y dE[Oy« (y)] = [y dFya (y), where

If the counterfactual outcomes are binary and nondeterministic, the causal risk ratio in the population 733‘/“:18;} is

ya=0
equal to the weighted average E [W {Qya=1 (1) /Qya=o (1)}] of the individual causal effects Qya=1 (1) /Qya=o (1) on

Qya=0(1

the ratio scale, with weights W = )], provided Qya—o (1) is never equal to 0 (i.e., deterministic) for anyone

E[Qya=0(1)
in the population.

nondeterministic counterfactuals, or both. However, for pedagogic reasons, we
will continue to largely ignore random error until Chapter 10. Specifically, we
will assume that counterfactual outcomes are deterministic and that we have
recorded data on every individual in a very large (perhaps hypothetical) super-
population. This is equivalent to viewing our population of 20 individuals as a
population of 20 billion individuals in which 1 billion individuals are identical
to Zeus, 1 billion individuals are identical to Hera, and so on. Hence, until
Chapter 10, we will carry out our computations with Olympian certainty.

Then, in Chapter 10, we will describe how our statistical estimates and
confidence intervals for causal effects in the super-population are identical ir-
respective of whether the world is stochastic (quantum) or deterministic (classi-
cal) at the level of individuals. In contrast, confidence intervals for the average
causal effect in the actual study sample will differ depending on whether coun-
terfactuals are deterministic versus stochastic. Fortunately, super-population
effects are in most cases the causal effects of substantive interest.

1.5 Causation versus association

Obviously, the data available from actual studies look different from those
shown in Table 1.1. For example, we would not usually expect to learn Zeus’s
outcome if treated Y*=! and also Zeus’s outcome if untreated Y*=Y. In the
real world, we only get to observe one of those outcomes because Zeus is either
treated or untreated. We referred to the observed outcome as Y. Thus, for
each individual, we know the observed treatment level A and the outcome Y
as in Table 1.2.

The data in Table 1.2 can be used to compute the proportion of individuals
that developed the outcome Y among those individuals in the population that
happened to receive treatment value a. For example, in Table 1.2, 7 individuals
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Dawid (1979) introduced the sym-
bol L to denote independence

Table 1.2

Rheia
Kronos
Demeter
Hades
Hestia
Poseidon
Hera

Zeus
Artemis
Apollo
Leto

Ares
Athena
Hephaestus
Aphrodite
Polyphemus
Persephone
Hermes
Hebe
Dionysus
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For a continuous outcome Y we
define mean independence between
treatment and outcome as:
E[Y|A=1]=E[Y]|A=0].
Independence and mean indepen-
dence are the same concept for di-
chotomous outcomes.
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died (Y = 1) among the 13 individuals that were treated (A = 1). Thus the
risk of death in the treated, Pr[Y = 1|A = 1], was 7/13. More generally, the
conditional probability Pr[Y = 1|A = a] is defined as the proportion of individ-
uals that developed the outcome Y among those individuals in the population
of interest that happened to receive treatment value a.

When the proportion of individuals who develop the outcome in the treated
Pr[Y = 1|4 = 1] equals the proportion of individuals who develop the outcome
in the untreated Pr[Y = 1|4 = 0], we say that treatment A and outcome Y
are independent, that A is not associated with Y, or that A does not predict
Y. Independence is represented by Y Il A—or, equivalently, A1l Y— which is
read as Y and A are independent. Some equivalent definitions of independence
are

() PrlY =1|A=1] - Pr[Y = 1|4 =0] =0

where the left-hand side of the inequalities (i), (ii), and (iii) is the associational
risk difference, risk ratio, and odds ratio, respectively.

We say that treatment A and outcome Y are dependent or associated when
Pr[Y = 1|A = 1] # Pr[Y = 1|A = 0]. In our population, treatment and
outcome are indeed associated because Pr[Y = 1|A = 1] = 7/13 and Pr[Y =
1|]A = 0] = 3/7. The associational risk difference, risk ratio, and odds ratio
(and other measures) quantify the strength of the association when it exists.
They measure the association on different scales, and we refer to them as
association measures. These measures are also affected by random variability.
However, until Chapter 10, we will disregard statistical issues by assuming that
the population in Table 1.2 is extremely large.

For dichotomous outcomes, the risk equals the average in the population,
and we can therefore rewrite the definition of association in the population as
E[Y|A=1] # E[Y|A=0]. For continuous outcomes Y, we will also define
association as E[Y]A=1] # E[Y|A=0]. For binary A, Y and A are not
associated if and only if they are not statistically correlated.

In our population of 20 individuals, we found (7) no causal effect after com-
paring the risk of death if all 20 individuals had been treated with the risk
of death if all 20 individuals had been untreated, and (i) an association after
comparing the risk of death in the 13 individuals who happened to be treated
with the risk of death in the 7 individuals who happened to be untreated.
Figure 1.1 depicts the causation-association difference. The population (repre-
sented by a diamond) is divided into a white area (the treated) and a smaller
grey area (the untreated).
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Figure 1.1

The difference between association
and causation is critical. Suppose
the causal risk ratio of 5-year mor-
tality is 0.5 for aspirin vs. no as-
pirin, and the corresponding asso-
ciational risk ratio is 1.5 because
individuals at high risk of cardiovas-
cular death are preferentially pre-
scribed aspirin. After a physician
learns these results, she decides to
withhold aspirin from her patients
because those treated with aspirin
have a greater risk of dying com-
pared with the untreated. The doc-
tor will be sued for malpractice.

A definition of causal effect

Population of interest

Treated Untreated
Causation Association
Vs Vs
E[Y“] E[Y] E[Y]4 = 1] E[Y]4 = 0]

The definition of causation implies a contrast between the whole white
diamond (all individuals treated) and the whole grey diamond (all individu-
als untreated), whereas association implies a contrast between the white (the
treated) and the grey (the untreated) areas of the original diamond. That is,
inferences about causation are concerned with what if questions in counterfac-
tual worlds, such as “what would be the risk if everybody had been treated?”
and “what would be the risk if everybody had been untreated?”, whereas infer-
ences about association are concerned with questions in the actual world, such
as “what is the risk in the treated?” and “what is the risk in the untreated?”

We can use the notation we have developed thus far to formalize this dis-
tinction between causation and association. The risk Pr[Y = 1|A = a] is a
conditional probability: the risk of Y in the subset of the population that
meet the condition ‘having actually received treatment value o’ (i.e., A = a).
In contrast the risk Pr[Y® = 1] is an unconditional—also known as marginal—
probability, the risk of Y in the entire population. Therefore, association is
defined by a different risk in two disjoint subsets of the population determined
by the individuals’ actual treatment value (A = 1 or A = 0), whereas causa-
tion is defined by a different risk in the same population under two different
treatment values (¢ = 1 or a = 0). Throughout this book we often use the
redundant expression ‘causal effect’ to avoid confusions with a common use of
‘effect’ meaning simply association.

These radically different definitions explain the well-known adage “asso-
ciation is not causation.” In our population, there was association because
the mortality risk in the treated (7/13) was greater than that in the untreated
(3/7). However, there was no causation because the risk if everybody had been
treated (10/20) was the same as the risk if everybody had been untreated. This
discrepancy between causation and association would not be surprising if those
who received heart transplants were, on average, sicker than those who did not
receive a transplant. In Chapter 7 we refer to this discrepancy as confounding.

Causal inference requires data like the hypothetical data in Table 1.1, but
all we can ever expect to have is real world data like those in Table 1.2. The
question is then under which conditions real world data can be used for causal
inference. The next chapter provides one answer: conduct a randomized ex-
periment.



Chapter 2
RANDOMIZED EXPERIMENTS

Does your looking up at the sky make other pedestrians look up too? This question has the main components
of any causal question: we want to know whether an action (your looking up) affects an outcome (other people’s
looking up) in a specific population (say, residents of Madrid in 2019). Suppose we challenge you to design a
scientific study to answer this question. “Not much of a challenge,” you say after some thought, “I can stand on
the sidewalk and flip a coin whenever someone approaches. If heads, I'll look up; if tails, I'll look straight ahead.
I’ll repeat the experiment a few thousand times. If the proportion of pedestrians who looked up within 10 seconds
after I did is greater than the proportion of pedestrians who looked up when I didn’t, I will conclude that my
looking up has a causal effect on other people’s looking up. By the way, I may hire an assistant to record what
people do while I'm looking up.” After conducting this study, you found that 55% of pedestrians looked up when
you looked up but only 1% looked up when you looked straight ahead.

Your solution to our challenge was to conduct a randomized experiment. It was an experiment because the
investigator (you) carried out the action of interest (looking up), and it was randomized because the decision to
act on any study subject (pedestrian) was made by a random device (coin flipping). Not all experiments are
randomized. For example, you could have looked up when a man approached and looked straight ahead when a
woman did. Then the assignment of the action would have followed a deterministic rule (up for man, straight for
woman) rather than a random mechanism. However, your findings would not have been nearly as convincing if
you had conducted a non randomized experiment. If your action had been determined by the pedestrian’s sex,
critics could argue that the “looking up” behavior of men and women differs (women may look up less often than
do men after you look up) and thus your study compared essentially “noncomparable” groups of people. This
chapter describes why randomization results in convincing causal inferences.

2.1 Randomization

In a real world study we will not know both of Zeus’s potential outcomes Y %=1
under treatment and Y =% under no treatment. Rather, we can only know
his observed outcome Y under the treatment value A that he happened to
receive. Table 2.1 summarizes the available information for our population
of 20 individuals. Only one of the two counterfactual outcomes is known for
each individual: the one corresponding to the treatment level that he actually
Neyman (1923) applied counterfac-  received. The data are missing for the other counterfactual outcomes. As we
tual theory to the estimation of discussed in the previous chapter, this missing data creates a problem because
causal effects via randomized ex- it appears that we need the value of both counterfactual outcomes to compute
periments effect measures. The data in Table 2.1 are only good to compute association
measures.
Randomized experiments, like any other real world study, generate data
with missing values of the counterfactual outcomes as shown in Table 2.1.
However, randomization ensures that those missing values occurred by chance.
As aresult, effect measures can be computed —or, more rigorously, consistently
estimated—in randomized experiments despite the missing data. Let us be
more precise.
Suppose that the population represented by a diamond in Figure 1.1 was
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Table 2.1

Y

Rheia
Kronos
Demeter
Hades
Hestia
Poseidon
Hera

Zeus
Artemis
Apollo
Leto

Ares
Athena
Hephaestus
Aphrodite
Polyphemus
Persephone
Hermes
Hebe
Dionysus
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Exchangeability:
Y1l A for all a. See also Techni-
cal Point 2.1 for other versions of
exchangeability.

Randomized experiments

near-infinite, and that we flipped a coin for each individual in such population.
We assigned the individual to the white group if the coin turned tails, and
to the grey group if it turned heads. Note this was not a fair coin because
the probability of heads was less than 50%—fewer people ended up in the
grey group than in the white group. Next we asked our research assistants to
administer the treatment of interest (A = 1), to individuals in the white group
and a placebo (A = 0) to those in the grey group. Five days later, at the end of
the study, we computed the mortality risks in each group, Pr[Y = 1|4 =1] =
0.3 and Pr[Y = 1|A = 0] = 0.6. The associational risk ratio was 0.3/0.6 = 0.5
and the associational risk difference was 0.3 — 0.6 = —0.3. We will assume
that this was an ideal randomized experiment in all other respects: no loss to
follow-up, full adherence to the assigned treatment over the duration of the
study, a single version of treatment, and double blind assignment (see Chapter
9). Ideal randomized experiments are unrealistic but useful to introduce some
key concepts for causal inference. Later in this book we consider more realistic
randomized experiments.

Now imagine what would have happened if the research assistants had
misinterpreted our instructions and had treated the grey group rather than
the white group. Say we learned of the misunderstanding after the study
finished. How does this reversal of treatment status affect our conclusions?
Not at all. We would still find that the risk in the treated (now the grey
group) Pr[Y = 1|A = 1] is 0.3 and the risk in the untreated (now the white
group) Pr[Y = 1|A = 0] is 0.6. The association measure would not change.
Because individuals were randomly assigned to white and grey groups, the
proportion of deaths among the exposed, Pr[Y = 1|4 = 1] is expected to be
the same whether individuals in the white group received the treatment and
individuals in the grey group received placebo, or vice versa. When group
membership is randomized, which particular group received the treatment is
irrelevant for the value of Pr[Y = 1|A = 1]. The same reasoning applies to
Pr[Y = 1]A = 0], of course. Formally, we say that groups are exchangeable.

Ezchangeability means that the risk of death in the white group would have
been the same as the risk of death in the grey group had individuals in the white
group received the treatment given to those in the grey group. That is, the risk
under the potential treatment value a among the treated, Pr[Y* = 1|4 = 1],
equals the risk under the potential treatment value a among the untreated,
Pr[Y® = 1|A = 0], for both a = 0 and @ = 1. An obvious consequence of these
(conditional) risks being equal in all subsets defined by treatment status in the
population is that they must be equal to the (marginal) risk under treatment
value a in the whole population: Pr[Y* = 1|A = 1] = Pr[Y® = 1|4 = 0] =
Pr[Y® = 1]. Because the counterfactual risk under treatment value a is the
same in both groups A = 1 and A = 0, we say that the actual treatment A
does not predict the counterfactual outcome Y*. Equivalently, exchangeability
means that the counterfactual outcome and the actual treatment are indepen-
dent, or Y1l A, for all values a. Randomization is so highly valued because it
is expected to produce exchangeability. When the treated and the untreated
are exchangeable, we sometimes say that treatment is exogenous, and thus
erogeneity is commonly used as a synonym for exchangeability.

The previous paragraph argues that, in the presence of exchangeability, the
counterfactual risk under treatment in the white part of the population would
equal the counterfactual risk under treatment in the entire population. But the
risk under treatment in the white group is not counterfactual at all because the
white group was actually treated! Therefore our ideal randomized experiment
allows us to compute the counterfactual risk under treatment in the population
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Technical Point 2.1

Full exchangeability and mean exchangeability. Randomization makes the Y jointly independent of A which implies,
but is not implied by, exchangeability Y® 1L A for each a. Formally, let A = {a,a’,a”, ...} denote the set of all treatment

values present in the population, and YA = {Y“,Y“/,Y“N7 } the set of all counterfactual outcomes. Randomization

makes YA L A. We refer to this joint independence as full exchangeability. For a dichotomous treatment, A = {0, 1}
and full exchangeability is (Y =1, Y*=0) 1L A

For a dichotomous outcome and treatment, exchangeability Y® 1L A can also be written as Pr[Y* =1|A =1] =
Pr[Y® =1|A = 0] or, equivalently, as E[Y?|4A = 1] = E[Y*|A = 0] for all a. We refer to the last equality as mean
exchangeability. For a continuous outcome, exchangeability Y® 1l A implies mean exchangeability E[Y%|A = d/] =
E[Y?], but mean exchangeability does not imply exchangeability because distributional parameters other than the mean
(e.g., variance) may not be independent of treatment.

Neither full exchangeability YA Ll A nor exchangeability Y% 1L A are required to prove that E[Y?] = E[Y|A = a].
Mean exchangeability is sufficient. As sketched in the main text, the proof has two steps. First, E[Y|A = a] =
E[Y%|A = a] by consistency. Second, E[Y*|A = a] = E[Y?] by mean exchangeability. Because exchangeability and
mean exchangeability are identical concepts for the dichotomous outcomes used in this chapter, we use the shorter term
“exchangeability” throughout.

Pr[Y %=1 = 1] because it is equal to the risk in the treated Pr[Y = 1|4 = 1] =
0.3. That is, the risk in the treated (the white part of the diamond) is the
same as the risk if everybody had been treated (and thus the diamond had
been entirely white). Of course, the same rationale applies to the untreated:
the counterfactual risk under no treatment in the population Pr[Y*=0 = 1]
equals the risk in the untreated Pr[Y = 1|A = 0] = 0.6. The causal risk ratio
is 0.5 and the causal risk difference is —0.3. In ideal randomized experiments,
association s causation.

Here is another explanation for exchangeability Y* 1L A in a randomized
experiment. The counterfactual outcome Y?, like one’s genetic make-up, can
be thought of as a fixed characteristic of a person existing before the treat-
ment A was randomly assigned. This is because Y* encodes what would have
been one’s outcome if assigned to treament a and thus does not depend on
the treatment you later receive. Because treatment A was randomized, it is
independent of both your genes and Y. The difference between Y and your
genetic make-up is that, even conceptually, you can only learn the value of Y
after treatment is given and then only if one’s treatment A is equal to a.

Caution: Before proceeding, please make sure you understand the difference between
Y® 1L A is different from Y 1L A Y?1lL Aand Y Il A. Exchangeability Y* 1l A is defined as independence between
the counterfactual outcome and the observed treatment. Again, this means
that the treated and the untreated would have experienced the same risk of
death if they had received the same treatment level (either a = 0 or ¢ = 1). But
independence between the counterfactual outcome and the observed treatment
Y%l A does not imply independence between the observed outcome and the
observed treatment Y 1L A. For example, in a randomized experiment in which
Suppose there is a causal effect on  exchangeability Y% 1l A holds and the treatment has a causal effect on the
some individuals so that Y=! £  outcome, then Y 1L A does not hold because the treatment is associated with
Y2=0 Since Y = Y4, then Y* the observed outcome.
with a evaluated at the observed Does exchangeability hold in our heart transplant study of Table 2.1?7 To
treatment A is the observed Y,  answer this question we would need to check whether Y 1L A holds for a = 0
which depends on A, and thus will  and for a = 1. Take a = 0 first. Suppose the counterfactual data in Table 1.1
not be independent of A. are available to us. We can then compute the risk of death under no treatment
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Fine Point 2.1

Crossover experiments. Suppose we want to estimate the individual causal effect of lightning bolt use A on Zeus's
blood pressure Y. We define the counterfactual outcomes Y*=! and Y%= to be 1 if Zeus's blood pressure is temporarily
elevated after calling or not calling a lightning strike, respectively. Suppose we convinced Zeus to use his lightning bolt
only when suggested by us. Yesterday morning we asked Zeus to call a lightning strike (a = 1). His blood pressure was
elevated after doing so. This morning we asked Zeus to refrain from using his lightning bolt (¢ = 0). His blood pressure
did not increase. We have conducted a crossover experiment in which an individual's outcome is sequentially observed
under two treatment values. One might argue that, because we have observed both of Zeus's counterfactual outcomes
Y=l =1 and Y*=% = 0, using a lightning bolt has a causal effect on Zeus's blood pressure. However, this argument
is generally incorrect unless the very strong assumptions 1)-3) given in the next paragraph are true.

In crossover experiments, individuals are observed during two or more periods, say t = 0 and t = 1. An individual ¢
receives a different treatment value A;; in each period ¢. Let ¥;]°"* be the (deterministic) counterfactual outcome at
t =1 for individual i if treated with a1 at ¢ =1 and ag at t = 0. Let Y;;° be defined similarly for ¢ = 0. The individual
causal effect Y2*=' — V%*=" can be identified if the following three conditions hold: i) no carryover effect of treatment:
Y500 =YL, i) the individual causal effect does not depend on time: Yi‘zt:l — Y;;tzo = q; for t = 0,1, and iii) the
counterfactual outcome under no treatment does not depend on time: Yi(t”zo = B, for t = 0, 1. Under these conditions,
if the individual is treated at time 1 (A;; = 1) but not time 0 (A;o = 0) then, by consistency, Y;; — Y is the individual
causal effect because Y;; — Yig = V{1~ = V0 = V7= - VP + Y - V0o = a; + B; — Bi = . Similarly
if A;1 =0and A;o =1, Yo — Y;1 = «; is the individual level causal effect.

Condition (i) implies that the outcome Y;;* has an abrupt onset that completely resolves by the next time period.
Hence, crossover experiments cannot be used to study the effect of heart transplant, an irreversible action, on death,
an irreversible outcome. See also Fine Point 3.2.

Pr[Y*=0 = 1]A = 1] = 7/13 in the 13 treated individuals and the risk of death
under no treatment Pr[Y*=" = 1|A = 0] = 3/7 in the 7 untreated individuals.
Since the risk of death under no treatment is greater in the treated than in
the untreated individuals, i.e., 7/13 > 3/7, we conclude that the treated have
a worse prognosis than the untreated, i.e., that the treated and the untreated
are not exchangeable. Mathematically, we have proven that exchangeability
Y1l A does not hold for a = 0. (You can check that it does not hold for a =1
Reminder: Our discussion of ran-  either.) Thus the answer to the question that opened this paragraph is ‘No’.
domized experiments refers to pop-
ulation or average causal effects be-
cause individual causal effects can-
not generally be identified. See
Fine Point 2.1.

But only the observed data in Table 2.1, not the counterfactual data in
Table 1.1, are available in the real world. Since Table 2.1 is insufficient to
compute counterfactual risks like the risk under no treatment in the treated
Pr[Y*=0 = 1|A = 1], we are generally unable to determine whether exchange-
ability holds in our study. However, suppose for a moment, that we actually
had access to Table 1.1 and determined that exchangeability does not hold
in our heart transplant study. Can we then conclude that our study is not
a randomized experiment? No, for two reasons. First, as you are probably
already thinking, a twenty-person study is too small to reach definite conclu-
sions. Random fluctuations arising from sampling variability could explain
almost anything. We will discuss random variability in Chapter 10. Until
then, let us assume that each individual in our population represents 1 billion
individuals that are identical to him or her. Second, it is still possible that
a study is a randomized experiment even if exchangeability does not hold in
infinite samples. However, unlike the type of randomized experiment described
in this section, it would need to be a randomized experiment in which investi-
gators use more than one coin to randomly assign treatment. The next section
describes randomized experiments with more than one coin.
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Table 2.2

Rheia
Kronos
Demeter
Hades
Hestia
Poseidon
Hera

Zeus
Artemis
Apollo
Leto

Ares
Athena
Hephaestus
Aphrodite
Polyphemus
Persephone
Hermes
Hebe
Dionysus
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Table 2.2 shows the data from our heart transplant randomized study. Besides
data on treatment A (1 if the individual received a transplant, 0 otherwise)
and outcome Y (1 if the individual died, 0 otherwise), Table 2.2 also contains
data on the prognostic factor L (1 if the individual was in critical condition,
0 otherwise), which we measured before treatment was assigned. We now
consider two mutually exclusive study designs and discuss whether the data in
Table 2.2 could have arisen from either of them.

In design 1 we would have randomly selected 65% of the individuals in the
population and transplanted a new heart to each of the selected individuals.
That would explain why 13 out of 20 individuals were treated. In design 2
we would have classified all individuals as being in either critical (L = 1)
or noncritical (L = 0) condition. Then we would have randomly selected
75% of the individuals in critical condition and 50% of those in noncritical
condition, and transplanted a new heart to each of the selected individuals.
That would explain why 9 out of 12 individuals in critical condition, and 4 out
of 8 individuals in non critical condition, were treated.

Both designs are randomized experiments. Design 1 is precisely the type of
randomized experiment described in Section 2.1. Under this design, we would
use a single coin to assign treatment to all individuals (e.g., treated if tails,
untreated if heads): a loaded coin with probability 0.65 of turning tails, thus
resulting in 656% of the individuals receiving treatment. Under design 2 we
would not use a single coin for all individuals. Rather, we would use a coin
with a 0.75 chance of turning tails for individuals in critical condition, and
another coin with a 0.50 chance of turning tails for individuals in non critical
condition. We refer to design 2 experiments as conditionally randomized ex-
periments because we use several randomization probabilities that depend (are
conditional) on the values of the variable L. We refer to design 1 experiments
as marginally randomized experiments because we use a single unconditional
(marginal) randomization probability that is common to all individuals.

As discussed in the previous section, a marginally randomized experiment
is expected to result in exchangeability of the treated and the untreated:

PriY*=1A=1]=Pr[Y*=1A=0] or Y*1A forall a.

In contrast, a conditionally randomized experiment will not generally result
in exchangeability of the treated and the untreated because, by design, each
group may have a different proportion of individuals with bad prognosis.
Thus the data in Table 2.2 could not have arisen from a marginally random-
ized experiment because 69% treated versus 43% untreated individuals were
in critical condition. This imbalance indicates that the risk of death in the
treated, had they remained untreated, would have been higher than the risk
of death in the untreated. That is, treatment A predicts the counterfactual
risk of death under no treatment, and exchangeability Y1l A does not hold.
Since our study was a randomized experiment, you can safely conclude that
the study was a randomized experiment with randomization conditional on L.
Our conditionally randomized experiment is simply the combination of two
separate marginally randomized experiments: one conducted in the subset of
individuals in critical condition (L = 1), the other in the subset of individuals
in non critical condition (L = 0). Consider first the randomized experiment
being conducted in the subset of individuals in critical condition. In this subset,
the treated and the untreated are exchangeable. Formally, the counterfactual
mortality risk under each treatment value a is the same among the treated
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Conditional exchangeability:
Yell AL for all a

If A = 1, the Y% 0 is missing
and if A = 0, the Y*=! is miss-
ing. Data are missing completely
at random (MCAR) if Pr[A =
a|lL,Y*=1 Ye=0] = Pr[A = 4],
which holds in a marginally ran-
domized experiment.  Data are
missing at random (MAR) if the
probability of A = a conditional
on the full data (L,Y?=! ye=0)
only depends on the data that
would be observed (L,Y?*) if A =
a. In fact, MAR implies Pr[A =
a|L, Y= Ye=0] = Pr[A = a|L],
which holds in a conditionally ran-
domized experiment because, by
MAR, Pr[A = 1|L,Y=1 Ya=0]
cannot depend on Y%=% and 1 —
Pr[A = 1|L,Y*=lye=0] =
Pr[A = O|L,Y*=1, Y%= can-
not depend on Y*=!. The terms
MCAR, MAR, and NMAR (not
missing at random) were intro-
duced by Rubin (1976).

Randomized experiments

and the untreated given that they all were in critical condition at the time of
treatment assignment. That is,

PrY*=1/A=1,L=1=Pr[Y*=1/A=0,L = 1] or Y*ULA|L =1 for all a,

where Y* 1l A|L = 1 means Y* and A are independent given L = 1. Simi-
larly, randomization also ensures that the treated and the untreated are ex-
changeable in the subset of individuals that were in noncritical condition, i.e.,
YU AL = 0. When Y°1LA|L = [ holds for all values | we simply write
Y@l A|L. Thus, although conditional randomization does not guarantee un-
conditional (or marginal) exchangeability Y*1l A, it guarantees conditional
exchangeability Y 1L A|L within levels of the variable L. In summary, ran-
domization produces either marginal exchangeability (design 1) or conditional
exchangeability (design 2).

We know how to compute effect measures under marginal exchangeabil-
ity. In marginally randomized experiments the causal risk ratio Pr[Ye=! =
1]/ Pr[Y =Y = 1] equals the associational risk ratio Pr[Y = 1|A = 1]/ Pr[Y =
1]A = 0] because exchangeability ensures that the counterfactual risk under
treatment level a, Pr[Y* = 1], equals the observed risk among those who re-
ceived treatment level a, Pr[Y = 1|A = a]. Thus, if the data in Table 2.2 had
been collected during a marginally randomized experiment, th/e causal risk ra-
7/13
377 1.26. The
question is how to compute the causal risk ratio in a conditionally randomized
experiment. Remember that a conditionally randomized experiment is simply
the combination of two (or more) separate marginally randomized experiments
conducted in different subsets of the population L = 1 and L = 0. Thus we
have two options.

tio would be readily calculated from the data on A and Y as

First, we can compute the average causal effect in each of these subsets or
strata of the population. Because association is causation within each subset,
the stratum-specific causal risk ratio Pr[Y =1 = 1|L = 1]/ Pr[Y*=0 = 1|L = 1]
among people in critical condition is equal to the stratum-specific associational
risk ratio Pr[Y = 1|/L = 1,A = 1)/ Pr[Y = 1|L = 1, A = 0] among people in
critical condition. And analogously for L = 0. We refer to this method to com-
pute stratum-specific causal effects as stratification. Note that the stratum-
specific causal risk ratio in the subset L = 1 may differ from the causal risk
ratio in L = 0. In that case, we say that the effect of treatment is modified
by L, or that there is effect modification by L or that there is treatment ef-
fect heterogeneity across levels of L. Stratification and effect modification are
discussed in more detail in Chapter 4.

Second, we can compute the average causal effect Pr[Y*=! = 1]/ Pr[Y*=0 =
1] in the entire population, as we have been doing so far. Whether our princi-
pal interest lies in the stratum-specific average causal effects versus the average
causal effect in the entire population depends on practical and theoretical con-
siderations discussed in detail in Chapter 4 and in Part III. As one example,
you may be interested in the average causal effect in the entire population,
rather than in the stratum-specific average causal effects, if you do not expect
to have information on L for future individuals (e.g., the variable L is expen-
sive to measure) and thus your decision to treat cannot depend on the value of
L. Until Chapter 4, we will restrict our attention to the average causal effect
in the entire population. The next two sections describe how to use data from
conditionally randomized experiments to compute the average causal effect in
the entire population. See also Fine Point 2.2 for a discussion of risk periods.
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Fine Point 2.2

Risk periods. We have defined a risk as the proportion of individuals who develop the outcome of interest during a
particular period. For example, the 5-day mortality risk in the treated Pr[Y = 1|A = 1] is the proportion of treated
individuals who died during the first five days of follow-up. Throughout the book we often specify the period when the
risk is first defined (e.g., 5 days) and, for conciseness, omit it later. That is, we may just say “the mortality risk” rather
than “the five-day mortality risk.”

The following example highlights the importance of specifying the risk period. Suppose a randomized experiment was
conducted to quantify the causal effect of antibiotic therapy on mortality among elderly humans infected with the plague
bacteria. An investigator analyzes the data and concludes that the causal risk ratio is 0.05, i.e., on average antibiotics
decrease mortality by 95%. A second investigator also analyzes the data but concludes that the causal risk ratio is
1, i.e., antibiotics have a null average causal effect on mortality. Both investigators are correct. The first investigator
computed the ratio of 1-year risks, whereas the second investigator computed the ratio of 100-year risks. The 100-year
risk was of course 1 regardless of whether individuals received the treatment. When we say that a treatment has a
causal effect on mortality, we mean that death is delayed, not prevented, by the treatment.

2.3 Standardization

Our heart transplant study is a conditionally randomized experiment: the in-
vestigators used a random procedure to assign hearts (A = 1) with probability
50% to the 8 individuals in noncritical condition (L = 0), and with probability
75% to the 12 individuals in critical condition (L = 1). First, let us focus on
the 8 individuals—remember, they are really the average representatives of 8
billion individuals—in noncritical condition. In this group, the risk of death
among the treated is Pr[Y = 1|L = 0,A = 1] = 1, and the risk of death
among the untreated is Pr[Y = 1|L = 0,4 = 0] = i. Because treatment
was randomly assigned to individuals in the group L = 0, i.e., Y* 1L A|L = 0,
the observed risks are equal to the counterfactual risks. That is, in the group
L = 0, the risk in the treated equals the risk if everybody had been treated,
Pr[lY = 1|L = 0,A = 1] = Pr[Y*=! = 1|L = 0], and the risk in the untreated
equals the risk if everybody had been untreated, Pr[Y = 1|L = 0,4 = 0] =
Pr[Ye=Y = 1|L = 0]. Following a similar reasoning, we can conclude that the
observed risks equal the counterfactual risks in the group of 12 individuals in
critical condition, i.e., Pr[Y = 1|L=1,A=1]=Pr[Y*=l =1|L =1] = %, and
Prly =1|L=1,A=0]=Pr[y*=" =1L =1] = 2.

Suppose now that our goal is to compute the causal risk ratio Pr[Y*=! =
1]/ Pr[Y2=Y% = 1]. The numerator of the causal risk ratio is the risk if all 20
individuals in the population had been treated. From the previous paragraph,
we know that the risk if all individuals had been treated is i in the 8 individuals
with L = 0 and % in the 12 individuals with L = 1. Therefore the risk if all 20
individuals in the population had been treated will be a weighted average of
% and % in which each group receives a weight proportional to its size. Since
40% of the individuals (8) are in group L = 0 and 60% of the individuals (12)
are in group L = 1, the weighted average is i x 0.4+ % x 0.6 = 0.5. Thus the
risk if everybody had been treated Pr[Y*=! = 1] is equal to 0.5. By following
the same reasoning we can calculate that the risk if nobody had been treated
Pr[Y2=% = 1] is also equal to 0.5. The causal risk ratio is then 0.5/0.5 = 1.

More formally, the marginal counterfactual risk Pr[Y* = 1] is the weighted
average of the stratum-specific risks Pr[Y* = 1|L = 0] and Pr[Y* = 1|L = 1]
with weights equal to the proportion of individuals in the population with
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Standardized mean
YLEYIL=1,A=d
x Pr[L =1]

Randomized experiments

L = 0 and L = 1, respectively. That is, Pr[Y* = 1] = Pr[Y* = 1|L =
0]Pr[L=0] + Pr[Y* = 1|L = 1]Pr[L=1]. Or, using a more compact
notation, Pr[Y* = 1] = >, Pr[Y* = 1|L = [JPr[L =], where ), means
sum over all values [ that occur in the population. Under conditional ex-
changeability, we can replace the counterfactual risk Pr[Y* = 1|L = [] by
the observed risk Pr[Y = 1|L = [, A = a] in the expression above. That is,
PrlY* =1] = >, Pr[Y = 1|L = [,A = a|Pr[L =1]. The left-hand side of
this equality is an unobserved counterfactual risk whereas the right-hand side
includes observed quantities only, which can be computed using data on L, A,
and Y. When, as here, a counterfactual quantity can be expressed as function
of the distribution (i.e., the probabilities) of the observed data, we say that
the counterfactual quantity is identified (or identifiable); otherwise, we say it
is unidentified.

This method is known in epidemiology, demography, and other disciplines
as standardization. For example, the numerator ), Pr[Y = 1|L = [,A =
1] Pr[L =1] of the causal risk ratio is the standardized risk in the treated
using the population as the standard. Under conditional exchangeability, this
standardized risk can be interpreted as the (counterfactual) risk that would
have been observed had all the individuals in the population been treated.

The standardized risks in the treated and the untreated are equal to the
counterfactual risks under treatment and no treatment, respectively. There-
Prlye=t = 1]
Pr[Ye=0 =1]
YuPrY =1L=1,A=1]Pr[L=]]
S PrY =1L =1, A=0]Pr[L=1]

fore, the causal risk ratio can be computed by standardization as

2.4 Inverse probability weighting

Figure 2.1 is an example of a
fully randomized causally inter-
preted structured tree graph or FR-
CISTG (Robins 1986, 1987) rep-
resentation of a conditionally ran-
domized experiment. Did we win
the prize for the worst acronym
ever?

In the previous section we computed the causal risk ratio in a conditionally
randomized experiment via standardization. In this section we compute this
causal risk ratio via inverse probability weighting. The data in Table 2.2
can be displayed as a tree in which all 20 individuals start at the left and
progress over time towards the right, as in Figure 2.1. The leftmost circle of
the tree contains its first branching: 8 individuals were in non critical condi-
tion (L = 0) and 12 in critical condition (L = 1). The numbers in parentheses
are the probabilities of being in noncritical, Pr[L = 0] = 8/20 = 0.4, or crit-
ical, Pr[L =1] = 12/20 = 0.6, condition. Let us follow, e.g., the branch
L = 0. Of the 8 individuals in this branch, 4 were untreated (A = 0) and
4 were treated (A = 1). The conditional probability of being untreated is
Pr[A =0|L = 0] =4/8 = 0.5, as shown in parentheses. The conditional prob-
ability of being treated Pr[A = 1|L = 0] is 0.5 too. The upper right circle
represents that, of the 4 individuals in the branch (L = 0, A = 0), 3 survived
(Y =0) and 1 died (Y = 1). That is, Pr[Y =0/L =0,4A=0] = 3/4 and
Pr[Y =1|L =0,A = 0] = 1/4. The other branches of the tree are interpreted
analogously. The circles contain the bifurcations defined by non treatment
variables. We now use this tree to compute the causal risk ratio.
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Figure 2.2
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The denominator of the causal risk ratio, Pr[Y%=Y = 1], is the counterfactual
risk of death had everybody in the population remained untreated. Let us
calculate this risk. In Figure 2.1, 4 out of 8 individuals with L = 0 were
untreated, and 1 of them died. How many deaths would have occurred had
the 8 individuals with L = 0 remained untreated? Two deaths, because if 8
individuals rather than 4 individuals had remained untreated, then 2 deaths
rather than 1 death would have been observed. If the number of individuals is
multiplied times 2, then the number of deaths is also doubled. In Figure 2.1,
3 out of 12 individuals with L = 1 were untreated, and 2 of them died. How
many deaths would have occurred had the 12 individuals with L = 1 remained
untreated? Eight deaths, or 2 deaths times 4, because 12 is 3 x 4. That is, if all
8 + 12 = 20 individuals in the population had been untreated, then 248 = 10
would have died. The denominator of the causal risk ratio, Pr[Y =0 = 1], is
10/20 = 0.5. The first tree in Figure 2.2 shows the population had everybody
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remained untreated. Of course, these calculations rely on the condition that
treated individuals with L = 0, had they remained untreated, would have had
the same probability of death as those who actually remained untreated. This
condition is precisely exchangeability given L = 0.

The numerator of the causal risk ratio Pr[Y*=! = 1] is the counterfactual
risk of death had everybody in the population been treated. Reasoning as in
the previous paragraph, this risk is calculated to be also 10/20 = 0.5, under
exchangeability given L = 1. The second tree in Figure 2.2 shows the popu-
lation had everybody been treated. Combining the results from this and the
previous paragraph, the causal risk ratio Pr[Y*=! = 1]/ Pr[Y*=% = 1] is equal
to 0.5/0.5 = 1. We are done.

Let us examine how this method works. The two trees in Figure 2.2 are
a simulation of what would have happened had all individuals in the popula-
tion been untreated and treated, respectively. These simulations are correct
under conditional exchangeability. Both simulations can be pooled to create a
hypothetical population in which every individual appears as a treated and as
an untreated individual. This hypothetical population, twice as large as the
original population, is known as the pseudo-population. Figure 2.3 shows the
entire pseudo-population. Under conditional exchangeability Y* 1L A|L in the
original population, the treated and the untreated are (unconditionally) ex-
changeable in the pseudo-population because the L is independent of A. That
is, the associational risk ratio in the pseudo-population is equal to the causal
risk ratio in both the pseudo-population and the original population.

WA=1/f(AIL)
1/.5=2

1/.5=2
1/.5=2
1/.5=2
1/.25=4

1/.25=4

1/.75=1.33

Figure 2.3 1/.75=1.33

This method is known as inverse probability (IP) weighting. To see why,
IP weighted estimators were pro- let us look at, say, the 4 untreated individuals with L = 0 in the population
posed by Horvitz and Thompson of Figure 2.1. These individuals are used to create 8 members of the pseudo-
(1952) for surveys in which subjects  population of Figure 2.3. That is, each of them receives a weight of 2, which
are sampled with unequal probabil-  is equal to 1/0.5. Figure 2.1 shows that 0.5 is the conditional probability of
ities. See Technical Point 12.1 staying untreated given L = 0. Similarly, the 9 treated individuals with L = 1
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Technical Point 2.2

Formal definition of IP weights. An individual's IP weight depends on the individual's values of treatment A and
covariate L. For example, a treated individual with L = [ receives the weight 1/ Pr[A = 1|L =[], whereas an untreated
individual with L = [’ receives the weight 1/ Pr[A = 0|L = I']. We can express these weights using a single expression for
all individuals—regardless of their individual treatment and covariate values—by using the probability density function
(pdf) of A rather than the probability of A. The conditional pdf of A given L evaluated at the values a and [ is
represented by faz [all], or simply as f[a|l]. For discrete variables A and L, fa|l] is the conditional probability
Pr[A =a|L =1]. In a conditionally randomized experiment, f [all] is positive for all I such that Pr[L =] is nonzero.

Since the denominator of the weight for each individual is the conditional density evaluated at the individual's own
values of A and L, it can be expressed as the conditional density evaluated at the random arguments A and L (as
opposed to the fixed arguments a and ), that is, as f [A|L]. This notation, which appeared in Figure 2.3, is used to
define the IP weights W4 = 1/f [A|L]. It is needed to have a unified notation for the weights because Pr [A = A|L = L]
is tautologically equal to 1 and thus not considered proper notation.

As explained in the main text, the mean of the outcome in the pseudo-population E,s [Y|A = a] equals the IP
weighted mean of the outcome in the population, E[YI(A =a) /Pr (A = a|L)], where I(A = a) is 1 when A = a and
0 otherwise. A proof follows:

Es[Y|A=a]=E,s [YI(A=a)]/Ey[I(A=a)] (by the laws of probability)

=E[WAYI(A=a)| /E [I(A=a) W%| (by definition of E,,;)
=E[YI(A=a)/Pr(A=a|Ll)]/EI(A=a)/Pr(A=a|L)] (because I(A=a)/f(AIL)=1(A=a)/f(a|L))
=E[YI(A=a)/Pr(A =a|L)] (because E[I(A=a)/Pr(A=a|L)|L] =1).

in Figure 2.1 are used to create 12 members of the pseudo-population. That
is, each of them receives a weight of 1.33 = 1/0.75. Figure 2.1 shows that 0.75
is the conditional probability of being treated given L = 1. Informally, the
pseudo-population is created by weighting each individual in the population

IP weight: W4 =1/f[A|L] by the inverse of the conditional probability of receiving the treatment level
that she indeed received. These IP weights are shown in Figure 2.3.

IP weighting yielded the same result as standardization—causal risk ratio
equal to 1— in our example above. This is no coincidence: standardization and
IP weighting are mathematically equivalent (see Technical Point 2.3). In fact,
both standardization and IP weighting can be viewed as procedures to build
a new tree in which all individuals receive treatment a. Each method uses a
different set of the probabilities to build the counterfactual tree: IP weighting
uses the conditional probability of treatment A given the covariate L (as shown
in Figure 2.1), standardization uses the probability of the covariate L and the
conditional probability of outcome Y given A and L.

Because both standardization and IP weighting simulate what would have
been observed if the variable (or variables in the vector) L had not been used
to decide the probability of treatment, we often say that these methods adjust
for L. In a slight abuse of language we sometimes say that these methods
control for L, but this “analytic control” is quite different from the “physical
control” in a randomized experiment. Standardization and IP weighting can
be generalized to conditionally randomized studies with continuous outcomes
(see Technical Point 2.3).

Why not finish this book here? We have a study design (an ideal random-
ized experiment) that, when combined with the appropriate analytic method
(standardization or IP weighting), allows us to compute average causal effects.
Unfortunately, randomized experiments are often unethical, impractical, or un-
timely. For example, it is questionable that an ethical committee would have
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approved our heart transplant study. Hearts are in short supply and society
favors assigning them to individuals who are more likely to benefit from the
transplant, rather than assigning them randomly among potential recipients.
Also one could question the feasibility of the study even if ethical issues were
ignored: double-blind assignment is impossible, individuals assigned to medical
treatment may not resign themselves to forego a transplant, and there may not
be compatible hearts for those assigned to transplant. Even if the study were
feasible, it would still take several years to complete it, and decisions must be
made in the interim. Frequently, conducting an observational study is the least
bad option.
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Technical Point 2.3

Equivalence of IP weighting and standardization. Assume that A is discrete with finite number of values and
that f[a|l] is positive for all I such that Pr[L =] is nonzero. This positivity condition is guaranteed to hold in
conditionally randomized experiments. Under positivity, the standardized mean for treatment level a is defined as
I(A=a)Y
S E[Y|A=qa,L=1]Pr[L =1] and the IP weighted mean of Y for treatment level a is defined as E {M}
1
The indicator function I (A = a) is the function that takes value 1 for individuals with A = @, and 0 for the others.
We now prove the equality of the IP weighted and standardized means under positivity. By definition of expectation,
I(A=a) Y} 1 .
E { = —— {EY|A=a,L=1] flall]Pr[L=1]} = > {E[Y|A=aqa,L=1] Pr[L =1]} where in
PO ) ~ 2= Fall l
the final step we cancelled f [a|l] from the numerator and denominator, and in the first step we did not need to sum
over the possible values of A because because for any a/ other than a the quantity I(a/ = a) is zero. The proof treats
A and L as discrete but not necessarily dichotomous. For continuous L simply replace the sum over L with an integral.
The proof makes no reference to counterfactuals. However, if we further assume conditional exchangeability, then
both the IP weighted and the standardized means are equal to the counterfactual mean E [Y*]. Here we provide two
different proofs of this last statement. First, we prove equality of E [Y?] and the standardized mean as in the text:

E[Y ZE [Yo|L =1]Pr[L = —ZE [Yo|A=a,L=1Pr[L=1] —ZE [Y|[A=a,L=1]Pr[L =1

where the second equality is by condltlonal exchangeability and positivity, and the third by consistency. Second, we prove

(A=a )Y} is equal toE[I(A 9y

equality of E [Y%] and the IP weighted mean as follows: E { _
yor B : FIATL] FIATL]

} by consistency.

Next, because positivity implies f [a|L] is never 0, we have

e SR S

fIAIL flalL]
L} =1)=E[Y7].

L} E [Y“L]} (by conditional exchangeability).

I(A=a)
flalL]
When treatment is continuous, which is an unlikely design choice in conditionally randomized experiments,

EI(A=a)Y/f(A|L)] is no longer equal to Y ,E[Y|A =a,L =1]Pr[L = I] and thus is biased for E[Y“] even

under exchangeability. To see this, one can calculate that E[I (A =a) /f (a|l) |L =[] is equal to O rather than 1 if

we take f(a|l) to be (a version of) the conditional density of A given L = [ (with respect to Lebesgue measure). On
the other hand, if we continue to take f (a|l) to be Pr[A = a|L =], the denominator f(a|L = [) is zero on a set
with probability 1 so positivity fails. In Section 12.4 we discuss how IP weighting can be generalized to accomodate
continuous treatments. In Technical Point 3.1, we discuss that the results above do not hold in the absence of positivity,
even for discrete A.

=E{E[Y? L]} (because E [
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Chapter 3
OBSERVATIONAL STUDIES

Consider again the causal question “does one’s looking up at the sky make other pedestrians look up too?” After
considering a randomized experiment as in the previous chapter, you concluded that looking up so many times was
too time-consuming and unhealthy for your neck bones. Hence you decided to conduct the following study: Find
a nearby pedestrian who is standing in a corner and not looking up. Then find a second pedestrian who is walking
towards the first one and not looking up either. Observe and record their behavior during the next 10 seconds.
Repeat this process a few thousand times. You could now compare the proportion of second pedestrians who
looked up after the first pedestrian did, and compare it with the proportion of second pedestrians who looked up
before the first pedestrian did. Such a scientific study in which the investigator observes and records the relevant
data is referred to as an observational study.

If you had conducted the observational study described above, critics could argue that two pedestrians may both
look up not because the first pedestrian’s looking up causes the other’s looking up, but because they both heard
a thunderous noise above or some rain drops started to fall, and thus your study findings are inconclusive as to
whether one’s looking up makes others look up. These criticisms do not apply to randomized experiments, which is
one of the reasons why randomized experiments are central to the theory of causal inference. However, in practice,
the importance of randomized experiments for the estimation of causal effects is more limited. Many scientific
studies are not experiments. Much human knowledge is derived from observational studies. Think of evolution,
tectonic plates, global warming, or astrophysics. Think of how humans learned that hot coffee may cause burns.
This chapter reviews some conditions under which observational studies lead to valid causal inferences.

3.1 Identifiability conditions

Ideal randomized experiments can be used to identify and quantify average

causal effects because the randomized assignment of treatment leads to ex-

changeability. Take a marginally randomized experiment of heart transplant

and mortality as an example: if those who received a transplant had not re-
For simplicity, this chapter consid-  ceived it, they would have been expected to have the same death risk as those
ers only randomized experiments in ~ who did not actually receive the heart transplant. As a consequence, an asso-
which all participants remain un-  ciational risk ratio of 0.7 from the randomized experiment is expected to equal
der follow-up and adhere to their the causal risk ratio.

assigned treatment throughout the Observational studies, on the other hand, may be much less convincing (for
entire study. Chapters 8 and 9 dis-  an example, see the introduction to this chapter). A key reason for our hesita-
cuss alternative scenarios. tion to endow observational associations with a causal interpretation is the lack

of randomized treatment assignment. As an example, take an observational
study of heart transplant and mortality in which those who received the heart
transplant were more likely to have a severe heart condition. Then, if those
who received a transplant had not received it, they would have been expected
to have a greater death risk than those who did not actually receive the heart
transplant. As a consequence, an associational risk ratio of 1.1 from the ob-
servational study would be a compromise between the truly beneficial effect of
transplant on mortality (which pushes the associational risk ratio to be under
1) and the underlying greater mortality risk in those who received transplant
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Table 3.1

Rheia
Kronos
Demeter
Hades
Hestia
Poseidon
Hera

Zeus
Artemis
Apollo
Leto

Ares
Athena
Hephaestus
Aphrodite
Polyphemus
Persephone
Hermes
Hebe
Dionysus
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Rubin (1974, 1978) extended Ney-
man's theory for randomized ex-
periments to observational studies.
Rosenbaum and Rubin (1983) re-
ferred to the combination of ex-
changeability and positivity as weak
ignorability, and to the combination
of full exchangeability (see Tech-
nical Point 2.1) and positivity as
strong ignorability.

Observational studies

(which pushes the associational risk ratio to be over 1). The best explanation
for an association between treatment and outcome in an observational study
is not necessarily a causal effect of the treatment on the outcome.

While recognizing that randomized experiments have intrinsic advantages
for causal inference, sometimes we are stuck with observational studies to an-
swer causal questions. What do we do? We analyze our data as if treatment
had been randomly assigned conditional on measured covariates L—though we
often know this is at best an approximation. Causal inference from observa-
tional data then revolves around the hope that the observational study can be
viewed as a conditionally randomized experiment.

Informally, an observational study can be conceptualized as a conditionally
randomized experiment if the following conditions hold:

1. the values of treatment under comparison correspond to well-defined in-
terventions that, in turn, correspond to the versions of treatment in the
data

2. the conditional probability of receiving every value of treatment, though
not decided by the investigators, depends only on measured covariates L

3. the probability of receiving every value of treatment conditional on L is
greater than zero, i.e., positive

In this chapter we describe these three conditions in the context of ob-
servational studies. Condition 1 was referred to as consistency in Chapter 1,
condition 2 was referred to as exchangeability in the previous chapters, and
condition 3 was referred to as positivity in Technical Point 2.3.

We will see that these conditions are often heroic, which explains why causal
inferences from observational studies are viewed with suspicion. However, if
the analogy between observational study and conditionally randomized exper-
iment happens to be correct, then we can use the methods described in the
previous chapter—IP weighting or standardization—to identify causal effects
from observational studies. We therefore refer to these conditions as identifi-
ability conditions or assumptions. For example, in the previous chapter, we
computed a causal risk ratio equal to 1 using the data in Table 2.2, which arose
from a conditionally randomized experiment. If the same data, now shown in
Table 3.1, had arisen from an observational study and the three identifiability
conditions above held true, we would also compute a causal risk ratio equal to
1.

Importantly, in ideal randomized experiments the identifiability conditions
hold by design. That is, for a conditionally randomized experiment, we would
only need the data in Table 3.1 to compute the causal risk ratio of 1. In
contrast, to identify the causal risk ratio from an observational study, we would
need to assume that the identifiability conditions held, which of course may not
be true. Causal inference from observational data requires two elements: data
and identifiability conditions. See Fine Point 3.1 for a more precise definition
of identifiability.

When any of the identifiability conditions does not hold, the analogy be-
tween observational study and conditionally randomized experiment breaks
down. In that situation, there are other possible approaches to causal inference
from observational data, which require a different set of identifiability condi-
tions. One of these approaches is hoping that a predictor of treatment, referred
to as an instrumental variable, behaves as if it had been randomly assigned con-
ditional on the measured covariates. We discuss instrumental variable methods
in Chapter 16.
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Fine Point 3.1

Identifiability of causal effects. We say that an average causal effect is (nonparametrically) identifiable under a
particular set of assumptions if these assumptions imply that the distribution of the observed data is compatible with
a single value of the effect measure. Conversely, we say that an average causal effect is nonidentifiable under the
assumptions when the distribution of the observed data is compatible with several values of the effect measure. For
example, if the study in Table 3.1 had arisen from a conditionally randomized experiment in which the probability of
receiving treatment depended on the value of L (and hence conditional exchangeability Y'® L A|L holds by design) then
we showed in the previous chapter that the causal effect is identifiable: the causal risk ratio equals 1, without requiring
any further assumptions. However, if the data in Table 3.1 had arisen from an observational study, then the causal risk
ratio equals 1 only if we supplement the data with the assumption of conditional exchangeability Y* Ll A|L. To identify
the causal effect in observational studies, we need an assumption external to the data, an identifying assumption. In
fact, if we decide not to supplement the data with the identifying assumption, then the data in Table 3.1 are consistent
with a causal risk ratio

e lower than 1, if risk factors other than L are more frequent among the treated.
e greater than 1, if risk factors other than L are more frequent among the untreated.

e equal to 1, if all risk factors except L are equally distributed between the treated and the untreated or, equivalently,
if YellA|L.

This chapter discusses the three identifiability conditions for nonparametric identification of average causal effects.
In Chapter 16, we describe alternative identifiability conditions which suffice for nonparametric identification of average
causal effects.

Not surprisingly, observational methods based on the analogy with a con-
ditionally randomized experiment have been traditionally privileged in disci-
plines in which this analogy is often reasonable (e.g., epidemiology), whereas
instrumental variable methods have been traditionally privileged in disciplines
in which observational studies cannot often be conceptualized as condition-
ally randomized experiments given the measured covariates (e.g., economics).
Until Chapter 16, we will focus on causal inference approaches that rely on
the ability of the observational study to emulate a conditionally randomized
experiment. We now describe in more detail each of the three identifiability
conditions.

3.2 Exchangeability

We have already said much about exchangeability Y* 1l A. In marginally (i.e.,
An independent predictor of the unconditionally) randomized experiments, the treated and the untreated are
outcome is a covariate associated exchangeable because the treated, had they remained untreated, would have
with the outcome Y within levels of  experienced the same average outcome as the untreated did, and vice versa.
treatment. For dichotomous out- This is so because randomization ensures that the independent predictors of
comes, independent predictors of the outcome are equally distributed between the treated and the untreated
the outcome are often referred to  groups.
as risk factors for the outcome. For example, take the study summarized in Table 3.1. We said in the pre-

vious chapter that exchangeability clearly does not hold in this study because

69% treated versus 43% untreated individuals were in critical condition L = 1
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In Chapter 7, we will refer to these
type of outcome predictors as con-
founders.

Observational studies

at baseline. This imbalance in the distribution of an independent outcome
predictor is not expected to occur in a marginally randomized experiment (ac-
tually, such imbalance might occur by chance but let us keep working under
the illusion that our study is large enough to prevent chance findings).

On the other hand, an imbalance in the distribution of independent out-
come predictors L between the treated and the untreated is expected by
design in conditionally randomized experiments in which the probability of
receiving treatment depends on L. The study in Table 3.1 is such a con-
ditionally randomized experiment: the treated and the untreated are not
exchangeable—because the treated had, on average, a worse prognosis at the
start of the study—but the treated and the untreated are conditionally ex-
changeable within levels of the variable L. In the subset L = 1 (critical con-
dition), the treated and the untreated are exchangeable because the treated,
had they remained untreated, would have experienced the same average out-
come as the untreated did, and vice versa. And similarly for the subset L = 0.
An equivalent statement: conditional exchangeability Y*_ L A|L holds in condi-
tionally randomized experiments because, within levels of L, all other outcome
predictors are equally distributed between the treated and untreated groups.

Back to observational studies. When treatment is not randomly assigned
by the investigators, the reasons for receiving treatment are likely to be associ-
ated with some outcome predictors. That is, like in a conditionally randomized
experiment, the distribution of outcome predictors will generally vary between
the treated and untreated groups in an observational study. For example, the
data in Table 3.1 could have arisen from an observational study in which doc-
tors tend to direct the scarce heart transplants to those who need them most,
i.e., individuals in critical condition L = 1. In fact, if the only outcome pre-
dictor that is unequally distributed between the treated and the untreated is
L, then one can refer to the study in Table 3.1 as either (i) an observational
study in which the probability of treatment A = 1 is 0.75 among those with
L =1 and 0.50 among those with L = 0, or () a (non blinded) conditionally
randomized experiment in which investigators randomly assigned treatment
A =1 with probability 0.75 to those with L = 1 and 0.50 to those with L = 0.
Both characterizations of the study are logically equivalent. Under either char-
acterization, conditional exchangeability Y@ 1L A|L holds and standardization
or IP weighting can be used to identify the causal effect.

Of course, the crucial question for the observational study is whether L is
the only outcome predictor that is unequally distributed between the treated
and the untreated. Sadly, the question must remain unanswered, so our in-
vestigators need to be willing to work under the assumption that conditional
exchangeability Y@ 1L A|L holds. Also, note that not all variables that are un-
equally distributed between treatment groups need to be included in L. For
example, heart transplants are assigned to individuals with low probability of
rejecting the transplant, i.e., a heart with certain human leukocyte antigen
(HLA) genes will be assigned to an individual who happen to have compatible
genes. Because HLA genes are not predictors of mortality, conditional on L
and A, then treatment assignment is essentially random within levels of L and
thus HLA needs not be considered in the analysis.

In the absence of randomization, there is no guarantee that conditional ex-
changeability holds. For example, suppose that, unknown to the investigators,
doctors prefer to transplant hearts into nonsmokers. Consider two individuals
with L = 1. One of them is a smoker (U = 1) and the other one is a nonsmoker
(U = 0), the one with U = 1 has a lower probability of receiving treatment
A = 1. When the distribution of smoking, an important outcome predictor,
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Fine Point 3.2

Crossover randomized experiments. In Fine Point 2.1, we described crossover experiments in which an individual
is observed during two or more periods—say ¢t = 0 and ¢ = 1—and the individual receives a different treatment value
in each period. We showed that individual causal effects can be identified in crossover experiments when the following
three strong conditions hold: i) no carryover effect of treatment: Y32 = Y1, ii) the individual causal effect does
not depend on time: Y;¢*=' — Y= = @, for t = 0,1, and iii) the counterfactual outcome under no treatment does
not depend on time: Yl-‘t”:0 = (; for t = 0,1. No randomization was required. We now turn our attention to crossover
randomized experiments in which the order of treatment values that an individual receives is randomly assigned.

Randomized treatment assignment becomes important when, due to possible temporal effects, we do not assume iii)
holds. For simplicity, assume that every individual is randomized to either (4;; = 1, A;o = 0) or (4;1 =0, Ajp = 1)
with probability 0.5. Let Yﬁlzo — Yig"zo = r;. Then, under i) and ii) and consistency, if A;p = 0 and A;; = 1,
then Y;1 — Yo = o + 75, and if A;1 = 0 and A;,0 = 1, then Yo — Y;1 = «; — r;. Because r; is unknown we can
no longer identify individual causal effects but, since A;; and A;y are randomized and therefore independent of r;, the
mean of (Y;1 — Yio) Aix + (Yio — Yi1) Ao estimates the average causal effect, i.e., E[o;]. If we only assume i), then
this mean estimates the average of the average treament effects at times 0 and 1, i.e., (E[a;1] + E [ao]) /2, where

_ var=1 ar=0

i =Y =Y

In conclusion, if assumption 1) of no carryover effect holds, then a crossover experiment can be used to estimate
average causal effects. However, for the type of treatments and outcomes we study in this book, the assumption of no
carryover effect is implausible.

We use U to denote unmeasured
variables. Because unmeasured
variables cannot be used for stan-
dardization or IP weighting, the
causal effect cannot be identified
when the measured variables L are
insufficient to achieve conditional
exchangeability.

To verify conditional exchange-
ability, one needs to confirm
that PriYe=1|A=a,L=1] =
Pr[Y® =1|A # a,L =]. But this
is logically impossible because, for
individuals who do not receive
treatment a (A # a) the value of
Y? is unknown and so the right
hand side cannot be empirically
evaluated.

differs between the treated (with lower proportion of smokers U = 1) and the
untreated (with higher proportion of smokers) in the stratum L = 1, con-
ditional exchangeability given L does not hold. Importantly, collecting data
on smoking would not prevent the possibility that other imbalanced outcome
predictors, unknown to the investigators, remain unmeasured.

Thus exchangeability Y* 1L A|L may not hold in observational studies. Specif-
ically, conditional exchangeability Y® 1l A|L will not hold if there exist unmea-
sured independent predictors U of the outcome such that the probability of
receiving treatment A depends on U within strata of L. Worse yet, even if
conditional exchangeability Y1l A|L held, the investigators cannot empiri-
cally verify that is actually the case. How can they check that the distribution
of smoking is equal in the treated and the untreated if they have not collected
data on smoking? What about all the other unmeasured outcome predictors
U that may also be differentially distributed between the treated and the un-
treated? When analyzing an observational study under conditional exchange-
ability, we must hope that our expert knowledge guides us correctly to collect
enough data so that the assumption is at least approximately true.

Investigators can use their expert knowledge to enhance the plausibility
of the conditional exchangeability assumption. They can measure many rele-
vant variables L (e.g., determinants of the treatment that are also independent
outcome predictors), rather than only one variable as in Table 3.1, and then as-
sume that conditional exchangeability is approximately true within the strata
defined by the combination of all those variables L. Unfortunately, no mat-
ter how many variables are included in L, there is no way to test that the
assumption is correct, which makes causal inference from observational data
a risky task. The validity of causal inferences requires that the investigators’
expert knowledge is correct. This knowledge, encoded as the assumption of
exchangeability conditional on the measured covariates, supplements the data
in an attempt to identify the causal effect of interest.
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3.3 Positivity

The positivity condition is some-
times referred to as the experimen-
tal treatment assumption.

Positivity: Pr[A=alL=1 > 0
for all values [ with Pr[L =1] #0
in the population of interest.

Observational studies

Some investigators plan to conduct an experiment to compute the average ef-
fect of heart transplant A on 5-year mortality Y. It goes without saying that
the investigators will assign some individuals to receive treatment level A =1
and others to receive treatment level A = 0. Consider the alternative: the
investigators assign all individuals to either A = 1 or A = 0. That would be
silly. With all the individuals receiving the same treatment level, computing
the average causal effect would be impossible. Instead we must assign treat-
ment so that, with near certainty, some individuals will be assigned to each of
the treatment groups. In other words, we must ensure that there is a proba-
bility greater than zero—a positive probability—of being assigned to each of
the treatment levels. This is the positivity condition.

We did not emphasize positivity when describing experiments because pos-
itivity is taken for granted in those studies. In marginally randomized ex-
periments, the probabilities Pr[A = 1] and Pr[A = 0] are both positive by
design. In conditionally randomized experiments, the conditional probabili-
ties Pr[A =1|L =] and Pr[A =0|L =] are also positive by design for all
levels of the variable L that are eligible for the study. For example, if the
data in Table 3.1 had arisen from a conditionally randomized experiment, the
conditional probabilities of assignment to heart transplant would have been
Pr[A =1|L = 1] = 0.75 for those in critical condition and Pr[A = 1|L = 0] =
0.50 for the others. Positivity holds, conditional on L, because neither of
these probabilities is 0 (nor 1, which would imply that the probability of no
heart transplant A = 0 would be 0). Thus we say that there is positivity if
Pr[A=a|L=1] > 0 for all a involved in the causal contrast. Actually, this
definition of positivity is incomplete because, if our study population were re-
stricted to the group L = 1, then there would be no need to require positivity
in the group L = 0. Positivity is only needed for the values [ that are present
in the population of interest.

In addition, positivity is only required for the variables L that are required
for exchangeability. For example, in the conditionally randomized experiment
of Table 3.1, we do not ask ourselves whether the probability of receiving
treatment is greater than 0 in individuals with blue eyes because the variable
“having blue eyes” is not necessary to achieve exchangeability between the
treated and the untreated. (The variable “having blue eyes” is not an inde-
pendent predictor of the outcome Y conditional on L and A, and was not even
used to assign treatment.) That is, the standardized risk and the IP weighted
risk are equal to the counterfactual risk after adjusting for L only; positivity
does not apply to variables that, like “having blue eyes”, do not need to be
adjusted for.

In observational studies, neither positivity nor exchangeability are guaran-
teed. For example, positivity would not hold if doctors always transplant a
heart to individuals in critical condition L = 1, i.e., if Pr[A =0|L = 1] = 0,
as shown in Figure 3.1. A difference between the conditions of exchangeabil-
ity and positivity is that positivity can sometimes be empirically verified (see
Chapter 12). For example, if Table 3.1 corresponded to data from an observa-
tional study, we would conclude that positivity holds for L because there are
people at all levels of treatment (i.e., A =0 and A = 1) in every level of L
(i.e., L = 0 and L = 1).Our discussion of standardization and IP weighting
in the previous chapter was explicit about the exchangeability condition, but
only implicitly assumed the positivity condition (explicitly in Technical Point
2.3). Our previous definitions of standardized risk and IP weighted risk are
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Figure 3.1

actually only meaningful when positivity holds. To intuitively understand why
the standardized and IP weighted risk are not well-defined when the positiv-
ity condition fails, consider Figure 3.1. If there were no untreated individuals
(A =0) with L = 1, the data would contain no information to simulate what
would have happened had all treated individuals been untreated because there
would be no untreated individuals with L = 1 that could be considered ex-
changeable with the treated individuals with L = 1. See Technical Point 3.1
for details.

3.4 Consistency: First, define the counterfactual outcome

Robins and Greenland (2000) ar-
gued that well-defined counterfac-
tuals, or mathematically equivalent
concepts, are necessary for mean-
ingful causal inference.

Consistency means that the observed outcome for every treated individual
equals her outcome if she had received treatment, and that the observed out-
come for every untreated individual equals her outcome if she had remained
untreated, i.e., Y* =Y for every individual with A = a. This statement seems
so obviously true that some readers may be wondering whether there are any
situations in which consistency does not hold. After all, if I take aspirin A = 1
and I die (Y = 1), isn’t it the case that my counterfactual outcome Y %=1 un-
der aspirin equals 1 by definition? The apparent simplicity of the consistency
condition is deceptive. Let us unpack consistency by explicitly describing its
two main components: (1) a precise definition of the counterfactual outcomes
Y via a detailed specification of the superscript a, and (2) the linkage of the
counterfactual outcomes to the observed outcomes. This section deals with the
first component of consistency.

Consider again a randomized experiment of heart transplant A and 5-year
mortality Y. Before enrolling patients in the study, the investigators wrote
a protocol in which the two interventions of interest—heart transplant a = 1
and medical therapy a = 0—were described in detail. For example, the inves-
tigators specified that individuals assigned to heart transplant were to receive
certain pre-operative procedures, anesthesia, surgical technique, post-operative
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Technical Point 3.1

Positivity for standardization and IP weighting. We have defined the standardized mean for treatment level

a as Y E[Y|A=a,L =1 Pr[L=1]. However, this expression can only be computed if the conditional quan-
!
tity E[Y|A =a,L =1] is well defined, which will be the case when the conditional probability Pr[A =a|L =1] is

greater than zero for all values [ that occur in the population. That is, when positivity holds. (Note the statement
Pr[A =a|L =1] > 0 for all [ with Pr[L =[] # 0 is effectively equivalent to f [a|L] > 0 with probability 1.) Therefore,
the standardized mean is defined as

ZE[Y\A:CL,L:Z] Pr(L=1] if Pr[A=a|lL=1]>0 foralllwith Pr[L =1]#0,
1

and is undefined otherwise. The standardized mean can be computed only if, for each value of the covariate L in the
population, there are some individuals that received the treatment level a.

| [(A=a)Y f4=a)¥
The IP weighted mean E {JCVHL] W
1A= a)y

Flll } is undefined because the undefined ratio % occurs in computing the expectation. On the
a

I(A=a)Y
other hand, the IP weighted mean E [ ( 9)

} is no longer equal to E{ } when positivity does not hold.

Specifically, E [

AL is always well defined since its denominator f [A|L] can never be
zero. However, it is now a biased estimate of the counterfactual mean even under exchangeability when positivity fails
I(A=a)Y
(f[AGj] isequalto Pr[L € Q(a)]> E[Y|A=a,L=1,L € Q(a)] Pr[L =1L € Q(a)]
1
where Q(a) = {l;Pr (A = a|L = 1) > 0} is the set of values [ for which A = a may be observed with positive probability.
I(A=a)Y
M} equals E[Y|L € Q(a)] Pr[L € Q(a)].
From the definition of Q(a), Q(0) cannot equal Q(1) when A is binary and positivity does not hold. In this case the
I(A= I)Y} . [I(A:O)Y
FIA|L] FIAIL]

contrast between two different groups. Under positivity, Q(1) = Q(0) and the contrast is the average causal effect if
exchangeability holds.

to hold. In particular, E [
Therefore, under exchangeability, E

contrast E [ } has no causal interpretation, even under exchangeability, because it is a

care, and immunosuppressive therapy in an attempt to ensure that each in-
dividual receives the same version of the treatment. Had the protocol not
specified these details, it is possible that each doctor had conducted a differ-
Fine Point 1.2 introduced the con-  ent version of the treatment “heart transplant”, perhaps using their preferred
cept of multiple versions of treat- surgical technique or immunosuppressive therapy. We define Y*=! as the in-
ment. dividual’s outcome in this study if the instructions for intervention a = 1 in
the protocol of the experiment were followed, and analogously for Y*=°, For
simplicity, we assume that all individuals followed their assigned protocol.

In observational studies, we can similarly characterize each treatment ver-
sion a. For example, for an observational study on the effect of heart trans-
plant, we would follow the same procedure as for the randomized trial above,
and for an observational study on the causal effect of exercise, we would spec-
ify its duration, frequency, intensity, type (swimming, running...) and how
the time devoted to exercise would otherwise be spent (rehearsing with your
band, watching television...). The difficulty of specifying the treatment ver-
sion a increases for causal questions involving biological (e.g., blood pressure,
LDL-cholesterol, body weight) or social (e.g., socioeconomic status) factors.
As an example of this difficulty, consider “obesity”. Some investigators argue
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For simplicity, we consider a tradi-
tional definition of obesity as body
mass index>30.

Herndn and Taubman (2008) dis-
cuss the tribulations of two world
leaders—a despotic king and a clue-
less president—to estimate the ef-
fect of obesity in their countries.

Questions about the effect of obe-
sity on job discrimination—as mea-
sured by the proportion of job appli-
cants called for a personal interview
after the employer reviews the ap-
plicant's resume and photograph—
are less vague. Because the treat-
ment is “obesity as perceived by the
employer,” the mechanisms that led
to obesity may be irrelevant.

In pragmatic trials, the investiga-
tors may purposely choose not to
specify all components of the inter-
vention so that the treatment ver-
sions used in the trial reflect what
happens in real world settings.

that the causal effect of obesity at age 40 on, say, the risk of mortality Y by
age 50 (in a certain population) is of interest and that quantifying it is a valid
scientific pursuit. However, biological states such as body mass index (and its
dichotomization “obesity”) or blood pressure can only be changed by inter-
vening on their causes. As a consequence, the causal effects (and associated
counterfactuals) of the states themselves are often considered ill-defined.

We now argue that many variables, like “obesity”, may not be sufficiently
well-defined for quantitative causal inference. Suppose that, on Zeus’s 35th
birthday, we decided to make him obese by age 40 by lowering his daily exercise.
He had a fatal myocardial infarction at age 49. Now suppose that, in a parallel
universe identical to ours, on Zeus’s 35th birthday we decided to make him
obese by age 40 by increasing his caloric intake. He did not have a fatal
myocardial infarction before age 50. That is, in both universes Zeus is obese,
but only in one of them he had a fatal heart attack.

Because Zeus’s counterfactual outcome under obesity can be either death
or no death, we conclude that the term “obesity” is too vague to define coun-
terfactual outcomes. Again, the problem is that we can only change the value
of obesity by interventions (e.g., diet, exercise) that may have effects on the
outcome through causal pathways that are believed not to involve obesity. In
contrast, if we were interested in the causal effect on mortality of a weight
loss pill A, this problem would not arise because changing the value of A does
not require any other interventions (e.g., on diet or exercise). That is, the
counterfactual outcome under the intervention “pill” is well defined for each
individual. Of course, the value of this counterfactual outcome can still depend
on the individual’s values of any previous interventions (e.g., on smoking and
exercise).

The more precisely we define the meaning of @ = 1 and a = 0, the more
precise our causal questions are. However, absolute precision in the definition
of treatment is neither necessary nor possible. For example, for exercise, we
do not need to specify the direction of running (clockwise or counterclockwise)
around your neighborhood’s park. Scientists agree that the direction of running
is irrelevant because varying it would not lead to different outcomes. That is,
we only need sufficiently well-defined interventions a for which no meaningful
vagueness remains.

Which begs the question “how do we know that a treatment is sufficiently
well-defined?” Or, equivalently, how do we know that that no meaningful
vagueness remains? The answer is “We don’t.” Declaring a treatment suf-
ficiently well-defined is a matter of agreement among experts based on the
available substantive knowledge. Today we agree that the direction of running
is irrelevant, but future research might prove us wrong if it is demonstrated
that, say, leaning the body to the right, but not to the left, while running
is harmful. At any point in history, experts who write the protocols of ran-
domized experiments often attempt to eliminate as much vagueness as possible
by employing the subject-matter knowledge at their disposal. However, some
vagueness is inherent to all causal questions. The vagueness of causal questions
can be reduced by a more detailed specification of treatment, but cannot be
completely eliminated.

In practice, the protocols of randomized experiments may fail to specify
some relevant components of the intervention. For example, the protocol of the
above heart transplant study did not specify the surgeon’s experience perform-
ing heart transplants. Thus, both experienced and inexperienced surgeons par-
ticipated in the study. Because scant transplant experience is known to affect
post-transplant mortality, the risk Pr[Y?=! = 1] had all individuals received
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Fine Point 3.3

Protocols open to interpretation. It is possible that Pr[Y*=! = 1] differs between two randomized experiments with
identical populations and protocols. To see this, consider the following scenario.

In both experiments, individuals assigned to a = 1 underwent a surgical operation according to the instructions in the
protocol. However, the protocol did not specify how to match patients with surgeons. In the first experiment, individuals
assigned to a = 1 were referred to and operated on by experienced surgeons if they were high risk patients, and by
less experienced surgeons if they were low risk patients. Because of this, almost no patients died and Pr[Y?=! = 1]
was close to 0. In contrast, in the second experiment, individuals assigned to a = 1 were referred to a surgeon without
regard to the patient’s risk and the surgeon's experience. In this study Pr[Y%=! = 1] is far from zero because many
high-risk patients were operated on by inexperienced surgeons.

By definition, lack of exchangeability cannot explain the difference in Pr[Y =1 = 1] because both experiments were
randomized. Rather, the difference is explained by the different versions of treatment used in each trial. Because the
protocol did not specify how to match patients with surgeons, the two trials ended up with different results.

treatment according to the protocol will depend on the unknown distribution
of experience of the participating surgeons. That is, the average causal effect
in a new community with a different distribution of surgical experience will
differ from the effect in the trial population, even if the new population follows

The phrase “no causation with-
out manipulation” (Holland 1986)
captures the idea that meaningful
causal inference requires sufficiently
well-defined interventions (versions
of treatment). However, bear in
mind that sufficiently well-defined
interventions may not be humanly
feasible, or practicable, interven-
tions at a particular time in history.
For example, the effect of genetic
variants on disease was considered
sufficiently well defined even before
the existence of technology for ge-
netic modification.

the exact same protocol as in the trial.

In fact, the value of Pr[Y*=! = 1], and therefore of the average causal
effect, may differ between two experiments conducted in the same population
and with the same protocol. This discrepancy would arise if the protocol
allows for a = 1 to include several versions of treatment with different causal
effects on the outcome of interest, and different versions of treatment are used
in each experiment. Fine Point 3.3 describes an example of two randomized
experiments with the same protocol but different causal effects. A different
distribution of versions of treatment affects the transportability of causal effects
(see Chapter 4). The same considerations apply to observational studies.

The discussion in this section illustrates an intrinsic feature of causal in-
ference: the articulation of causal questions is contingent on domain expertise
and informal judgment. What we view as a meaningful causal question at
present may turn out to be viewed as too vague in the future after learning
that unspecified components of the treatment affect the outcome and therefore
the magnitude of the causal effect. Years from now, scientists will probably
refine our obesity question in terms of cellular modifications which we barely
understand at this time. Again, the term sufficiently well-defined treatment
relies on expert consensus, which changes over time. Fine Point 3.4 links this
discussion with previous proposals.

Refining the causal question, until it is agreed that no meaningful vagueness
remains, is good practice for sound causal inference. For example, declaring
our interest in “the effect of obesity” may be viewed as just a starting point for
a discussion during which we will sharpen the causal question by refining the
specification of the treatment until, hopefully, a consensus is reached with our
colleagues. The more precisely we specify the treatment, the better defined the
causal question is and the fewer opportunities for miscommunication between
researchers and decision makers exist.
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Fine Point 3.4

Possible worlds. Philosophers of science have proposed counterfactual theories based on the concept of “possible
worlds” (Stalnaker 1968, Lewis 1973). The counterfactual Y is defined to be the value of Y in the world in which
the individual received the treatment that is closest to the actual world. In particular, these philosophers assume that
Y®* =Y if A = a because the closest possible world to the actual world is itself. Hence, under their definition of
counterfactuals, consistency always holds.

When A # a, the " closest possible world" and thus the counterfactual Y* are always somewhat ill-defined and vague.
Nonetheless, Lewis noted that his definition of counterfactuals is often useful. Robins and Greenland (2000) agreed
but also argued that the concept of well-defined interventions should replace the concept of the closest possible world
because, in observational studies, counterfactuals are vague and ill-defined to the degree that one fails to make precise
the hypothetical interventions and causal contrasts under consideration.

3.5 Consistency: Second, link counterfactuals to the observed data

As a reminder, the consistency condition says that Y% = Y for individuals
with A = a. In the previous section, we described the first component of
consistency: sufficiently well-defined counterfactual outcomes Y such that
no meaningful vagueness remains. In this section, we describe the second
component of consistency in observational studies: ensuring that the equality
For an expanded discussion of the Y% =Y holds, i.e., linking the counterfactual outcomes to the observed data.
issues described in Sections 3.4 and Suppose our goal is quantifying the effect of heart transplant a = 1 vs.
3.5, see the text and references in  medical therapy a = 0 using observational data. We carefully specify the two
Herndn (2016), and in Robins and  treatment versions a = 1 and a = 0 of interest. Experts agree that a = 1 and
Weissman (2016). a = 0 are sufficiently well-defined and, therefore, that no meaningful vagueness
remains in the specification of the counterfactual outcomes Y*=!' and Y*=0.
Specifically, we specified that heart transplant a = 1 includes certain pre-
operative procedures, anesthesia, surgical technique, post-operative care, and
immunosuppressive therapy, as well as surgeons who had conducted at least 10
heart transplants in the last five years. Now suppose that, in our observational
data, all surgeons have conducted only between 5 and 9 heart transplants in
the last five years. Then, our carefully defined counterfactual outcome Y %=1
cannot be linked to any of the observed outcomes Y because nobody in the
study population received the treatment version a = 1.

That is, the validity of the consistency condition is threatened by ill-
defined treatments like “obesity” (previous section), but also by sufficiently
well-defined treatments like “heart transplant” that are absent in the data
(this section). To link the counterfactual outcomes Y%= and the observed
outcomes Y, we have to ensure that only individuals receiving treatment ver-
sion a = 1 are considered as treated individuals (A = 1) in the analysis, and
analogously for the untreated. The implication is that, if we want to quantify
the causal effect Pr[Y=! = 1] — Pr[Y*=% = 1] using observational data, we
need data in which some individuals received a = 1 and a = 0. Being able to
describe a well-defined intervention a, as we did, is not helpful if the interven-
tion does not occur in the observed data, i.e., if we cannot reasonably assume
that the equality Y* =Y holds for at least some individuals.

An obvious approach to handling the mismatch between the treatment
version of interest and the treatment versions in the observed data is to hy-
pothesize that the effects of those versions of treatment are identical—that is,
that there is treatment variation irrelevance (See Fine Point 1.2). In some
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Confusion often arises from the
common practice of using the same
letter to refer to the hypothetical
intervention a and to the observed
value A before enough information
exists to match a and A.

3.6 The target trial

The target trial—or its logi-
cal equivalents—is central to the
causal inference framework. Dorn
(1953), Wold (1954), Cochran
(1972), Rubin (1974), Feinstein
(1971), and Dawid (2000) used the
concept. Robins (1986) generalized
it for time-varying treatments.

Fine Point 3.5 describes how to use
observational data to compute the
proportion of cases attributable to
treatment.

Observational studies

cases, this hypothesis may be a good approximation. For example, it might
be argued that no additional relevant experience is gained after performing 5
transplants and, thus, that we can use observational data in which all surgeons
conducted at least 5 transplants to correctly identify the effect of “heart trans-
plant” a = 1 under the requirement that all surgeons had previously performed
at least 10 heart transplants.

In other cases, however, assuming treatment variation irrelevance may not
be reasonable. For example, if interested in the effect of weight loss on mor-
tality, it would be hard to justify that an intervention to modify body weight
via, say, exercise would have the same effect on mortality as bariatric surgery.
Matching the intervention of interest a = 1 with the observed “treatment” value
A =1, and therefore equating the counterfactual outcome Y *=! with the ob-
served outcome Y4 =Y, requires collecting data on the versions of treatment.
Not only is this information necessary to detect a mismatch between the treat-
ment version of interest and the data at hand, but also to have an informed
discussion about whether the available versions of treatment can be used in
lieu of the treatment version of interest. In our heart transplant study in this
section, if information on surgeon experience was not collected, we would not
be able to determine whether the counterfactual Y*=! can be linked to the
observed Y.

Because data on treatment versions are often unavailable in observational
studies, consistency is often compromised. Since achieving consistency is not
easy in observational studies, a good practice is to make our reasoning as
transparent as possible, so that others can directly challenge our arguments.
The next section describes a procedure to achieve that transparency.

We have defined the average causal effect as a contrast between mean counter-
factual outcomes under different treatment values. Because these interventions
need to be well defined, we can imagine a (hypothetical) randomized experi-
ment to quantify the causal effect of interest. We refer to that hypothetical
experiment as the target experiment or the target trial. When conducting the
target trial is not feasible, ethical, or timely, we resort to causal analyses of
observational data. That is, causal inference from observational data can be
viewed as an attempt to emulate the target trial. If the emulation is success-
ful, there is no difference between the results from the observational study and
from the target trial (had it been conducted).

In this chapter, we have explored three conditions—exchangeability, pos-
itivity, consistency—that allow us to equate an observational study with a
(conditionally randomized) target experiment. As we said in Section 3.1, if
these conditions hold, then we can apply the methods described in the previ-
ous chapter—IP weighting or standardization—to compute causal effects from
the observational data.

Therefore “what randomized experiment are you trying to emulate?” is a
key question for causal inference from observational data. For each causal
effect that we wish to estimate using observational data, we can (i) specify the
target trial that we would like to, but cannot, conduct, and (ii) describe how
the observational data can be used to emulate that target trial. Specifying
the target trial, and therefore the causal effect of interest, requires specifying
key components of the trial’s protocol: eligibility criteria, interventions (or,
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Herndn and Robins (2016) speci-
fied the key components of the tar-
get trial. The acronym PICO (Pop-
ulation, Intervention, Comparator,
Outcome) is sometimes used to
summarize some of those compo-
nents (Richardson et al. 1995).

When we are concerned that as-
suming conditional exchangeability
may not be reasonable given the
available data, we can consider
alternative identifying assumptions
(see Chapter 16) or perform sensi-
tivity analyses.

Danaei et al. (2016) tried to esti-
mate the effect of weight loss using
observational data. They carefully
specified the timing of the weight
loss over many years, but they still
left unspecified the method used to
lose weight.
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in general, treatment strategies), outcomes, start and end of follow-up, and
causal contrasts.

Therefore, a valid emulation of the target trial requires that the observa-
tional dataset includes sufficient information to identify eligible individuals,
classify them into groups defined by the interventions they receive, and ascer-
tain their outcomes during the follow-up. For example, to estimate the causal
effect of heart transplant, we first specify the components of the protocol of
the target trial, and then try to emulate each of them using the observational
data. Such explicit emulation of the target trial improves causal inference from
observational data by making the interventions, and therefore the causal ques-
tion, well-defined (see Chapter 22 for an extended discussion of the target trial
framework). Once the causal question is well-defined via a target trial, investi-
gators can focus on the next fundamental problem: how to achieve conditional
exchangeability across groups.

All of the above assumes that the interventions of interest are sufficiently
well-defined to translate them into a hypothetical experiment. But what can
we do when, based on current scientific knowledge, the causal question cannot
be translated into a target trial? As an example, consider the causal effect of
“weight loss” on mortality in individuals who are obese and do not smoke at
age 40. This causal question is somewhat vague because the actual intervention
that would be implemented to bring about weight loss remains unspecified. In
fact, it requires strong assumptions (that may be wrong) to make the causal
effects (and associated counterfactuals) sufficiently well-defined. For example,
we said above that it would not be reasonable to assume that the effects of
inducing weight loss via smoking or surgery are equivalent to the effects of
inducing weight loss via exercise or diet. But suppose that some investigators
are willing to believe that exercise and diet only affect the outcome through
weight loss and, therefore, that the effects of weight loss via either exercise or
diet are the same.

Under this strong assumption of treatment variation irrelevance, the inves-
tigators are willing to emulate a target trial of weight loss in a population of
nonsmokers who do not receive surgery. The protocol of the target trial would
not specify the method used to lose weight, but it would carefully specify other
components of the intervention. For example, the target trial would assign in-
dividuals to lose 5% of body mass index every year, starting at age 40 and for
as long as their body mass index stays over 25, under the assumption that it
does not matter whether the weight loss is achieved via exercise or diet. Many
experts would frown upon this assumption of treatment variation irrelevance
for weight loss via either exercise or diet, but they may be open to entertain the
assumption in other settings. For example, if interested in the effect of blood
pressure, investigators may be willing to assume that the effect of antihyper-
tensive medications on the outcome is fully mediated through blood pressure,
and thus that the particular medication used to achieve a certain change in
blood pressure is not relevant.

An explicit specification of the interventions is also helpful to emulate the
target trial because investigators will need to adjust for variables (e.g., his-
tory of smoking, exercise, diet...) that are necessary to achieve conditional
exchangeability, and achieving conditional exchangeability is generally more
difficult when the interventions are partly unspecified (see below). Even when
it is unclear whether the interventions are sufficiently well-defined, explicit
target trial emulation prevents investigators from making implicit consistency
assumptions that do not cohere with their own beliefs. For example, sup-
pose that some investigators are generally interested in learning about the
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Extreme interventions are more
likely to go unrecognized when they
are not explicitly specified.

For some examples of this point of
view, see Pearl (2009), Schwartz
et al (2016), and Glymour and
Spiegelman (2016).

For an extended discussion about
the differences between prediction
and causal inference, which is a
form of counterfactual prediction,
see Hernan, Hsu, and Healy (2019).

Observational studies

health effects of body weight, but they do not take the time to propose a
target trial. Rather, they conduct an oversimplified analysis that compares
the risk of death in, say, obese versus nonobese individuals at age 40. That
comparison corresponds implicitly to a target trial in which obese individuals
are instantaneously transformed into individuals with a body mass index of
25 at baseline (through a massive liposuction?). Such target trial cannot be
emulated because very few people, if anyone, in the real world undergo such
instantaneous change, and thus the counterfactual outcomes cannot be linked
to the observed outcomes. All scientists, including those who conducted the
data analyses, would agree that consistency does not hold.

The conceptualization of causal inference from observational data as an
attempt to emulate a target trial is not universally accepted. Some authors
presuppose that “the average causal effect of A on Y is a well-defined quantity,
no matter what A and Y stand for (as long as A temporally precedes Y'). Their
argument goes like this:

We may not precisely know which particular causal effect is
being estimated in an observational study, but is that really so
important if indeed some causal effect exists? There is value in
learning that many deaths could have been prevented if all obese
people had been forced, somehow, to be of normal weight, even
if the intervention required for achieving that transformation is
unspecified.

This is an appealing argument but, as we have discussed above, it is prob-
lematic for two reasons.

First, unspecified interventions may be unreasonable or impractical. For
example, the apparently straightforward comparison of obese and nonobese
individuals in observational studies masks the true complexity of interventions
such as “make everybody in the population instantly nonobese”. Had these
interventions been made explicit, investigators would have realized that these
drastic changes, unlikely to be observed in the real world, are irrelevant for
anyone considering weight loss interventions.

Anchoring causal inferences to a target trial not only helps sharpen the
specification of the causal question in observational analyses, but also makes
the inferences more relevant for decision making. For example, as discussed
above, a more reasonable, even if not yet well-defined, intervention may be to
reduce body mass index by 5% annually.

Second, to achieve conditional exchangeability of the treated and the un-
treated, investigators need to identify and measure the covariates L that make
the groups conditionally exchangeable. However, the set of covariates L that
result in conditional exchangeability will generally vary across treatments that
correspond to different hypothetical interventions. The usual uncertainty re-
garding conditional exchangeability in observational studies is greatly exacer-
bated if we forgo characterizing the interventions as well as posible.

When a target trial cannot be specified and emulated, observational data
may still be quite useful for non-causal prediction. That obese individuals
have a higher mortality risk than nonobese individuals means that obesity is a
predictor of—is associated with—mortality. This is an important piece of infor-
mation to identify individuals at high risk of mortality. By saying that obesity
predicts—is associated with—mortality, we remain agnostic about causality:
obesity might predict mortality in the sense that cigarette smoking predicts
lung cancer or in the sense that carrying a lighter predicts lung cancer. Thus
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Fine Point 3.5

Attributable fraction. We have described effect measures like the causal risk ratio Pr[Y*=! = 1]/ Pr[Y*=° = 1] and
the causal risk difference Pr[Y*=! = 1] — Pr[Y%=Y = 1], which compare the counterfactual risk under treatment a = 1
with the counterfactual risk under treatment a = 0. However, one could also be interested in measures that compare
the observed risk with the counterfactual risk under either treatment a = 1 or a = 0. This latter contrast allows us
to compute the proportion of cases that are attributable to treatment in an observational study, i.e., the proportion of
cases that would not have occurred had treatment not occurred. For example, suppose that all 20 individuals in our
population attended a dinner in which they were served either ambrosia (A = 1) or nectar (A = 0). The following day,
7 of the 10 individuals who received A = 1, and 1 of the 10 individuals who received A = 0, were sick. For simplicity,
assume exchangeability of the treated and the untreated so that the causal risk ratio is 0.7/0.1 = 7 and the causal
risk difference is 0.7 — 0.1 = 0.6. (In conditionally randomized experiments, one would compute these effect measures
via standardization or IP weighting.) It was later discovered that the ambrosia had been contaminated by a flock of
doves, which explains the increased risk summarized by both the causal risk ratio and the causal risk difference. We
now address the question ‘what fraction of the cases was attributable to consuming ambrosia?’

In this study we observed 8 cases, i.e., the observed risk was Pr[Y = 1] = 8/20 = 0.4. The risk that would have
been observed if everybody had received a = 0 is Pr[Y%=Y = 1] = 0.1. The difference between these two risks is
0.4 — 0.1 = 0.3. That is, there is an excess 30% of the individuals who did fall ill but would not have fallen ill if
everybody in the population had received a = 0 rather than their treatment A. Because 0.3/0.4 = 0.75, we say that
75% of the cases are attributable to treatment a = 1: compared with the 8 observed cases, only 2 cases would have
occurred if everybody had received a = 0. This excess fraction or attributable fraction is defined as

Pr[Y =1] — Pr[ye=0 = 1]
Pry =1]

See Fine Point 5.4 for a discussion of the excess fraction in the context of the sufficient-component-cause framework.

The excess fraction is generally different from the etiologic fraction , another version of the attributable fraction which
is defined as the proportion of cases mechanically caused by exposure. For example, suppose the untreated (A = 0)
would have had 7 cases if they have been treated, but these 7 cases would not have contained the 1 untreated case that
actually occurred, i.e., treatment produces 7 cases but prevents 1 case. Also suppose that, if untreated, the treated
would have had only 1 case but different from the 7 cases they actually had. Then the excess fraction would not be
equal to the etiologic fraction. Here the excess fraction is a lower bound on the etiologic fraction. Because the etiologic
fraction does not rely on the concept of excess cases, it can only be computed in randomized experiments under strong
assumptions. See Greenland and Robins, 1988 and Robins and Greenland, 1989.

the association between obesity and mortality is an interesting hypothesis-
generating exercise and a motivation for further research (why does obesity
predict mortality anyway?), but the magnitude of the association does not
necessarily correspond to that of a causal effect.
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Chapter 4
EFFECT MODIFICATION

So far we have focused on the average causal effect in an entire population of interest. However, many causal
questions are about subsets of the population. Consider again the causal question “does one’s looking up at
the sky make other pedestrians look up too?” You might be interested in computing the average causal effect of
treatment—ryour looking up to the sky— in city dwellers and visitors separately, rather than the average effect in
the entire population of pedestrians.

The decision whether to compute average effects in the entire population or in a subset depends on the inferential
goals. In some cases, you may not care about the variations of the effect across different groups of individuals.
For example, suppose you are a policy maker considering the possibility of implementing a nationwide water
fluoridation program. Because this public health intervention will reach all households in the population, your
primary interest is in the average causal effect in the entire population, rather than in particular subsets. You will
be interested in characterizing how the causal effect varies across subsets of the population when the intervention
can be targeted to different subsets, or when the findings of the study need to be applied to other populations.

This chapter emphasizes that there is not such a thing as the causal effect of treatment. Rather, the causal
effect depends on the characteristics of the particular population under study.

4.1 Heterogeneity of treatment effects

Table 4.1 We started this book by computing the average causal effect of heart trans-
VY9 VI plant A on death Y in a population of 20 members of Zeus’s extended family.
Rheia 1 0 1 We used the data in Table 1.1, whose columns show the individual values
Demeter 1 0 o0 of the (generally unobserved) counterfactual outcomes Y%=° and Y*=!. Af-
Hestia 1 0 0 ter examining the data in Table 1.1, we concluded that the average causal
Hera 1 0 0 effect was null. Half of the members of the population would have died if
Artemis 1 1 1 everybody had received a heart transplant, Pr[Y*=! = 1] = 10/20 = 0.5,
Leto 1 0 1 and half of the members of the population would have died if nobody had re-
Athena 1 1 1 ceived a heart transplant, Pr[Y =% = 1] = 10/20 = 0.5. The causal risk ratio
Aphrodite 1 0 1 Pr[Ye=! = 1]/ Pr[Y?=0 = 1] was 0.5/0.5 = 1 and the causal risk difference
Persephone 1 1 1 Pr[Ye=! =1] — Pr[Y2=% = 1] was 0.5 — 0.5 = 0.
Hebe 1 1 0 We now consider two new causal questions: What is the average causal
Kronos 0 1 0 effect of A on Y in women? And in men? To answer these questions we
Hades 0 0 0 will use Table 4.1, which contains the same information as Table 1.1 plus an
Poseidon 0o 1 0 additional column with an indicator V for sex: V = 1 for females (referred
Zeus 0 0 1 to as women in this book) and V' = 0 for males (referred to as men). For
Apollo 0 1 0 convenience, we have rearranged the table so that women occupy the first 10
Ares 0 1 1 rows, and men the last 10 rows.
Hephaestus 0 0 1 Let us first compute the average causal effect in women. To do so, we need
Polyphemus 0 0 1 to restrict the analysis to the first 10 rows of the table with V = 1. In this
Hermes 0o 1 0 subset of the population, the risk of death under treatment is Pr[Y%=! = 1|V =
Dionysus 0o 1 0 1] = 6/10 = 0.6 and the risk of death under no treatment is Pr[Y*=0 = 1|V =

1] = 4/10 = 0.4. The causal risk ratio is 0.6/0.4 = 1.5 and the causal risk
difference is 0.6 — 0.4 = 0.2. That is, on average, heart transplant A increases
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Our use of the terms “man” and
“woman” in this chapter can be
viewed as a slight abuse of notation
because these deities are gods and
goddesses, not men and women.

See Section 6.6 for a structural clas-
sification of effect modifiers.

Additive effect modification:
E[Ye=! —ye=0|yV = 1] #
E[ye=! —ye=0|v = ()

Multiplicative effect modification:
E[Ye=l|lv=1] E[Y*=!|v=0]
E[Y*=0|V=1] # E[Y*=0|V=0]

We do not consider effect modifica-
tion on the odds ratio scale because
the odds ratio is rarely, if ever, the
parameter of interest for causal in-
ference.

Multiplicative, but not additive, ef-
fect modification by V:

Pr[y*=0 =1V =1]=0.8
Prlye=l =1V =1]=0.9
Pr[ye=0 =1V = 0] = 0.1
Pr[ye=t = 1|V = 0] = 0.2

Effect modification

the risk of death Y in women.

Let us next compute the average causal effect in men. To do so, we need
torestrict the analysis to the last 10 rows of the table with V' = 0. In this subset
of the population, the risk of death under treatment is Pr[Y*=1 = 1|V = 0] =
4/10 = 0.4 and the risk of death under no treatment is Pr[Y*=0 = 1|V = (0] =
6/10 = 0.6. The causal risk ratio is 0.4/0.6 = 2/3 and the causal risk difference
is 0.4 — 0.6 = —0.2. That is, on average, heart transplant A decreases the risk
of death Y in men.

Our example shows that a null average causal effect in the population does
not imply a null average causal effect in a particular subset of the population.
In Table 4.1, the null hypothesis of no average causal effect is true for the
entire population, but not for men or women when taken separately. It just
happens that the average causal effects in men and in women are of equal
magnitude but in opposite direction. Because the proportion of each sex is
50%, both effects cancel out exactly when considering the entire population.
Although exact cancellation of effects is probably rare, heterogeneity of the
individual causal effects of treatment is often expected because of variations in
individual susceptibilities to treatment. An exception occurs when the sharp
null hypothesis of no causal effect is true. Then no heterogeneity of effects
exists because the effect is null for every individual and thus the average causal
effect in any subset of the population is also null.

We are now ready to provide a definition of effect modifier. We say that V'
is a modifier of the effect of A on Y when the average causal effect of A on Y
varies across levels of V. Since the average causal effect can be measured using
different effect measures (e.g., risk difference, risk ratio), the presence of effect
modification depends on the effect measure being used. For example, sex V
is an effect modifier of the effect of heart transplant A on mortality Y on the
additive scale because the causal risk difference varies across levels of V. Sex
V is also an effect modifier of the effect of heart transplant A on mortality Y
on the multiplicative scale because the causal risk ratio varies across levels of
V. We only consider variables V that are not affected by treatment A as effect
modifiers.

In Table 4.1 the causal risk ratio is greater than 1 in women (V = 1) and
less thanl in men (V = 0). Similarly, the causal risk difference is greater
than 0 in women (V' = 1) and less than0 in men (V = 0). That is, there is
qualitative effect modification because the average causal effects in the subsets
V =1 and V = 0 are in the opposite direction. In the presence of qualitative
effect modification, additive effect modification implies multiplicative effect
modification, and vice versa. In the absence of qualitative effect modification,
however, one can find effect modification on one scale (e.g., multiplicative) but
not on the other (e.g., additive). To illustrate this point, suppose that, in a
second study, we computed the quantities shown to the left of this line. In
this study, there is no additive effect modification by V because the causal
risk difference among individuals with V' = 1 equals that among individuals
with V =0, ie., 0.9 — 0.8 = 0.1 = 0.2 — 0.1. However, in this study there
is multiplicative effect modification by V because the causal risk ratio among
individuals with V' = 1 differs from that among individuals with V' = 0, i.e.,
0.9/0.8 =1.1 #0.2/0.1 = 2. Since one cannot generally state that there is, or
there is not, effect modification without referring to the effect measure being
used (e.g., risk difference, risk ratio), some authors use the term effect-measure
modification, rather than effect modification, to emphasize the dependence of
the concept on the choice of effect measure.
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4.2 Stratification to identify effect modification

Stratification: the causal effect of
A on Y is computed in each stra-
tum of V. For dichotomous V/, the
stratified causal risk differences are:

Prlye=t = 1|V = 1]—
Pr[ye=0 =1V = 1]
and

Prlye=t =1V = 0]-
Pr[ye=0 =1V = (]

Table 4.2
Stratum V =0

Cybele
Saturn
Ceres
Pluto
Vesta
Neptune
Juno
Jupiter
Diana
Phoebus
Latona
Mars
Minerva
Vulcan
Venus
Seneca
Proserpina
Mercury
Juventas
Bacchus
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A stratified analysis is the natural way to identify effect modification. To
determine whether V' modifies the causal effect of A on Y, one computes the
causal effect of A on Y in each level (stratum) of the variable V. In the
previous section, we used the data in Table 4.1 to compute the causal effect
of transplant A on death Y in each of the two strata of sex V. Because
the causal effect differed between the two strata (on both the additive and the
multiplicative scale), we concluded that there was (additive and multiplicative)
effect modification by V of the causal effect of A on Y.

But the data in Table 4.1 are not the typical data one encounters in real
life. Instead of the two columns with each individual’s counterfactual outcomes
Y=l and Y°=0, one will find two columns with each individual’s treatment
level A and observed outcome Y. How does the unavailability of the counter-
factual outcomes affect the use of stratification to detect effect modification?
The answer depends on the study design.

Consider first an ideal marginally randomized experiment. In Chapter 2
we demonstrated that, leaving aside random variability, the average causal ef-
fect of treatment can be computed using the observed data. For example, the
causal risk difference Pr[Y*=! = 1] — Pr[Y%=" = 1] is equal to the observed
associational risk difference Pr[Y = 1|A = 1] — Pr[Y = 1|A = 0]. The same
reasoning can be extended to each stratum of the variable V because, if treat-
ment assignment was random and unconditional, exchangeability is expected
in every subset of the population. Thus the causal risk difference in women,
Pr[Ye=! = 1|V = 1] — Pr[Y*=% = 1|V = 1], is equal to the associational risk
difference in women, Pr[Y = 1|A =1,V =1] - Pr[Y =1|A =0,V =1]. And
similarly for men. Thus, to identify effect modification by V in an ideal exper-
iment with unconditional randomization, one just needs to conduct a stratified
analysis, i.e., to compute the association measure in each level of the variable
V. Stratification can be used to compute average causal effects in subsets of
the population, but not individual effects (see Fine Points 2.1 and 3.2).

Consider now an ideal randomized experiment with conditional randomiza-
tion. In a population of 40 people, transplant A has been randomly assigned
with probability 0.75 to those in severe condition (L = 1), and with probabil-
ity 0.50 to the others (L = 0). The 40 individuals can be classified into two
nationalities according to their passports: 20 are Greek (V = 1) and 20 are
Roman (V = 0). The data on L, A, and death Y for the 20 Greeks are shown
in Table 2.2 (same as Table 3.1). The data for the 20 Romans are shown in
Table 4.2. The population risk under treatment, Pr[Y %=1 = 1], is 0.55, and
the population risk under no treatment, Pr[Y*=° = 1], is 0.40. (Both risks
are readily calculated by using either standardization or IP weighting. We
leave the details to the reader.) The average causal effect of transplant A
on death Y is therefore 0.55 — 0.40 = 0.15 on the risk difference scale, and
0.55/0.40 = 1.375 on the risk ratio scale. In this population, heart transplant
increases the mortality risk.

As discussed in the previous chapter, the calculation of the causal effect
would have been the same if the data had arisen from an observational study
in which we believe that conditional exchangeability Y® 1L A|L holds.

We now discuss how to conduct a stratified analysis to investigate whether
nationality V modifies the effect of A on Y. The goal is to compute the causal
effect of A onY in the Greeks, Pr[Y?=! = 1|V = 1] - Pr[Y*=% = 1|V = 1], and
in the Romans, Pr[Y =1 = 1|V = 0] — Pr[Y%=% = 1|V = 0]. If these two causal
risk differences differ, we will say that there is additive effect modification by
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Fine Point 4.1

Effect in the treated. This chapter is concerned with average causal effects in subsets of the population. One particular
subset is the treated (A = 1). The average causal effect in the treated is not null if Pr[Y 2= = 1|4 = 1] # Pr[Y*=0 =
1]A = 1] or, by consistency, if

PrlY = 1|]A = 1] # Pr[Y*=0 = 1|4 = 1].

That is, there is a causal effect in the treated if the observed risk among the treated individuals does not equal the
counterfactual risk had the treated individuals been untreated. The causal risk difference in the treated is Pr[Y = 1|4 =
1] — Pr[Y*=% = 1]A = 1]. The causal risk ratio in the treated, also known as the standardized morbidity ratio (SMR),
is Pr[Y = 1|4 = 1]/ Pr[Y%=° = 1]A = 1]. The causal risk difference and risk ratio in the untreated are analogously
defined by replacing A =1 by A = 0. Figure 4.1 shows the groups that are compared when computing the effect in the
treated and the effect in the untreated.

The average effect in the treated will differ from the average effect in the population if the distribution of individual
causal effects varies between the treated and the untreated. That is, when computing the effect in the treated, treatment
group A = 1 is used as a marker for the factors that are truly responsible for the modification of the effect between
the treated and the untreated groups. However, even though one could say that there is effect modification by the
pre-treatment variable V' even if V is only a surrogate (e.g., nationality) for the causal effect modifiers, one would not
say that there is modification of the effect A by treatment A because it sounds confusing. The effect modification is
by unidentified variables that have a different distribution between the treatment groups.

See Section 6.6 for a graphical representation of true and surrogate effect modifiers. The bulk of this book is focused
on the causal effect in the population because the causal effect in the treated, or in the untreated, cannot be directly
generalized to time-varying treatments (see Part Ill).

V. And similarly for the causal risk ratios if interested in multiplicative effect
modification.

The procedure to compute the conditional risks Pr[Y2=! = 1|V = v] and
Pr[Y?=0 = 1|V = v] in each stratum v has two stages: 1) stratification by
V', and 2) standardization by L (or, equivalently, IP weighting with weights

Step 2 can be ignored when V is  depending on L). We computed the standardized risks in the Greek stratum

equal to the variables L that are (V = 1) in Chapter 2: the causal risk difference was 0 and the causal risk

needed for conditional exchange- ratio was 1. Using the same procedure in the Roman stratum (V' = 0), we can

ability (see Section 4.4). compute the risks Pr[Y %=1 = 1|V = 0] = 0.6 and Pr[Y*=" = 1|V = 0] = 0.3.
(Again, we leave the details to the reader.) Therefore, the causal risk difference
is 0.3 and the causal risk ratio is 2 in the stratum V = 0. Because these effect
measures differ from those in the stratum V = 1, we say that there is both
additive and multiplicative effect modification by nationality V of the effect of
transplant A on death Y. This effect modification is not qualitative because
the effect is harmful or null in both strata V =0 and V = 1.

We have shown that, in our study population, nationality V modifies the
effect of heart transplant A on the risk of death Y. However, we have made no
claims about the causal mechanisms involved in such effect modification. In
fact, it is possible that nationality is simply a marker for the causal factor that
is truly responsible for the modification of the effect. For example, suppose
that the quality of heart surgery is better in Greece than in Rome. One would
then find effect modification by nationality. An intervention to improve the
quality of heart surgery in Rome could eliminate the modification of the causal

See Section 6.6 for a graphical rep-  effect by passport-defined nationality. Whenever we want to emphasize this
resentation of surrogate and causal  distinction, we will refer to nationality as a surrogate effect modifier, and to
effect modifiers. quality of care as a causal effect modifier.

Therefore, our use of the term effect modification by V' does not necessarily
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Figure 4.1

imply that V plays a causal role in the modification of the effect. To avoid
potential confusions, some authors prefer to use the more neutral term “effect
heterogeneity across strata of V7 rather than “effect modification by V.” The
next chapter introduces “interaction,” a concept related to effect modification,
that does attribute a causal role to the variables involved.

Population of interest

Treated Untreated
Effect in the treated Effect in the untreated

-4 D)

E[Y4 = 1] E[Y*4 = 1] E[Y*'|4 = 0] E[Y]4 = 0]

4.3 Why care about effect modification

There are several related reasons why investigators are interested in identifying
effect modification, and why it is important to collect data on pre-treatment
descriptors V' even in randomized experiments.

First, if a factor V' modifies the effect of treatment A on the outcome Y
then the average causal effect will differ between populations with different
prevalence of V. For example, the average causal effect in the population of
Table 4.1 is harmful in women and beneficial in men, i.e., there is qualitative
effect modification. Because there are 50% of individuals of each sex and the
sex-specific harmful and beneficial effects are equal but of opposite sign, the
average causal effect in the entire population is null. However, had we con-
ducted our study in a population with a greater proportion of women (e.g.,
graduating college students), the average causal effect in the entire population
would have been harmful. In the presence of non-qualitative effect modifica-
tion, the magnitude, but not the direction, of the average causal effect may
vary across populations. As examples of non-qualitative effect modification,
consider the effects of asbestos exposure (which differ between smokers and
nonsmokers) and of universal health care (which differ between low-income
and high-income families).

That is, the average causal effect in a population depends on the distribu-
tion of individual causal effects in the population. There is generally no such
a thing as “the average causal effect of treatment A on outcome Y (period)”,
but “the average causal effect of treatment A on outcome Y in a population
with a particular mix of causal effect modifiers.”
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Effect modification

Technical Point 4.1

Computing the effect in the treated. We computed the average causal effect in the population under conditional
exchangeability Y* Ll A|L for both « = 0 and a = 1. Computing the average causal effect in the treated only requires
partial exchangeability Y*=9 1L A|L. In other words, it is irrelevant whether the risk in the untreated, had they been
treated, equals the risk in those who were actually treated. The average causal effect in the untreated is computed
under the partial exchangeability condition Y%= 1L A|L.

We now describe how to compute counterfactual means of the form E [Y%|A = a'] under the above assumptions of
partial exchangeability. We do so via standardization and via IP weighting:

e Standardization: E[Y*|A = a/] is equal to Y} E[Y|A=a,L =1]Pr[L =1]A = d']. See Miettinen (1972) and
]

Greenland and Rothman (2008) for a discussion of standardized risk ratios.

o IP weighting: E[Y?|A = a'] is equal to the IP weighted mean

Pr[A = d|L]
f(A|L)

E [m Pr[A= a/|L}]

with weights

. For dichotomous A, this equality was derived by Sato and Matsuyama (2003). See Herndn and

Robins (2006a) for further details.

Some refer to lack of transportabil-
ity as lack of external validity.

Herndn and VanderWeele (2011),
Pearl and Bareinboim (2014), Da-
habreh and Herndn (2019), and
others have discussed effect mod-
ification in relation to transporting
inferences across populations.

A setting in which transportabil-
ity may not be an issue: Smith
and Pell (2003) could not identify
any major modifiers of the effect of
parachute use on death after “grav-
itational challenge” (e.g., jumping
from an airplane at high altitude).
They concluded that conducting
randomized trials of parachute use
restricted to a particular group of
people would not compromise the
transportability of the findings to
other groups.

The extrapolation of causal effects computed in one population to a second
population is referred to as transportability of causal inferences across popula-
tions (see Fine Point 4.2). In our example, the causal effect of heart transplant
A on risk of death Y differs between men and women, and between Romans
and Greeks. Thus the average causal effect in this population may not be trans-
portable to other populations with a different distribution of effect modifiers
such as sex and nationality.

Conditional causal effects in the strata defined by the effect modifiers may
be more transportable than the causal effect in the entire population, but
there is no guarantee that the conditional effect measures in one population
equal the conditional effect measures in another population. This is so be-
cause there could be other unmeasured, or unknown, causal effect modifiers
whose conditional distributions vary between the two populations (or for other
reasons described in Fine Point 4.2). These unmeasured effect modifiers are
not variables needed to achieve exchangeability, but just risk factors for the
outcome. Therefore, transportability of effects across populations is a more
difficult problem than the identification of causal effects in a single population:
one would need to stratify not just on all those things required to achieve ex-
changeability (which you might have information about, say, by interviewing
those who decide how to allocate the treatment) but on unmeasured causes of
the outcome for which there is much less information.

Hence, transportability of causal effects is an unverifiable assumption that
relies heavily on subject-matter knowledge. For example, most experts would
agree that the health effects (on either the additive or multiplicative scale) of
increasing a household’s annual income by $100 in Niger cannot be transported
to the Netherlands, but most experts would agree that the health effects of use
of cholesterol-lowering drugs in Europeans can be transported to Canadians.

Second, evaluating the presence of effect modification is helpful to identify
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Several authors (e.g., Blot and
Day, 1979; Rothman et al., 1980;
Saracci, 1980) have referred to ad-
ditive effect modification as the one
of interest for public health pur-
poses.

the groups of individuals that would benefit most from an intervention. In
our example of Table 4.1, the average causal effect of treatment A on outcome
Y was null. However, treatment A had a beneficial effect in men (V' = 0),
and a harmful effect in women (V = 1). For example, if physicians knew that
there is qualitative effect modification by sex then, in the absence of additional
information, they would treat the next patient only if he happens to be a man.
The situation is slightly more complicated when, as in our second example,
there is multiplicative, but not additive, effect modification. Here treatment
reduces the risk of the outcome by 10% in individuals with V' = 0 and also
by 10% in individuals with V' = 1, i.e., there is no additive effect modification
by V because the causal risk difference is 0.1 in all levels of V. Thus, an
intervention to treat all patients would be equally effective in reducing risk in
both strata of V', despite the fact that there is multiplicative effect modification.
In fact, if there is a nonzero causal effect in at least one stratum of V and the
counterfactual risk Pr[Y =0 = 1|V = o] varies with v, then effect modification
is guaranteed on either the additive or the multiplicative scale.

Additive, but not multiplicative, effect modification is the appropriate scale
to identify the groups that will benefit most from intervention. In the absence
of additive effect modification, learning that there is multiplicative effect mod-
ification may not be very helpful for decision making.

In our second example, the presence of multiplicative effect modification
is expected because the risk under no treatment in the stratum V = 1 equals
0.8. Thus, the maximum possible causal risk ratio in the V' = 1 stratum is
1/0.8 = 1.25, which is guaranteed to differ from the causal risk ratio of 2 in the
V' = 0 stratum. In these situations, multiplicative effect modification arises
from the differences in risk under no treatment Pr[Y*=" = 1|V = v] across
levels of V. Therefore, as a general rule, it is more informative to report the
(absolute) counterfactual risks Pr[Y*=! = 1|V = v] and Pr[Y*=0 = 1|V = v]
in every level v of V, rather than simply their ratio or difference.

Finally, the identification of effect modification may help understand the
biological, social, or other mechanisms leading to the outcome. For example, a
greater risk of HIV infection in uncircumecised compared with circumcised men
may provide new clues to understand the disease. The identification of effect
modification may also be a first step towards characterizing the interactions
between two treatments. The terms “effect modification” and “interaction”
are sometimes used as synonymous in the scientific literature. This chapter
focused on “effect modification.” The next chapter describes “interaction” as
a causal concept that is related to, but different from, effect modification.

4.4 Stratification as a form of adjustment

Until this chapter, our only goal was to compute the average causal effect in
the entire population. In the absence of marginal randomization, achieving
this goal requires adjustment for the variables L that ensure conditional ex-
changeability of the treated and the untreated. For example, in Chapter 2 we
determined that the average causal effect of heart transplant A on mortality
Y was null, i.e., the causal risk ratio Pr [Y*=! =1] /Pr[Y*=0 =1] = 1. We
used the data in Table 2.2 to adjust for the factor L via both standardization
and IP weighting.

The present chapter adds another potential goal to the analysis: to identify
effect modification by variables V. To achieve this goal, we need to stratify by
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Fine Point 4.2

Transportability. Effects estimated in one population are often intended to make decisions in another population—the
target population. Can we “transport” the effect from the study population to the target population? The answer
depends on the characteristics of both populations. Specifically, transportability of causal effects across populations
may be justified if the following characteristics are similar between the two populations:

e Effect modification: The causal effect of treatment may differ across individuals with different susceptibility to
the outcome. For example, if women are more susceptible to the effects of treatment than men, we say that sex
is an effect modifier. The distribution of effect modifiers in a population will generally affect the magnitude of the
causal effect of treatment in that population. If the distribution of effect modifiers differs between populations,
then the magnitude of the causal effect of treatment will differ too.

e Versions of treatment: The causal effect of treatment depends on the distribution of versions of treatment in the
population. If this distribution differs between the study population and the target population, then the magnitude
of the causal effect of treatment will differ too (Hernan and Vanderweele, 2011).

e Interference: In the main text we focus on settings with no interference (Fine Point 1.1). Interference exists when
treating one individual affect the outcome of others in the population. For example, a socially active individual
may convince his friends to join him while exercising, and thus an intervention on that individual's physical activity
may be more effective than an intervention on a socially isolated individual. Therefore, different contact patterns
between populations will translate into causal effects of different magnitude.

A growing literature considers transportability methods that use data from the study population to estimate the causal
effect in the target population in the presence of effect modification (e.g., Westreich et al. 2017, Rudolph and van der
Laan 2017, Dahabreh et al. 2020b).

The transportability of causal inferences across populations may sometimes be improved by restricting our attention
to the average causal effects in the strata defined by the effect modifiers, or by using the stratum-specific effects in
the study population to reconstruct the average causal effect in the target population. For example, the four stratum-
specific effect measures (Roman women, Greek women, Roman men, and Greek men) in our population can be combined
in a weighted average to reconstruct the average causal effect in another population with a different mix of sex and
nationality. The weight assigned to each stratum-specific measure is the proportion of individuals in that stratum in the
second population. However, there is no guarantee that this reconstructed effect will coincide with the true effect in the
target population because of possible between-population differences in the distribution of unmeasured effect modifiers,
interference patterns, and distribution of versions of treatment.

V in addition to adjusting for L. For example, in this chapter we stratified by
nationality V' and adjusted for L to determine that the average causal effect
of heart transplant A on mortality Y differed between Greeks and Romans.
In summary, standardization (or IP weighting) is used to adjust for L and
stratification is used to identify effect modification by V.

But stratification is not always used to identify effect modification by V. In
practice stratification is often used as an alternative to standardization (and
IP weighting) to adjust for L. In fact, the use of stratification as a method
to adjust for L is so widespread that many investigators consider the terms
“stratification” and “adjustment” as synonymous. For example, suppose you
ask an epidemiologist to adjust for the factor L to compute the effect of heart
transplant A on mortality Y. Chances are that she will immediately split
Table 2.2 into two subtables—one restricted to individuals with L = 0, the
other to individuals with L = 1—and would provide the effect measure (say,
the risk ratio) in each of them. That is, she would calculate the risk ratios
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Under conditional exchangeability
given L, the risk ratio in the subset
L = [ measures the average causal
effect in the subset L = [ because,
if Yol A|L, then
PrlY=1A=a,L =0]=

Pr[Y* =1|L = 0]

When considering time-varying
treatments, stratum-specific ef-
fect measures may not have a
causal interpretation even under
exchangeability,  positivity, and
well-defined interventions (Robins
1986, 1987). See Chapter 20.

Stratification requires positivity in
addition to exchangeability: the
causal effect cannot be computed
in subsets L = in which there are
only treated, or untreated, individ-
uals.

PrY=1A=1,L=1]/Pr[Y=1A=0,L=1]=1for both!l=0and ! =1.

These two stratum-specific associational risk ratios can be endowed with a
causal interpretation under conditional exchangeability given L: they measure
the average causal effect in the subsets of the population defined by L = 0
and L = 1, respectively. They are conditional effect measures. In contrast
the risk ratio of 1 that we computed in Chapter 2 was a marginal (uncondi-
tional) effect measure. In this particular example, all three risk ratios—the
two conditional ones and the marginal one—happen to be equal because there
is no effect modification by L. Stratification necessarily results in multiple
stratum-specific effect measures (one per stratum defined by the variables L).
Each of them quantifies the average causal effect in a nonoverlapping subset
of the population but, in general, none of them quantifies the average causal
effect in the entire population. Therefore, we did not consider stratification
when describing methods to compute the average causal effect of treatment in
the population in Chapter 2. Rather, we focused on standardization and IP
weighting.

In addition, unlike standardization and IP weighting, adjustment via strat-
ification requires computing the effect measures in subsets of the population
defined by a combination of all variables L that are required for conditional
exchangeability. For example, when using stratification to estimate the effect
of heart transplant in the population of Tables 2.2 and 4.2, one must compute
the effect in Romans with L = 1, in Greeks with L = 1, in Romans with L = 0,
and in Greeks with L = 0; but one cannot compute the effect in Romans by
simply computing the association in the stratum V = 0 because nationality V,
by itself, is insufficient to guarantee conditional exchangeability.

That is, the use of stratification forces one to evaluate effect modification
by all variables L required to achieve conditional exchangeability, regardless of
whether one is interested in such effect modification. In contrast, stratification
by V followed by IP weighting or standardization to adjust for L allows one
to deal with exchangeability and effect modification separately, as described
above.

Other problems associated with the use of stratification are noncollapsi-
bility of certain effect measures like the odds ratio (see Fine Point 4.3) and
inappropriate adjustment that leads to bias when, in the case for time-varying
treatments, it is necessary to adjust for time-varying variables L that are af-
fected by prior treatment (see Part III).

Sometimes investigators compute the causal effect in only some of the strata
defined by the variables L. That is, no stratum-specific effect measure is com-
puted for some strata. This form of stratification is known as restriction.
For causal inference, stratification is simply the application of restriction to
several comprehensive and mutually exclusive subsets of the population, with
exchangeability within each of these subsets. When positivity fails in some
strata of the population, restriction is used to limit causal inference to those
strata of the original population in which positivity holds (see Chapter 3).

4.5 Matching as another form of adjustment

Matching is another adjustment method. The goal of matching is to construct a
subset of the population in which the variables L have the same distribution in
both the treated and the untreated. As an example, take our heart transplant
example in Table 2.2 in which the variable L is sufficient to achieve conditional
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Our discussion on matching applies
to cohort studies only. In case-
control designs (briefly discussed in
Chapter 8), we often match cases
and non-cases (i.e., controls) rather
than the treated and the untreated.
Even if the matching factors suf-
fice for conditional exchangeabil-
ity, matching in cases and controls
does not achieve unconditional ex-
changeability of the treated and the
untreated in the matched popula-
tion. Adjustment for the matching
factors via stratification is required
to estimate conditional (stratum-
specific) effect measures.

As the number of matching fac-
tors increases, so does the proba-
bility that no exact matches exist
for an individual. There is a vast
literature, beyond the scope of this
book, on how to find approximate
matches in those settings. See Stu-
art (2010) for an introduction.

Effect modification

exchangeability. For each untreated individual in non critical condition (A4 =
0, L = 0) randomly select a treated individual in non critical condition (A =
1, L = 0), and for each untreated individual in critical condition (A =0,L = 1)
randomly select a treated individual in critical condition (A = 1,L = 1). We
refer to each untreated individual and her corresponding treated individual as a
matched pair, and to the variable L as the matching factor. Suppose we formed
the following 7 matched pairs: Rheia-Hestia, Kronos-Poseidon, Demeter-Hera,
Hades-Zeus for L = 0, and Artemis-Ares, Apollo-Aphrodite, Leto-Hermes for
L = 1. All the untreated, but only a sample of treated, in the population
were selected. In this subset of the population comprised of matched pairs, the
proportion of individuals in critical condition (L = 1) is the same, by design,
in the treated and in the untreated (3/7).

To construct our matched population we replaced the treated in the pop-
ulation by a subset of the treated in which the matching factor L had the
same distribution as that in the untreated. Under the assumption of condi-
tional exchangeability given L, the result of this procedure is (unconditional)
exchangeability of the treated and the untreated in the matched population.
Because the treated and the untreated are exchangeable in the matched popu-
lation, their average outcomes can be directly compared: the risk in the treated
is 3/7, the risk in the untreated is 3/7, and hence the causal risk ratio is 1. Note
that matching ensures positivity in the matched population because strata with
only treated, or untreated, individuals are excluded from the analysis.

Often one chooses the group with fewer individuals (the untreated in our
example) and uses the other group (the treated in our example) to find their
matches. The chosen group defines the subpopulation on which the causal
effect is being computed. In the previous paragraph we computed the effect in
the untreated. In settings with fewer treated than untreated individuals across
all strata of L, we generally compute the effect in the treated. Also, matching
needs not be one-to-one (matching pairs), but it can be one-to-many (matching
sets).

In many applications, L is a vector of several variables. Then, for each
untreated individual in a given stratum defined by a combination of values of
all the variables in L, we would have randomly selected one (or several) treated
individual(s) from the same stratum.

Matching can be used to create a matched population with any chosen
distribution of L, not just the distribution in the treated or the untreated. The
distribution of interest can be achieved by individual matching, as described
above, or by frequency matching. An example of the latter is a study in which
one randomly selects treated individuals in such a way that 70% of them have
L =1, and then repeats the same procedure for the untreated.

Because the matched population is a subset of the original study population,
the distribution of causal effect modifiers in the matched study population
will generally differ from that in the original, unmatched study population, as
discussed in the next section.

4.6 Effect modification and adjustment methods

Standardization, IP weighting, stratification/restriction, and matching are dif-
ferent approaches to estimate average causal effects, but they estimate different
types of causal effects. These four approaches can be divided into two groups
according to the type of effect they estimate: standardization and IP weight-
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Technical Point 4.2

Pooling of stratum-specific effect measures. Until Chapter 10, we avoid statistical considerations by assuming that
we work with the entire population rather than with a sample. Thus we talk about computing causal effects rather than
about (consistently) estimating them. In practice, however, we can rarely compute causal effects in the population. We
estimate them from samples and wish to obtaining reasonably narrow confidence intervals around our effect estimates.

When dealing with stratum-specific effect measures, a common approach to reduce the variability of the estimates
is to combine all stratum-specific effect measures into one pooled stratum-specific effect measure. The idea is that, if
there is no effect-measure modification, the pooled effect measure will be a more precise estimate of the common effect
measure than each of the stratum-specific effect measures. Pooling methods (e.g., Woolf, Mantel-Haenszel, maximum
likelihood) sometimes compute a weighted average of the stratum-specific effect measures with weights chosen to reduce
the variability of the pooled estimate. Greenland and Rothman (2008) review some commonly used methods for stratified
analysis. Pooled effect measures can also be computed using regression models that include all possible product terms
between all covariates L, but no product terms between treatment A and covariates L, i.e., models saturated (see
Chapter 11) with respect to L.

The main goal of pooling is to obtain a narrower confidence interval around the common stratum-specific effect
measure, but the pooled effect measure is still a conditional effect measure. In our heart transplant example, the pooled
stratum-specific risk ratio (Mantel-Haenszel method) was 0.88 for the outcome Z. This result is only meaningful if
the stratum-specific risk ratios 2 and 0.5 are indeed estimates of the same stratum-specific causal effect. For example,
suppose that the causal risk ratio is 0.9 in both strata but, because of the small sample size, we obtained estimates of
0.5 and 2.0. In that case, pooling would be appropriate and the Mantel-Haenszel risk ratio would be closer to the truth
than either of the stratum-specific risk ratios. Otherwise, if the causal stratum-specific risk ratios are truly 0.5 and 2.0,
then pooling makes little sense and the Mantel-Haenszel risk ratio could not be easily interpreted. The same issues arise
in meta-analyses of studies with heterogeneous treatment effects (Dahabreh et al. 2020a).

In practice, it is not always obvious to determine whether the heterogeneity of the effect measure across strata is
due to sampling variability or to effect-measure modification. The finer the stratification, the greater the uncertainty
introduced by random variability.

Table 4.3 ing can be used to compute either marginal or conditional effects, stratifica-
L A Z tion/restriction and matching can only be used to compute conditional effects

Rheia 0 0 0 in certain subsets of the population. All four approaches require exchangeabil-
Kronos 0 0 1 ity and positivity but the subsets of the population in which these conditions
Demeter 0 0 0 need to hold depend on the causal effect of interest. For example, to compute
Hades 0 0 0 the conditional effect among individuals with L = [, any of the above meth-
Hestia 0 1 0 ods requires exchangeability and positivity in that subset only; to estimate
Poseidon 0 1 0 the marginal effect in the entire population, exchangeability and positivity are
Hera 0 1 1 required in all levels of L.
Zeus i 0 1 1 In the absence of effect modification, the effect measures (risk ratio or risk
Artemis 1.0 1 difference) computed via these four approaches will be equal. For example,
Apollo 1.0 1 we concluded that the average causal effect of heart transplant A on mortality
Leto 10 0 Y was null both in the entire population of Table 2.2 (standardization and IP
Ares 11 1 weighting), in the subsets of the population in critical condition L = 1 and non
Athena 111 critical condition L = 0 (stratification), and in the untreated (matching). All
Hephae_stus 111 methods resulted in a causal risk ratio equal to 1. However, the effect measures
Aphrodite 110 computed via these four approaches will not generally be equal. To illustrate
Polyphemus 110 how the effects may vary, let us compute the effect of heart transplant A on
Persephone 1 1 0 high blood pressure Z (1: yes, 0 otherwise) using the data in Table 4.3. We
Hermes 1 1.0 assume that exchangeability Z¢ 1l A|L and positivity hold. We use the risk
Hgbe 1 1.0 ratio scale for no particular reason.
Dionysus 1 1 0

Standardization and IP weighting yield the average causal effect in the
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Technical Point 4.3

Relation between marginal and conditional causal risk ratios. Suppose we wish to determine under which
conditions the marginal risk ratio Pr [Y“Zl = 1] / Pr [Yﬂzo = 1] will be less than 1 given that we know the
values of the conditional risk ratios Pr[Y*=' =1|L =] /Pr[Y*=% =1|L =] for each stratum I. To do so,
note that Pr[Ye=! =1] /Pr[Y*=" =1] = ¥ {Pr[Y*=' =1L =] /Pr[Y*=" =1L =]} w(l), with w(l) =
{Pr[ye=0=1|L =] Pr[L=1]} /Pr[Y*=0 =1] and >, w(l) = 1. Substituting for w (1) and w (0) followed by
some algebraic manipulations will provide the condition under which the inequality Pr [Y*=! = 1] /Pr [Y*=0 =1] < 1
holds.

In our data example, Pr[Y*=! =1|L =1] /Pr[Y*=0 =1|L=1] is 0.5 for L = 1 and 2.0 for L = 0. There-
fore the marginal risk ratio will be less than 1 if and only if Pr[Y®=0=1|L=1]/Pr[Y*="=1|L=0] >
2Pr[L=0]/Pr[L=1].

entire population Pr[Z%=1 = 1]/ Pr[Z%=% = 1] = 0.8 (these and the following
Table 4.4 calculations are left to the reader). Stratification yields the conditional causal
risk ratios Pr[Z%=1 = 1|L = 0]/ Pr[Z%=" = 1|L = 0] = 2.0 in the stratum L =

Rheia ‘{ 61 }(; 0, and Pr[Z%=t = 1|L = 1]/ Pr[Z%=° = 1|L = 1] = 0.5 in the stratum L = 1.
Demeter 1 0 0 Matching, using the matched pairs selected in the previous section, yields the
Hestia 1 0 0 causal risk ratio in the untreated Pr[Z°=! = 1|A = 0]/ Pr[Z = 1|A = 0] = 1.0.
Hera 1 0 0 We have computed four causal risk ratios and have obtained four different
Artemis 1 0 1 numbers: 0.8, 2.0, 0.5, and 1.0. All of them are correct. Leaving aside random
Leto 1 1 0 variability (see Technical Point 4.2), the explanation of the differences is qual-
Athena 1 1 1 itative effect modification: Treatment doubles the risk among individuals in
Aphrodite 1 1 1 noncritical condition (L = 0, causal risk ratio 2.0) and halves the risk among
Persephone 1 1 0 individuals in critical condition (L = 1, causal risk ratio 0.5). The average
Hebe 1 1 1 causal effect in the population (causal risk ratio 0.8) is beneficial because the
Kronos 0 0 0 ratio Pr [Z“ZO =1L = 1] /Pr [Z“ZO =1L = 0] of the counterfactual risk un-
Hades 0 0 0 der no treatment in the critical group to that in the noncritical group exceeds
Poseidon 0o o0 1 2 times the odds Pr[L = 0] /Pr[L = 1] of being in the noncritical group (see
Zeus 0o 0 1 Technical Point 4.3). The causal effect in the untreated is null (causal risk ratio
Apollo 0 0 0 1.0), which reflects the larger proportion of individuals in noncritical condition
Ares 0 1 1 in the untreated compared with the entire population. This example high-
Hephaestus 0 1 1 lights the primary importance of specifying the population, or the subset of a
Polyphemus 0 1 1 population, to which the effect measure corresponds.

Hermes 0O 1 0 The previous chapter argued that a well-defined causal effect is a prereq-
Dionysus 0 1 1 uisite for meaningful causal inference. This chapter argues that a well charac-

terized target population is another such prerequisite. Both prerequisites are
automatically present in experiments that compare two or more interventions
Part Il describes how standardiza- in a population that meets certain a priori eligibility criteria. However, these
tion, IP weighting, and stratifica- prerequisites cannot be taken for granted in observational studies. Rather, in-
tion can be used in combination  vestigators conducting observational studies need to explicitly define the causal
with parametric or semiparametric  effect of interest and the subset of the population in which the effect is being
models. For example, standard re- computed. Otherwise, misunderstandings might easily arise when effect mea-
gression models are a form of strati-  sures obtained via different methods are different.

fication in which the association be- In our example above, one investigator who used IP weighting (and com-
tween treatment and outcome ises-  puted the effect in the entire population) and another one who used matching
timated within levels of all the other  (and computed the effect in the untreated) need not engage in a debate about
covariates in the model. the superiority of one analytic approach over the other. Their discrepant effect
measures result from the different causal question asked by each investigator
rather than from their choice of analytic approach. In fact, the second investi-
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gator could have used IP weighting to compute the effect in the untreated or
in the treated (see Technical Point 4.1).

A final note. Stratification can be used to compute average causal effects
in subsets of the population, but not individual (subject-specific) effects. As
we have discussed earlier, individual causal effects can only be identified under
extreme assumptions. See Fine Points 2.1 and 3.2.



56 Effect modification

Fine Point 4.3

Collapsibility and the odds ratio. In the absence of multiplicative effect modification by V/, the causal risk ratio in
the entire population, Pr[Y %=1 = 1]/ Pr[Y*=? = 1] is equal to the conditional causal risk ratios Pr[Y*=! = 1|V =
v]/ Pr[Y?=0 = 1|V = v] in every stratum v of V. More generally, the causal risk ratio is a weighted average of the
stratum-specific risk ratios. For example, if the causal risk ratios in the strata V =1 and V = 0 were equal to 2 and 3,
respectively, then the causal risk ratio in the population would be greater than 2 and less than 3. That the value of the
causal risk ratio (and the causal risk difference) in the population is always constrained by the range of values of the
stratum-specific risk ratios is not only obvious but also a desirable characteristic of any effect measure.

Now consider a hypothetical effect measure (other than the risk ratio or the risk difference) such that the population
effect measure were not a weighted average of the stratum-specific measures. That is, the population effect measure
would not necessarily lie inside of the range of values of the stratum-specific effect measures. Such effect measure would
be an odd one. The odds ratio (pun intended) is such an effect measure, as we now discuss.

Suppose the data in Table 4.4 were collected to compute the causal effect of altitude A on depression Y in a population
of 20 individuals who were not depressed at baseline. The treatment A is 1 if the individual moved to a high altitude
residence (on the top of Mount Olympus), 0 otherwise; the outcome Y is 1 if the individual subsequently developed
depression, 0 otherwise; and V' is 1 if the individual was a woman, 0 if a man. The decision to move was random,
i.e., those more prone to develop depression were as likely to move as the others; effectively Y1l A. Therefore the
risk ratio Pr[Y = 1|A = 1]/ Pr[Y = 1|A = 0] = 2.3 is the causal risk ratio in the population, and the odds ratio

— — — — a=1 __ a=1 __
Prly = 1A =1/ PeV =0l A = 1] _ 5.4 is the causal odds ratio Prly — L/ PrlY — 0)
Pr[Y =1]A=0]/Pr[Y = 0|A = 0] Pr[Ye=0 = 1]/ Pr[Y*=0 = (]
The risk ratio and the odds ratio measure the same causal effect on different scales.

Let us now compute the sex-specific causal effects on the risk ratio and odds ratio scales. The (conditional) causal

risk ratio Pr[Y = 1|V = v, A = 1]/Pr[Y = 1]V = v,A = 0] is 2 for men (V =0) and 3 for women (V =1).
PrlY =1|V=v,A=1]/Pr[Y =0V =v,A=1] .
e[ — 1|V =0, A= 0]/ Py =0V =0, A=0] is 6 for men (V' = 0) and 6 for
women (V' = 1). The causal risk ratio in the population, 2.3, is in between the sex-specific causal risk ratios 2 and 3. In
contrast, the causal odds ratio in the population, 5.4, is smaller (i.e., closer to the null value) than both sex-specific odds
ratios, 6. The causal effect, when measured on the odds ratio scale, is bigger in each half of the population than in the
entire population. The population causal odds ratio can be closer to the null value than the non-null stratum-specific
causal odds ratio when V' is an independent risk factor for Y and, as in our randomized experiment, A is independent
of V' (Miettinen and Cook, 1981).

We say that an effect measure is collapsible when the population effect measure can be expressed as a weighted
average of the stratum-specific measures. In follow-up studies the risk ratio and the risk difference are collapsible effect
measures, but the odds ratio—or the rarely used odds difference—is not (Greenland 1987). The noncollapsibility of the
odds ratio, which is a special case of Jensen's inequality (Samuels 1981), may lead to counterintuitive findings like those
described above. The odds ratio is collapsible under the sharp null hypothesis—both the conditional and unconditional
effect measures are then equal to the null value—and it is approximately collapsible—and approximately equal to the
risk ratio—when the outcome is rare (say, < 10%) in every stratum of a follow-up study.

One important consequence of the noncollapsibility of the odds ratio is the logical impossibility of equating “lack of
exchangeability” and “change in the conditional odds ratio compared with the unconditional odds ratio.” In our example,
the change in odds ratio was about 10% (1 — 6/5.4) even though the treated and the untreated were exchangeable.
Greenland, Robins, and Pearl (1999) reviewed the relation between noncollapsibility and lack of exchangeability.

in the population.

The (conditional) causal odds ratio




Chapter 5
INTERACTION

Consider again a randomized experiment to answer the causal question “does one’s looking up at the sky make
other pedestrians look up too?” We have so far restricted our interest to the causal effect of a single treatment
(looking up) in either the entire population or a subset of it. However, many causal questions are actually about
the effects of two or more simultaneous treatments. For example, suppose that, besides randomly assigning your
looking up, we also randomly assign whether you stand in the street dressed or naked. We can now ask questions
like: what is the causal effect of your looking up if you are dressed? And if you are naked? If these two causal
effects differ we say that the two treatments under consideration (looking up and being dressed) interact in bringing
about the outcome.

When joint interventions on two or more treatments are feasible, the identification of interaction allows one
to implement the most effective interventions. Thus understanding the concept of interaction is key for causal
inference. This chapter provides a formal definition of interaction between two treatments, both within our already
familiar counterfactual framework and within the sufficient-component-cause framework.

5.1 Interaction requires a joint intervention

Suppose that in our heart transplant example, individuals were assigned to
receiving either a multivitamin complex (F = 1) or no vitamins (F = 0)
before being assigned to either heart transplant (A = 1) or no heart trans-
plant (A = 0). We can now classify all individuals into 4 treatment groups:
vitamins-transplant (E = 1, A = 1), vitamins-no transplant (£ =1, A = 0),
no vitamins-transplant (F = 0, A = 1), and no vitamins-no transplant (E = 0,
A = 0). For each individual, we can now imagine 4 potential or counterfac-
tual outcomes, one under each of these 4 treatment combinations: Ye=1e=1!
yoa=le=0_ya=0e=1"and Y*=%¢=0 In general, an individual’s counterfactual
outcome Y% is the outcome that would have been observed if we had inter-
vened to set the individual’s values of A and E to a and e, respectively. We

The counterfactual Y* correspond-
ing to an intervention on A alone
is the joint counterfactual Y*¢ if
the observed E takes the value e,
ie., Yo = Y%E |n fact, consis-
tency is a special case of this recur-
sive substitution. Specifically, the
observed Y = Y4 = Y4F  which
is our definition of consistency. See
also Technical Point 6.2.

refer to interventions on two or more treatments as joint interventions.

We are now ready to provide a definition of interaction within the coun-
terfactual framework. There is interaction between two treatments A and E
if the causal effect of A on Y after a joint intervention that set E to 1 differs
from the causal effect of A on Y after a joint intervention that set E to 0. For
example, there would be an interaction between transplant A and vitamins
E if the causal effect of transplant on survival had everybody taken vitamins
were different from the causal effect of transplant on survival had nobody taken
vitamins.

When the causal effect is measured on the risk difference scale, we say that
there is interaction betweenA and E on the additive scale in the population if

Pr[ye=te=t = 1]-Pr [Y*=%=t = 1] £ Pr [Y*=1=0 = 1]-Pr [Y*="=" = 1]

For example, suppose the causal risk difference for transplant A when ev-
erybody receives vitamins, Pr [Y*=1¢=1 = 1] — Pr [Y*=0¢=1 = 1], were 0.1,
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Interaction

and that the causal risk difference for transplant A when nobody receives vi-
tamins, Pr[Ye=1¢=0 = 1] — Pr [Y*=0¢=0 = 1], were 0.2. We say that there
is interaction between A and E on the additive scale because the risk dif-
ference Pr [Yo=1¢=1 = 1] — Pr [Y*=%:¢=! = 1] is less than the risk difference
Pr [ye=te=0 = 1] — Pr [Y*=%-¢=0 = 1]. Using simple algebra, it can be easily
shown that this inequality implies that the causal risk difference for vitamins E
when everybody receives a transplant, Pr [Ya:17€:1 = 1} —Pr [Y“:Lezo = 1},
is also less than the causal risk difference for vitamins E when nobody re-
ceives a transplant A, Pr [Y*=0¢=1 = 1] — Pr [Y*=%¢=0 = 1]. That is, we can
equivalently define interaction between A and E on the additive scale as

Pr[ye=te=t = 1]-Pr [Y*==0 = 1] # Pr [Y*=0=! = 1]-Pr [Y*=0=" = 1].

The two inequalities displayed above show that treatments A and E have equal
status in the definition of interaction.

Let us now review the difference between interaction and effect modifica-
tion. As described in the previous chapter, a variable V' is a modifier of the
effect of A on Y when the average causal effect of A on Y varies across levels of
V. Note the concept of effect modification refers to the causal effect of A, not
to the causal effect of V. For example, sex was an effect modifier for the effect
of heart transplant in Table 4.1, but we never discussed the effect of sex on
death. Thus, when we say that V modifies the effect of A we are not consid-
ering V and A as variables of equal status, because only A is considered to be
a variable on which we could hypothetically intervene. That is, the definition
of effect modification involves the counterfactual outcomes Y, not the coun-
terfactual outcomes Y*". In contrast, the definition of interaction between A
and FE gives equal status to both treatments A and FE, as reflected by the two
equivalent definitions of interaction shown above. The concept of interaction
refers to the joint causal effect of two treatments A and F, and thus involves
the counterfactual outcomes Y under a joint intervention.

In previous chapters we have described the conditions that are required to
identify the average causal effect of a treatment A on an outcome Y, either
in the entire population or in a subset of it. The three key identifying condi-
tions were exchangeability, positivity, and consistency. Because interaction is
concerned with the joint effect of two (or more) treatments A and FE, identi-
fying interaction requires exchangeability, positivity, and consistency for both
treatments.

Suppose that vitamins F were randomly, and unconditionally, assigned by
the investigators. Then positivity and consistency hold, and the treated £ = 1
and the untreated E = 0 are expected to be exchangeable. That is, the risk
that would have been observed if all individuals had been assigned to transplant
A =1 and vitamins E = 1 equals the risk that would have been observed if
all individuals who received £ = 1 had been assigned to transplant A = 1.
Formally, the marginal risk Pr [Y*=%¢=! = 1] is equal to the conditional risk
Pr [Y*=! = 1|E = 1]. As a result, we can rewrite the definition of interaction
between A and E on the additive scale as

Pr[Yy*='=1|E=1] - Pr[Y*=" = 1|E =1]
#Pr[Y=' =1|E=0] - Pr[Y*=° = 1|E = 0],
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Technical Point 5.1

Interaction on the additive and multiplicative scales. The equality of causal risk differences Pr [Y“zlvezl = 1] —
Pr[ye=0e=t = 1] = Pr [Y*=1¢=0 = 1] — Pr [Y*=0*=0 = 1] can be rewritten as

Pr[ye=be=l =1] = {Pr [Y*=h*=0 = 1] = Pr[Y*=%=" = 1]} + Pr [Y*=0=' =1].
By subtracting Pr [Y“:O’EZU = 1] from both sides of the equation, we get Pr [Y“Zl"f:l = 1] —Pr [Y“ZO’EZO = 1] =
{Pr[y*=te=0 =1] - Pr[Y*=0¢=0 = 1]} 4+ {Pr [Yy*=0¢=! = 1] — Pr [Y*=%¢=0 = 1]} .

This equality is another compact way to show that treatments A and E have equal status in the definition of interaction.

When the above equality holds, we say that there is no interaction between A and E on the additive scale, and we
say that the causal risk difference Pr [Y“Zl’ezl = 1] —Pr [Y“ZO’EZO = 1] is additive because it can be written as the
sum of the causal risk differences that measure the effect of A in the absence of E and the effect of E in the absence of
A. Conversely, there is interaction between A and E on the additive scale if Pr [Y*=1¢=! = 1] — Pr [Yo=0=0 = 1] £

{Pr[ye=te=0=1] = Pr [Y*=%¢=0 = 1]} + {Pr [Y*="¢=' = 1] - Pr [Y*=0=" =1]}.

The interaction is superadditive if the ‘not equal to’ (#) symbol can be replaced by a ‘greater than' (>) symbol. The
interaction is subadditive if the ‘not equal to’ (#) symbol can be replaced by a ‘less than’ (<) symbol.

Analogously, one can define interaction on the multiplicative scale when the effect measure is the causal risk ratio,
rather than the causal risk difference. We say that there is interaction between A and E on the multiplicative scale if

P [ya=te=l = 1]
Pr [y e=0.e=0 — ]

Py [ye—le=0 — 1]  Pr[ye—ve=t — ]
Pr[ye=0e=0 — 1] ~ Pr[ya=0.e=0 — ]

#

The interaction is supermultiplicative if the ‘not equal to’ (#) symbol can be replaced by a ‘greater than’ (>) symbol.
The interaction is submultiplicative if the ‘not equal to’ (#) symbol can be replaced by a ‘less than' (<) symbol.

which is exactly the definition of modification of the effect of A by F on the
additive scale. In other words, when treatment E is randomly assigned, then
the concepts of interaction and effect modification coincide. The methods
described in Chapter 4 to identify modification of the effect of A by V' can now
be applied to identify interaction of A and E by simply replacing the effect
modifier V' by the treatment E.

Now suppose treatment F was not assigned by investigators. To assess the
presence of interaction between A and E, one still needs to compute the four
marginal risks Pr[Y%¢ = 1]. In the absence of marginal randomization, these
risks can be computed for both treatments A and F, under the usual identifying
assumptions, by standardization or IP weighting conditional on the measured
covariates. An equivalent way of conceptualizing this problem follows: rather
than viewing A and F as two distinct treatments with two possible levels (1
or 0) each, one can view AE as a combined treatment with four possible levels
(11, 01, 10, 00). Under this conceptualization the identification of interaction
between two treatments is not different from the identification of the causal
effect of one treatment that we have discussed in previous chapters. The same
methods, under the same identifiability conditions, can be used. The only
difference is that now there is a longer list of values that the treatment of
interest can take, and therefore a greater number of counterfactual outcomes.

Sometimes one may be willing to assume (conditional) exchangeability for
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Interaction between A and E with-
out modification of the effect of
A by E is also logically possible,
though probably rare, because it
requires dual effects of A and
exact cancellations (VanderWeele
2009b).

Interaction

treatment A but not for treatment FE, e.g., when estimating the causal effect
of A in subgroups defined by F in a randomized experiment. In that case, one
cannot generally assess the presence of interaction between A and F, but can
still assess the presence of effect modification by E. This is so because one
does not need any identifying assumptions involving E to compute the effect
of A in each of the strata defined by E. In the previous chapter we used the
notation V' (rather than E) for variables for which we are not willing to make
assumptions about exchangeability, positivity, and consistency. For example,
we concluded that the effect of transplant A was modified by nationality V,
but we never required any identifying assumptions for the effect of V' because
we were not interested in using our data to compute the causal effect of V
on Y. In Section 4.2 we argued on substantive grounds that V is a surrogate
effect modifier; that is, V' does not act on the outcome and therefore does not
interact with A—no action, no interaction. But V is a modifier of the effect
of AonY because V is correlated with (e.g., it is a proxy for) an unidentified
variable that actually has an effect on Y and interacts with A. Thus there
can be modification of the effect of A by another variable without interaction
between A and that variable.

In the above paragraphs we have argued that a sufficient condition for
identifying interaction between two treatments A and F is that exchangeability,
positivity, and consistency are all satisfied for the joint treatment (A4, F) with
the four possible values (0,0), (0,1), (1,0), and (1,1). Then standardization
or IP weighting can be used to estimate the joint effects of the two treatments
and thus to evaluate interaction between them. In Part III, we show that this
condition is not necessary when the two treatments occur at different times.
For the remainder of Part I (except this chapter) and most of Part II, we will
focus on the causal effect of a single treatment A.

In Chapter 1 we described deterministic and nondeterministic counterfac-
tual outcomes. Up to here, we used deterministic counterfactuals for simplicity.
However, none of the results we have discussed for population causal effects
and interactions require deterministic counterfactual outcomes. In contrast,
the following section of this chapter only applies in the case that counterfactu-
als are deterministic. Further, we also assume that treatments and outcomes
are dichotomous.

5.3 Counterfactual response types and interaction

Table 5.1
Type ye=0  yeae=I
Doomed 1 1
Helped 1 0
Hurt 0 1
Immune 0 0

Individuals can be classified in terms of their deterministic counterfactual re-
sponses. For example, in Table 4.1 (same as Table 1.1), there are four types
of people: the “doomed” who will develop the outcome regardless of what
treatment they receive (Artemis, Athena, Persephone, Ares), the “immune”
who will not develop the outcome regardless of what treatment they receive
(Demeter, Hestia, Hera, Hades), the “helped” who will develop the outcome
only if untreated (Hebe, Kronos, Poseidon, Apollo, Hermes, Dyonisus), and the
“hurt” who will develop the outcome only if treated (Rheia, Leto, Aphrodite,
Zeus, Hephaestus, Polyphemus). Each combination of counterfactual responses
is often referred to as a response pattern or a response type. Table 5.1 display
the four possible response types.

When considering two dichotomous treatments A and F, there are 16 pos-
sible response types because each individual has four counterfactual outcomes,
one under each of the four possible joint interventions on treatments A and
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Table 5.2
Y %€ for each a, e value

Type 1,1 0,1 1,0 0,0
I 1 1 1 1
2 1 1 1 0
3 1 1 0 1
4 1 1 0 0
5 1 0 1 1
6 1 0 1 0
7 1 0 0 1
8 1 0 0 0
9 0 1 1 1

0 0 1 1 0
11 0 1 0 1
2 0 1 0 0
13 0 0 1 1
4 0 0 1 0
15 0 0 0 1
6 0 0 0 0

Miettinen (1982) described the 16
possible response types under two
binary treatments and outcome.

Greenland and Poole (1988) noted
that Miettinen's response types
were not invariant to recoding of
A and E (i.e., switching the labels
“0" and “1 "). They partitioned
the 16 response types of Table 5.2
into these three equivalence classes
that are invariant to recoding.

E: (1,1), (0,1), (1,0), and (0,0). Table 5.2 shows the 16 response types for
two treatments. This section explores the relation between response types and
the presence of interaction in the case of two dichotomous treatments A and
FE and a dichotomous outcome Y.

The first type in Table 5.2 has the counterfactual outcome Y ?=1¢=! equal
to 1, which means that an individual of this type would die if treated with
both transplant and vitamins. The other three counterfactual outcomes are
also equal to 1, i.e., Yo=he=l = ya=0.e=1 — ya=le=0 _ ya=0,e=0 — 1 which
means that an individual of this type would also die if treated with (no trans-
plant, vitamins), (transplant, no vitamins), or (no transplant, no vitamins).
In other words, neither treatment A nor treatment E has any effect on the
outcome of such individual. He would die no matter what joint treatment he
is assigned to. Now consider type 16. All the counterfactual outcomes are 0,
ie., Yazle=l — ya=0e=1 _ ya=le=0 _ ya=0,e=0 _ () Again, neither treat-
ment A nor treatment E has any effect on the outcome of an individual of this
type. She would survive no matter what joint treatment she is assigned to.
If all individuals in the population were of types 1 and 16, we would say that
neither A nor F has any causal effect on Y'; the sharp causal null hypothesis
would be true for the joint treatment (A4, E).

Let us now focus our attention on types 4, 6, 11, and 13. Individuals of type
4 would only die if treated with vitamins, whether they do or do not receive
a transplant, i.e., Yo=le=l = ya=0e=1 — 1 apd yo=le=0 = ya=0e=0 _
Individuals of type 13 would only die if not treated with vitamins, whether
they do or do not receive a transplant, i.e., Y2=1¢=1 = ya=0.e=1 — ( and
yoe=le=0 — ya=0.e=0 — 1 Individuals of type 6 would only die if treated
with transplant, whether they do or do not receive vitamins, i.e., Ye=1e=l =
ye=1e=0 = 1 and Yo=0-¢=1 = y@=0.e=0 — (_ Individuals of type 11 would only
die if not treated with transplant, whether they do or do not receive vitamins,
ie., ye=le=l _ ya=lLe=0 _ () gnd Ye=0.e=1 — ya=0,e=0 _ 1.

Of the 16 possible response types in Table 5.2, we have identified 6 types
(numbers 1,4, 6, 11, 13, 16) with a common characteristic: for an individual
with one of those response types, the causal effect of treatment A on the out-
come Y is the same regardless of the value of treatment F, and the causal effect
of treatment E on the outcome Y is the same regardless of the value of treat-
ment A. In a population in which every individual has one of these 6 response
types, the causal effect of treatment A in the presence of treatment FE, as
measured by the causal risk difference Pr [Y*=h¢=1 = 1] — Pr [Yo=0e=1 = 1],
would equal the causal effect of treatment A in the absence of treatment E, as
measured by the causal risk difference Pr [Y*=1¢=0 = 1] — Pr [Y*=0-¢=0 = 1].
That is, if all individuals in the population have response types 1, 4, 6, 11,
13 and 16 then there will be no interaction between A and F on the additive
scale.

The presence of additive interaction between A and E implies that, for some
individuals in the population, the value of their two counterfactual outcomes
under A = a cannot be determined without knowledge of the value of E, and
vice versa. That is, there must be individuals in at least one of the following
three classes:

1. those who would develop the outcome under only one of the four treat-
ment combinations (types 8, 12, 14, and 15 in Table 5.2)

2. those who would develop the outcome under two treatment combinations,
with the particularity that the effect of each treatment is exactly the
opposite under each level of the other treatment (types 7 and 10)
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Technical Point 5.2

Monotonicity of causal effects. Consider a setting with a dichotomous treatment A and outcome Y. The value
of the counterfactual outcome Y%= is greater than that of Y*=! only among individuals of the “helped” type. For
the other 3 types, Y%=! > Y270 or, equivalently, an individual's counterfactual outcomes are monotonically increasing
(i.e., nondecreasing) in a. Thus, when the treatment cannot prevent any individual's outcome (i.e., in the absence of
“helped” individuals), all individuals’ counterfactual response types are monotonically increasing in a. We then simply
say that the causal effect of A on Y is monotonic.

The concept of monotonicity can be generalized to two treatments A and E. The causal effects of A and E on
Y are monotonic if every individual's counterfactual outcomes Y*¢ are monotonically increasing in both a and e.
That is, if there are no individuals with response types (Yo=1:e=! = 0, Ye=0.e=l = 1), (yo=le=l = o, yo=he=0 = 1),
(Yazl,e:O — 0, Ya:O,e:O — 1), and (Ya:O,e:I — O’Ya:O,e:O — 1)

3. those who would develop the outcome under three of the four treatment
combinations (types 2, 3, 5, and 9)

On the other hand, the absence of additive interaction between A and
FE implies that either no individual in the population belongs to one of the
For more on cancellations that re- three classes described above, or that there is a perfect cancellation of equal
sult in additivity even when inter-  deviations from additivity of opposite sign. Such cancellation would occur,
action types are present, see Green-  e.g., if there were an equal proportion of individuals of types 7 and 10, or of
land, Lash, and Rothman (2008). types 8 and 12.
The meaning of the term “interaction” is clarified by the classification of
individuals according to their counterfactual response types (see also Fine Point
5.1). We now introduce a tool to conceptualize the causal mechanisms involved
in the interaction between two treatments.

5.4 Sufficient causes

The meaning of interaction is clarified by the classification of individuals ac-
cording to their counterfactual response types. We now introduce a tool to
represent the causal mechanisms involved in the interaction between two treat-
ments. Consider again our heart transplant example with a single treatment
A. As reviewed in the previous section, some individuals die when they are
treated, others when they are not treated, others die no matter what, and
others do not die no matter what. This variety of response types indicates
that treatment A is not the only variable that determines whether or not the
outcome Y occurs.

Take those individuals who were actually treated. Only some of them died,
which implies that treatment alone is insufficient to always bring about the
outcome. As an oversimplified example, suppose that heart transplant A = 1
only results in death in individuals allergic to anesthesia. We refer to the
smallest set of background factors that, together with A = 1, are sufficient to
inevitably produce the outcome as U;. The simultaneous presence of treatment
(A =1) and allergy to anesthesia (U; = 1) is a minimal sufficient cause of the
outcome Y.

Now take those individuals who were not treated. Again only some of them
died, which implies that lack of treatment alone is insufficient to bring about
the outcome. As an oversimplified example, suppose that no heart transplant
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Fine Point 5.1

More on counterfactual types and interaction. The classification of individuals by counterfactual response types
makes it easier to consider specific forms of interaction. For example, we may be interested in learning whether some
individuals will develop the outcome when receiving both treatments £ = 1 and A = 1, but not when receiving only one
of the two. That is, whether individuals with counterfactual responses Y¢=1¢=! = 1 and ya=0e=1 — ya=le=0 _
(types 7 and 8) exist in the population. VanderWeele and Robins (2007a, 2008) developed a theory of sufficient cause
interaction for 2 and 3 treatments, and derived the identifying conditions for synergism that are described here. The
following inequality is a sufficient condition for these individuals to exist:

Pr[y*=be=t = 1] — (Pr[Y*=%=! = 1] + Pr[Y*="="=1]) >0
or, equivalently, Pr [Y ==l = 1] — Pr [Y*="°=" = 1] > Pr [Y*="*=" = 1]

That is, in an experiment in which treatments A and E are randomly assigned, one can compute the three counterfactual
risks in the above inequality, and empirically check that individuals of types 7 and 8 exist.

Because the above inequality is a sufficient but not a necessary condition, it may not hold even if types 7 and 8 exist.
In fact this sufficient condition is so strong that it may miss most cases in which these types exist. A weaker sufficient
condition for synergism can be used if one knows, or is willing to assume, that receiving treatments A and E cannot
prevent any individual from developing the outcome, i.e., if the effects are monotonic (see Technical Point 5.2). In this
case, the inequality

Pr[ye=te=t =1] - Pr [Y*=%=! =1] > Pr[Y*="=0 = 1] — Pr [y == = 1]

is a sufficient condition for the existence of types 7 and 8. In other words, when the effects of A and E are monotonic,
the presence of superadditive interaction implies the presence of type 8 (monotonicity rules out type 7). This sufficient
condition for synergism under monotonic effects was originally reported by Greenland and Rothman in a previous edition
of their book. It is now reported in Greenland, Lash, and Rothman (2008).

In genetic research it is sometimes interesting to determine whether there are individuals of type 8, a form of interaction
referred to as compositional epistasis. VanderWeele (2010a) reviews empirical tests for compositional epistasis.

A = 0 only results in death if individuals have an ejection fraction less than
20%. We refer to the smallest set of background factors that, together with
A =0, are sufficient to produce the outcome as U,. The simultaneous absence
of treatment (A = 0) and presence of low ejection fraction (U = 1) is another
sufficient cause of the outcome Y.

Finally, suppose there are some individuals who have neither U; nor U,
and that would have developed the outcome whether they had been treated or
untreated. The existence of these “doomed” individuals implies that there are
some other background factors that are themselves sufficient to bring about
the outcome. As an oversimplified example, suppose that all individuals with

By definition of background factors,  pancreatic cancer at the start of the study will die. We refer to the smallest set
the dichotomous variables U can-  of background factors that are sufficient to produce the outcome regardless of
not be intervened on, and cannot treatment status as Uy. The presence of pancreatic cancer (Uy = 1) is another
be affected by treatment A. sufficient cause of the outcome Y.

We described 3 sufficient causes for the outcome: treatment A = 1 in
the presence of Uy, no treatment A = 0 in the presence of Us, and presence
of Uy regardless of treatment status. Each sufficient cause has one or more
components A =1 and U; = 1 in the first sufficient cause. Figure 5.1 represents
each sufficient cause by a circle and its components as sections of the circle.
The term sufficient-component causes is often used to refer to the sufficient
causes and their components.
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Figure 5.1

Greenland and Poole (1988) first
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The graphical representation of sufficient-component causes helps visualize a
key consequence of effect modification: as discussed in Chapter 4, the magni-
tude of the causal effect of treatment A depends on the distribution of effect
modifiers. Imagine two hypothetical scenarios. In the first one, the population
includes only 1% of individuals with U; = 1 (i.e., allergy to anesthesia). In
the second one, the population includes 10% of individuals with U; = 1. The
distribution of Uy and Uy is identical between these two populations. Now,
separately in each population, we conduct a randomized experiment of heart
transplant A in which half of the population is assigned to treatment A = 1.
The average causal effect of heart transplant A on death will be greater in the
second population because there are more individuals susceptible to develop
the outcome if treated. One of the 3 sufficient causes, A = 1 plus U; = 1, is
10 times more common in the second population than in the first one, whereas
the other two sufficient causes are equally frequent in both populations.

The graphical representation of sufficient-component causes also helps vi-
sualize an alternative concept of interaction, which is described in the next
section. First we need to describe the sufficient causes for two treatments A
and E. Consider our vitamins and heart transplant example. We have al-
ready described 3 sufficient causes of death: presence/absence of A (or E) is
irrelevant, presence of transplant A regardless of vitamins E, and absence of
transplant A regardless of vitamins F. In the case of two treatments we need
to add 2 more ways to die: presence of vitamins E regardless of transplant A,
and absence of vitamins regardless of transplant A. We also need to add four
more sufficient causes to accommodate those who would die only under certain
combination of values of the treatments A and E. Thus, depending on which
background factors are present, there are 9 possible ways to die:

1. by treatment A (treatment E is irrelevant)

2. by the absence of treatment A (treatment FE is irrelevant)
3. by treatment E (treatment A is irrelevant)

4. by the absence of treatment E (treatment A is irrelevant)
5. by both treatments A and F

by treatment A and the absence of E

by treatment E and the absence of A

by the absence of both A and F

© % N >

by other mechanisms (both treatments A and E are irrelevant)

In other words, there are 9 possible sufficient causes with treatment com-
ponents A =1 only, A=0only, E =1only, E=0only, A=1and F = 1,
A=1land E=0,A=0and F =1, A =0 and F = 0, and neither A nor
FE matter. Each of these sufficient causes includes a set of background factors
from Uy,..., Ug and Uy. Figure 5.2 represents the 9 sufficient-component causes
for two treatments A and E.
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Figure 5.2

This graphical representation of
sufficient-component causes is of-
ten referred to as “the causal pies.”
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Not all 9 sufficient-component causes for a dichotomous outcome and two
treatments exist in all settings. For example, if receiving vitamins £ = 1 does
not kill any individual, regardless of her treatment A, then the 3 sufficient
causes with the component £ = 1 will not be present. The existence of those
3 sufficient causes would mean that some individuals (e.g., those with Us = 1)
would be killed by receiving vitamins (E = 1), that is, their death would be
prevented by not giving vitamins (E = 0) to them.

5.5 Sufficient cause interaction

The colloquial use of the term “interaction between treatments A and E”
evokes the existence of some causal mechanism by which the two treatments
work together (i.e., “interact”) to produce certain outcome. Interestingly, the
definition of interaction within the counterfactual framework does not require
any knowledge about those mechanisms nor even that the treatments work
together (see Fine Point 5.3). In our example of vitamins E and heart trans-
plant A, we said that there is an interaction between the treatments A and
E if the causal effect of A when everybody receives E is different from the
causal effect of A when nobody receives E. That is, interaction is defined
by the contrast of counterfactual quantities, and can therefore be identified
by conducting an ideal randomized experiment in which the conditions of ex-
changeability, positivity, and consistency hold for both treatments A and FE.
There is no need to contemplate the causal mechanisms (physical, chemical,
biologic, sociological...) that underlie the presence of interaction.

This section describes a second concept of interaction that perhaps brings
us one step closer to the causal mechanisms by which treatments A and E
bring about the outcome. This second concept of interaction is not based on
counterfactual contrasts but rather on sufficient-component causes, and thus
we refer to it as interaction within the sufficient-component-cause framework
or, for brevity, sufficient cause interaction.

A sufficient cause interaction between A and E exists in the population if
A and E occur together in a sufficient cause. For example, suppose individuals
with background factors Us = 1 will develop the outcome when jointly receiving
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Fine Point 5.2

From counterfactuals to sufficient-component causes, and vice versa. There is a correspondence between the
counterfactual response types and the sufficient component causes. In the case of a dichotomous treatment and outcome,
suppose an individual has none of the background factors Uy, Uy, Us. She will have an “immune” response type because
she lacks the components necessary to complete all of the sufficient causes, whether she is treated or not. The table
below displays the mapping between response types and sufficient-component causes in the case of one treatment A.

Type ye=0 ye=I Component causes

Doomed 1 1 Up=1or{U; =1and Uy =1}
Helped 1 0 Uy=0and U; =0and U =1
Hurt 0 1 Uy=0and Uy =1and Uy =0
Immune 0 0 Uy=0and Uy =0and Uy =0

A particular combination of component causes corresponds to one and only one counterfactual type. However, a
particular response type may correspond to several combinations of component causes. For example, individuals of the
“doomed” type may have any combination of component causes including Uy = 1, no matter what the values of Us
and Us are, or any combination including {U; =1 and Uy = 1}.

Sufficient-component causes can also be used to provide a mechanistic description of exchangeability Y*[] A. For
a dichotomous treatment and outcome, exchangeability means that the proportion of individuals who would have the
outcome under treatment, and under no treatment, is the same in the treated A = 1 and the untreated A = 0. That
is, PriYe=l =1j|A=1] =Pr[Y*=! = 1|A=0] and Pr[Y*=" = 1|A = 1] = Pr[Y*=0 = 1|A = 0].

Now the individuals who would develop the outcome if treated are the “doomed” and the “hurt”, i.e., those with
Uy = 1 or U; = 1. The individuals who would get the outcome if untreated are the “doomed” and the “helped”, that is,
those with Uy = 1 or Uy = 1. Therefore there will be exchangeability if the proportions of “doomed” + “hurt” and of
“doomed” + “helped” are equal in the treated and the untreated. That is, exchangeability for a dichotomous treatment
and outcome can be expressed in terms of sufficient-component causes as Pr[Uy =1 or U; = 1|A=1] =Pr[Uy =1 or
Ur=1A=0]and PrlUy=10or Uy =1|A=1]=Pr[lUy=1or Uy =1|A = 0.

For additional details see Greenland and Brumback (2002), Flanders (2006), and VanderWeele and Herndn (2006).
Some of the above results were generalized to the case of two or more dichotomous treatments by VanderWeele and
Robins (2008).

vitamins (E = 1) and heart transplant (A = 1), but not when receiving only
one of the two treatments. Then a sufficient cause interaction between A and
E exists if there exists an individual with Us = 1. It then follows that if
there exists an individual with counterfactual responses Y*=%¢=! = 1 and
ye=0e=1 = ya=le=0 — 5 sufficient cause interaction between A and E is
present.

Sufficient cause interactions can be synergistic or antagonistic. There is
synergism between treatment A and treatment F when A = 1 and £ = 1
are present in the same sufficient cause, and antagonism between treatment
A and treatment F when A = 1 and E =0 (or A = 0 and E = 1) are
present in the same sufficient cause. Alternatively, one can think of antagonism
between treatment A and treatment E as synergism between treatment A and
no treatment E (or between no treatment A and treatment E).

Unlike the counterfactual definition of interaction, sufficient cause inter-
action makes explicit reference to the causal mechanisms involving the treat-
ments A and E. One could then think that identifying the presence of sufficient
cause interaction requires detailed knowledge about these causal mechanisms.
It turns out that this is not always the case: sometimes we can conclude that
sufficient cause interaction exists even if we lack any knowledge whatsoever
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Fine Point 5.3

Biologic interaction. In epidemiologic discussions, sufficient-cause interaction is commonly referred to as biologic
interaction (Rothman et al, 1980). This choice of terminology might seem to imply that, in biomedical applications,
there exist biological mechanisms through which two treatments A and E act on each other in bringing about the
outcome. However, this may not be necessarily the case as illustrated by the following example proposed by VanderWeele
and Robins (2007a).

Suppose A and E are the two alleles of a gene that produces an essential protein. Individuals with a deleterious
mutation in both alleles (A = 1 and E = 1) will lack the essential protein and die within a week after birth, whereas
those with a mutation in none of the alleles (i.e., A =0 and E = 0) or in only one of the alleles (i.e., A=0and E =1,
A =1and E =0) will have normal levels of the protein and will survive. We would say that there is synergism between
the alleles A and E because there exists a sufficient component cause of death that includes A =1 and £ = 1. That
is, both alleles work together to produce the outcome. However, it might be argued that they do not physically act on
each other and thus that they do not interact in any biological sense.

Rothman (1976) described the con-
cepts of synergism and antagonism
within the sufficient-component-
cause framework.

about the sufficient causes and their components. Specifically, if the inequal-
ities in Fine Point 5.1 hold, then there exists synergism between A and E.
That is, one can empirically check that synergism is present without ever giv-
ing any thought to the causal mechanisms by which A and E work together
to bring about the outcome. This result is not that surprising because of the
correspondence between counterfactual response types and sufficient causes
(see Fine Point 5.2), and because the above inequality is a sufficient but not a
necessary condition, i.e., the inequality may not hold even if synergism exists.

5.6 Counterfactuals or sufficient-component causes?

A counterfactual framework of cau-
sation was already hinted by Hume
(1748).

The  sufficient-component-cause
framework was developed in phi-
losophy by Mackie (1965). He
introduced the concept of INUS
condition for Y: an [Insufficient
but Necessary part of a condition
which is itself Unnecessary but
exclusively Sufficient for Y.

The sufficient-component-cause framework and the counterfactual (potential
outcomes) framework address different questions. The sufficient component
cause model considers sets of actions, events, or states of nature which together
inevitably bring about the outcome under consideration. The model gives an
account of the causes of a particular effect. It addresses the question, “Given a
particular effect, what are the various events which might have been its cause?”
The potential outcomes or counterfactual model focuses on one particular cause
or intervention and gives an account of the various effects of that cause. In
contrast to the sufficient component cause framework, the potential outcomes
framework addresses the question, “What would have occurred if a particular
factor were intervened upon and thus set to a different level than it in fact
was?” Unlike the sufficient component cause framework, the counterfactual
framework does not require a detailed knowledge of the mechanisms by which
the factor affects the outcome.

The counterfactual approach addresses the question “what happens?” The
sufficient-component-cause approach addresses the question “how does it hap-
pen?” For the contents of this book—conditions and methods to estimate the
average causal effects of hypothetical interventions—the counterfactual frame-
work is the natural one. The sufficient-component-cause framework is helpful
to think about the causal mechanisms at work in bringing about a particular
outcome. Sufficient-component causes have a rightful place in the teaching of
causal inference because they help understand key concepts like the dependence

[43
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Fine Point 5.4

More on the attributable fraction. Fine Point 3.4 defined the excess fraction for treatment A as the proportion of
cases attributable to treatment A in a particular population, and described an example in which the excess fraction for
A was 75%. That is, 75% of the cases would not have occurred if everybody had received treatment a = 0 rather than
their observed treatment A. Now consider a second treatment E. Suppose that the excess fraction for E is 50%. Does
this mean that a joint intervention on A and E could prevent 125% (75% + 50%) of the cases? Of course not.

Clearly the excess fraction cannot exceed 100% for a single treatment (either A or E). Similarly, it should be clear
that the excess fraction for any joint intervention on A and E cannot exceed 100%. That is, if we were allowed to
intervene in any way we wish (by modifying A, E, or both) in a population, we could never prevent a fraction of disease
greater than 100%. In other words, no more than 100% of the cases can be attributed to the lack of certain intervention,
whether single or joint. But then why is the sum of excess fractions for two single treatments greater than 100%7? The
sufficient-component-cause framework helps answer this question.

As an example, suppose that Zeus had background factors Us = 1 (and none of the other background factors) and
was treated with both A =1 and F = 1. Zeus would not have been a case if either treatment A or treatment E had
been withheld. Thus Zeus is counted as a case prevented by an intervention that sets a = 0, i.e., Zeus is part of the
75% of cases attributable to A. But Zeus is also counted as a case prevented by an intervention that sets ¢ = 0, i.e.,
Zeus is part of the 50% of cases attributable to E. No wonder the sum of the excess fractions for A and E exceeds
100%: some individuals like Zeus are counted twice!

The sufficient-component-cause framework shows that it makes little sense to talk about the fraction of disease
attributable to A and E separately when both may be components of the same sufficient cause. For example, the
discussion about the fraction of disease attributable to either genes or environment is misleading. Consider the mental
retardation caused by phenylketonuria, a condition that appears in genetically susceptible individuals who eat certain
foods. The excess fraction for those foods is 100% because all cases can be prevented by removing the foods from
the diet. The excess fraction for the genes is also 100% because all cases would be prevented if we could replace the
susceptibility genes. Thus the causes of mental retardation can be seen as either 100% genetic or 100% environmental.
See Rothman, Greenland, and Lash (2008) for further discussion.

of the magnitude of causal effects on the distribution of background factors (ef-
fect modifiers), and the relationship between effect modification, interaction,
and synergism.
Though the sufficient-component-cause framework is useful from a peda-
gogic standpoint, its relevance to actual data analysis is yet to be determined.
In its classical form, the sufficient-component-cause framework is determinis-
tic, its conclusions depend on the coding on the outcome, and is by definition
limited to dichotomous treatments and outcomes (or to variables that can be
recoded as dichotomous variables). This limitation practically rules out the
consideration of any continuous factors, and restricts the applicability of the
framework to contexts with a small number of dichotomous factors. More
recent extensions of the sufficient-component-cause framework to stochastic
VanderWeele (2010b) provided  settings and to categorical and ordinal treatments might lead to an increased
extensions to 3-level treatments. application of this approach to realistic data analysis. Finally, even allowing for
VanderWeele and Robins (2012) these extensions of the sufficient-component-cause framework, we may rarely
explored the relationship between  have the large amount of data needed to study the fine distinctions it makes.
stochastic  counterfactuals and To estimate causal effects more generally, the counterfactual framework will
stochastic sufficient causes. likely continue to be the one most often employed. Some apparently alternative
frameworks—causal diagrams, decision theory—are essentially equivalent to
the counterfactual framework, as described in the next chapter.
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Technical Point 5.3

Monotonicity of causal effects and sufficient causes. When treatment A and E have monotonic effects, then some
sufficient causes are guaranteed not to exist. For example, suppose that cigarette smoking (A = 1) never prevents heart
disease, and that physical inactivity (F = 1) never prevents heart disease. Then no sufficient causes including either
A =0or E =0 can be present. This is so because, if a sufficient cause including the component A = 0 existed, then
some individuals (e.g., those with Us = 1) would develop the outcome if they were unexposed (A = 0) or, equivalently,
the outcome could be prevented in those individuals by treating them (A = 1). The same rationale applies to E = 0.
The sufficient component causes that cannot exist when the effects of A and E are monotonic are crossed out in Figure
5.3.

Figure 5.3
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Chapter 6
GRAPHICAL REPRESENTATION OF CAUSAL EFFECTS

Causal inference generally requires expert knowledge and untestable assumptions about the causal network linking
treatment, outcome, and other variables. Earlier chapters focused on the conditions and methods to compute
causal effects in oversimplified scenarios (e.g., the causal effect of your looking up on other pedestrians’ behavior,
an idealized heart transplant study). The goal was to provide a gentle introduction to the ideas underlying the
more sophisticated approaches that are required in realistic settings. Because the scenarios we considered were so
simple, there was really no need to make the causal network explicit. As we start to turn our attention towards
more complex situations, however, it will become crucial to be explicit about what we know and what we assume
about the variables relevant to our particular causal inference problem.

This chapter introduces a graphical tool to represent our qualitative expert knowledge and a priori assumptions
about the causal structure of interest. By summarizing knowledge and assumptions in an intuitive way, graphs
help clarify conceptual problems and enhance communication among investigators. The use of graphs in causal
inference problems makes it easier to follow a sensible advice: draw your assumptions before your conclusions.

6.1 Causal diagrams

This chapter describes graphs, which we will refer to as causal diagrams, to
represent key causal concepts. The modern theory of diagrams for causal infer-
ence arose within the disciplines of computer science and artificial intelligence.
Comprehensive books on this sub-  This and the next three chapters are focused on problem conceptualization via
ject have been written by Pearl causal diagrams.
(2009) and Spirtes, Glymour and Take a look at the graph in Figure 6.1. It comprises three nodes representing
Scheines (2000). random variables (L, A, Y) and three edges (the arrows). We adopt the
convention that time flows from left to right, and thus L is temporally prior to
A and Y, and A is temporally prior to Y. As in previous chapters, L, A, and
Y represent disease severity, heart transplant, and death, respectively.

The presence of an arrow pointing from a particular variable V' to another
variable W indicates that we know there is a direct causal effect (i.e., an
effect not mediated through any other variables on the graph) for at least one
individual. Alternatively, the lack of an arrow means that we know that V has

o no direct causal effect on W for any individual in the population. For example,

L —A——Y in Figure 6.1, the arrow from L to A means that disease severity affects the
probability of receiving a heart transplant. A standard causal diagram does

Figure 6.1 not distinguish whether an arrow represents a harmful effect or a protective

effect. Furthermore, if, as in figure 6.1, a variable (here, Y) has two causes,
the diagram does not encode how the two causes interact.

Causal diagrams like the one in Figure 6.1 are known as directed acyclic
graphs, which is commonly abbreviated as DAGs. “Directed” because the
edges imply a direction: because the arrow from L to A is into A, L may cause
A, but not the other way around. “Acyclic” because there are no cycles: a
variable cannot cause itself, either directly or through another variable.

Directed acyclic graphs have applications other than causal inference. Here
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Technical Point 6.1

Causal directed acyclic graphs. We define a directed acyclic graph (DAG) G to be a graph whose nodes (vertices)
are random variables V' = (V1,...,Vj) with directed edges (arrows) and no directed cycles. We use PA,, to denote
the parents of V,,, i.e., the set of nodes from which there is a direct arrow into V,,,. The variable V,,, is a descendant
of V; (and Vj is an ancestor of V,,,) if there is a sequence of nodes connected by edges between V; and V;,, such that,
following the direction indicated by the arrows, one can reach V;,, by starting at V;. For example, consider the DAG in
Figure 6.1. In this DAG, M = 3 and we can choose V; = L, Vo = A, and V3 = Y; the parents PA3 of V3 =Y are
(L, A). We will adopt the ordering convention that if m > j, V,, is not an ancestor of V;. We define the distribution of
V to be Markov with respect to a DAG G (equivalently, the distribution factors according to a DAG G) if, for each j,
V; is independent of its non-descendants conditional on its parents. This latter statement is mathematically equivalent
to the statement that the density f (V') of the variables V' in DAG G satisfies the Markov factorization

M

f)=][fw;lpa) -

Jj=1

A causal DAG is a DAG in which 1) the lack of an arrow from node V; to V,,, (i.e., V; is not a parent of V,,) can
be interpreted as the absence of a direct causal effect of V; on V;,, relative to the other variables on the graph, 2) all
common causes, even if unmeasured, of any pair of variables on the graph are themselves on the graph, and 3) any
variable is a cause of its descendants. Causal DAGs are of no practical use unless we make an assumption linking the
causal structure represented by the DAG to the data obtained in a study. This assumption, referred to as the causal
Markov assumption, states that, conditional on its direct causes, a variable V; is independent of any variable for which
it is not a cause. That is, conditional on its parents, V; is independent of its non-descendants; hence, a causal DAG is
Markov with respect to the DAG G.

we focus on causal directed acyclic graphs. A defining property of causal DAGs
is that, conditional on its direct causes, any variable on the DAG is independent
of any other variable for which it is not a cause. This assumption, referred to
as the causal Markov assumption, implies that in a causal DAG the common
causes of any pair of variables in the graph must be also in the graph. For a
formal definition of causal DAGs, see Technical Point 6.1.

For example, suppose in our study individuals are randomly assigned to
heart transplant A with a probability that depends on the severity of their
disease L. Then L is a common cause of A and Y, and needs to be included
in the graph, as shown in the causal diagram in Figure 6.1. Now suppose
in our study all individuals are randomly assigned to heart transplant with

A—Y the same probability regardless of their disease severity. Then L is not a
common cause of A and Y and need not be included in the causal diagram.
Figure 6.1 represents a conditionally randomized experiment, whereas Figure
6.2 represents a marginally randomized experiment.

Figure 6.2

Figure 6.1 may also represent an observational study. Specifically, Figure
6.1 represents an observational study in which we are willing to assume that
the assignment of heart transplant A has as parent disease severity L and no
other causes of Y. Otherwise, those causes of Y, even if unmeasured, would
need to be included in the diagram, as they would be common causes of A and
Y. In the next chapter we will describe how the willingness to consider Figure
6.1 as the causal diagram for an observational study is the graphic translation
of the assumption of conditional exchangeability given L, Y* 1l A|L for all a.

Many people find the graphical approach to causal inference easier to use
and more intuitive than the counterfactual approach. However, the two ap-



6.2 Causal diagrams and marginal independence 73

Technical Point 6.2

Counterfactual models associated with a causal DAG. In this book, a causal DAG G represents an underlying
counterfactual model. To provide a formal definition of the counterfactual model represented by a DAG G, we use the
following notation. For any random variable W, let YW denote the support (i.e., the set of possible values w) of W. For
any set of ordered variables W1, ..., W,,, define w,, = (w1,...,w,,). Let R denote any subset of variables in V' and
let  be a value of R. Then V, denotes the counterfactual value of V;,, when R is set to 7.

A nonparametric structural equation model (NPSEM) represented by a DAG G with vertex set V = (V1, Va.., Vi)
(ordered such that if ¢ < j then V; is not a descendant of V;) assumes the existence of unobserved random variables
(errors) €,, and deterministic unknown functions f,,, (pam, €,,) such that V; = f; (e1) and the one-step ahead counter-
factual V,,m—t = Vbam s given by fu, (Dam, €m). That is, only the parents of V,,, have a direct effect on V,,, relative to
the other variables on G. An NPSEM implies that any variable V; on the graph can be intervened on, as counterfactuals
in which Vj has been set to a specific value v; are assumed to exist. Both the factual variable V;,, and the counterfactuals

— vy
V. for any R C V are obtained recursively from V; and Vjvrl, M > j > 1. For example, V3t = V:,)”l’v2 , i.e., the

counterfactual value V3" of V3 when V; is set to vy is the one-step ahead counterfactual V;l’”2 with v9 equal to the

V;
. Vi,V 1 . .
counterfactual value V;* of Va. Similarly, V3 = V5'""2  and V3" = V" because Vj is not a direct cause of V3. The

absence of an arrow from V; to V}, implies that Vj is not a direct cause of V}, for any individual.

Robins (1986) introduced this NPSEM, referred to it as a finest causally interpreted structural tree graph (FCISTG)
“as detailed as the data”, and referred to the parents PA,, of V,, as causal risk factors for V,,, controlling for the earlier
variables in the ordering. Pearl (2009) showed how to represent this model with a DAG. Robins (1986) also proposed
often more realistic causally interpreted structural tree graphs in which only a subset of the variables are subject to
intervention. For expositional purposes, we will assume that every variable can be intervened on, even though the
statistical methods considered here do not actually require this assumption.

proaches are intimately linked. Specifically, associated with each graph is an
underlying counterfactual model (see Technical Points 6.2 and 6.3). It is this
model that provides the mathematical justification for the heuristic, intuitive
graphical methods we now describe. However, conventional causal diagrams
do not include the underlying counterfactual variables on the graph. Therefore
the link between graphs and counterfactuals has traditionally remained hidden.
A recently developed type of causal directed acyclic graph—the Single World
Richardson and Robins (2013) de- Intervention Graph (SWIG)—seamlessly unifies the counterfactual and graph-
veloped the Single World Interven-  ical approaches to causal inference by explicitly including the counterfactual
tion Graph (SWIG). variables on the graph. We defer the introduction of SWIGs until Chapter 7
as the material covered in this chapter serves as a necessary prerequisite.
Causal diagrams are a simple way to encode our subject-matter knowledge,
and our assumptions, about the qualitative causal structure of a problem. But,
as described in the next sections, causal diagrams also encode information
about potential associations between the variables in the causal network. It
is precisely this simultaneous representation of association and causation that
makes causal diagrams such an attractive tool. What follows is an informal
introduction to graphic rules to infer associations from causal diagrams. Our
emphasis is on conceptual insight rather than on formal rigor.

6.2 Causal diagrams and marginal independence

Consider the following two examples. First, suppose you know that aspirin use
A has a preventive causal effect on the risk of heart disease Y, i.e., Pr[Y*=! =
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Technical Point 6.3

Independencies associated with counterfactual models. An FCISTG model does not imply that the causal Markov
assumption of Technical Point 6.1 holds; additional statistical independence assumptions are needed. For example, Pearl
(2000) usually assumed an NPSEM in which all error terms ¢,,, are mutually independent. We refer to Pearl’s model
with independent errors as an NPSEM-IE. In contrast, Robins (1986) only assumed that, given any T/, the one-step
ahead counterfactuals V;n"* = f,, (pam, €m) for m =1,..M are jointly independent where T,,,_; is a subvector of the
T, and referred to this as the finest fully randomized causally interpreted structured tree graph (FFRCISTG) model as
detailed as the data.

More precisely, Robins (1986) made the assumption that for each m, conditional on the factual past V,,_1 = ¥,,_1,
any future evolution from m + 1 of one-step ahead counterfactuals (consistent with T,,_1) is independent of the factual
variable V,,,. Robins and Richardson (2010) showed that this assumption is equivalent to the assumption of the previous
paragraph for a positive distribution. In the absence of positivity, we define the model as in the last paragraph.

Robins (1986) showed his independence assumption implies that the causal Markov assumption holds. An NPSEM-
IE is an FFRCISTG but not vice-versa because an NPSEM-IE makes many more independence assumptions than an
FFRCISTG (Robins and Richardson 2010).

Unless stated otherwise, a DAG represents an NPSEM but we may need to specify which type. For example, the
DAG in Figure 6.2 may correspond to either an NPSEM-IE that implies full exchangeability (Y“ZO,Y“ZI) 1L A, or to
an FFRCISTG that only implies marginal exchangeability Y¢ 1L A for both @ = 0 and a = 1. We will assume that a
causal DAG represents an FFRCISTG as detailed as the data whenever we do not mention the underlying model.

1] # Pr[Y*=% = 1]. The causal diagram in Figure 6.2 is the graphical transla-
tion of this knowledge for an experiment in which aspirin A is randomly, and
unconditionally, assigned. Second, suppose you know that carrying a lighter A
has no causal effect (causative or preventive) on anyone’s risk of lung cancer Y,
i.e., Pr[Y?=t = 1] = Pr[Y %= = 1], and that cigarette smoking L has a causal
effect on both carrying a lighter A and lung cancer Y. The causal diagram in
Figure 6.3 is the graphical translation of this knowledge. The lack of an arrow
e between A and Y indicates that carrying a lighter does not have a causal effect
L —A Y on lung cancer; L is depicted as a common cause of A and Y.

To draw Figures 6.2 and 6.3 we only used your knowledge about the causal
relations among the variables in the diagram but, interestingly, these causal
diagrams also encode information about the expected associations (or, more
exactly, the lack of them) among the variables in the diagram. We now argue
heuristically that, in general, the variables A and Y will be associated in both
Figure 6.2 and 6.3, and describe key related results from causal graphs theory.

Figure 6.3

Take first the randomized experiment represented in Figure 6.2. Intuitively
one would expect that two variables A and Y linked only by a causal arrow
would be associated. And that is exactly what causal graphs theory shows:
A path between two variables R and  when one knows that A has a causal effect on Y, as in Figure 6.2, then one
S in a DAG is a route that connects  should also generally expect A and Y to be associated. This is of course
R and S by following a sequence consistent with the fact that, in an ideal randomized experiment with un-
of edges such that the route vis- conditional exchangeability, causation Pr[Y 2= = 1] # Pr[Y*=? = 1] implies
its no variable more than once. A  association Pr[Y = 1|A = 1] # Pr[Y = 1|A = 0], and vice versa. A heuristic
path is causal if it consists entirely  that captures the causation-association correspondence in causal diagrams is
of edges with their arrows pointing  the visualization of the paths between two variables as pipes or wires through
in the same direction. Otherwise it ~ which association flows. Association, unlike causation, is a symmetric relation-
is noncausal. ship between two variables; thus, when present, association flows between two

variables regardless of the direction of the causal arrows. In Figure 6.2 one

could equivalently say that the association flows from A to Y or from Y to A.
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Figure 6.4

Now let us consider the observational study represented in Figure 6.3. We
know that carrying a lighter A has no causal effect on lung cancer Y. The
question now is whether carrying a lighter A is associated with lung cancer Y.
That is, we know that Pr[Y*=! = 1] = Pr[Y*=0 = 1] but is it also true that
Pr[Y =1|A = 1] = Pr[Y = 1|4 = 0]? To answer this question, imagine that a
naive investigator decides to study the effect of carrying a lighter A on the risk
of lung cancer Y (we do know that there is no effect but this is unknown to
the investigator). He asks a large number of people whether they are carrying
lighters and then records whether they are diagnosed with lung cancer during
the next 5 years. Hera is one of the study participants. We learn that Hera
is carrying a lighter. But if Hera is carrying a lighter (A = 1), then it is
more likely that she is a smoker (L = 1), and therefore she has a greater than
average risk of developing lung cancer (Y = 1). We then intuitively conclude
that A and Y are expected to be associated because the cancer risk in those
carrying a lighter (A = 1) is different from the cancer risk in those not carrying
a lighter (A = 0), or Pr[Y = 1|4 = 1] # Pr[Y = 1|A = 0]. In other words,
having information about the treatment A improves our ability to predict the
outcome Y, even though A does not have a causal effect on Y. The investigator
will make a mistake if he concludes that A has a causal effect on Y just because
A and Y are associated. Causal graphs theory again confirms our intuition. In
graphic terms, A and Y are associated because there is a flow of association
from A to Y (or, equivalently, from Y to A) through the common cause L.

Let us now consider a third example. Suppose you know that certain genetic
haplotype A has no causal effect on anyone’s risk of becoming a cigarette
smoker Y, i.e., Pr[Y*=! = 1] = Pr[Y%=% = 1], and that both the haplotype A
and cigarette smoking Y have a causal effect on the risk of heart disease L.
The causal diagram in Figure 6.4 is the graphical translation of this knowledge.
The lack of an arrow between A and Y indicates that the haplotype does not
have a causal effect on cigarette smoking, and L is depicted as a common
effect of A and Y. The common effect L is referred to as a collider on the path
A — L < Y because two arrowheads collide on this node.

Again the question is whether A and Y are associated. To answer this
question, imagine that another investigator decides to study the effect of hap-
lotype A on the risk of becoming a cigarette smoker Y (we do know that there
is no effect but this is unknown to the investigator). She makes genetic de-
terminations on a large number of children, and then records whether they
end up becoming smokers. Apollo is one of the study participants. We learn
that Apollo does not have the haplotype (A = 0). Is he more or less likely
to become a cigarette smoker (Y = 1) than the average person? Learning
about the haplotype A does not improve our ability to predict the outcome Y
because the risk in those with (A = 1) and without (A = 0) the haplotype is
the same, or Pr[Y = 1|A = 1] = Pr[Y = 1|4 = 0]. In other words, we would
intuitively conclude that A and Y are not associated, i.e., A and Y are inde-
pendent or A1LY. The knowledge that both A and Y cause heart disease L is
irrelevant when considering the association between A and Y. Causal graphs
theory again confirms our intuition because it says that colliders, unlike other
variables, block the flow of association along the path on which they lie. Thus
A and Y are independent because the only path between them, A — L + Y,
is blocked by the collider L.

In summary, two variables are (marginally) associated if one causes the
other, or if they share common causes. Otherwise they will be (marginally) in-
dependent. The next section explores the conditions under which two variables
A and Y may be independent conditionally on a third variable L.
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6.3 Causal diagrams and conditional independence

Figure 6.5

Because no conditional indepen-
dences are expected in complete
causal diagrams (those in which all
possible arrows are present), it is of-
ten said that information about as-
sociations is in the missing arrows.

Figure 6.6

Blocking the flow of association
between treatment and outcome
through the common cause is
the graph-based justification to
use stratification as a method to
achieve exchangeability.

We now revisit the settings depicted in Figures 6.2, 6.3, and 6.4 to discuss the
concept of conditional independence in causal diagrams.

According to Figure 6.2, we expect aspirin A and heart disease Y to be
associated because aspirin has a causal effect on heart disease. Now suppose
we obtain an additional piece of information: aspirin A affects the risk of heart
disease Y because it reduces platelet aggregation B. This new knowledge is
translated into the causal diagram of Figure 6.5 that shows platelet aggregation
B (1: high, 0: low) as a mediator of the effect of A on Y.

Once a third variable is introduced in the causal diagram we can ask a new
question: is there an association between A and Y within levels of (conditional
on) B? Or, equivalently: when we already have information on B, does infor-
mation about A improve our ability to predict Y? To answer this question,
suppose data were collected on A, B, and Y in a large number of individuals,
and that we restrict the analysis to the subset of individuals with low platelet
aggregation (B = 0). The square box placed around the node B in Figure 6.5
represents this restriction. (We would also draw a box around B if the analysis
were restricted to the subset of individuals with B = 1.)

Individuals with low platelet aggregation (B = 0) have a lower than average
risk of heart disease. Now take one of these individuals. Regardless of whether
the individual was treated (A = 1) or untreated (A = 0), we already knew
that he has a lower than average risk because of his low platelet aggregation.
In fact, because aspirin use affects heart disease risk only through platelet
aggregation, learning an individual’s treatment status does not contribute any
additional information to predict his risk of heart disease. Thus, in the subset of
individuals with B = 0, treatment A and outcome Y are not associated. (The
same informal argument can be made for individuals in the group with B = 1.)
Even though A and Y are marginally associated, A and Y are conditionally
independent (unassociated) given B because the risk of heart disease is the
same in the treated and the untreated within levels of B: Pr[Y = 1|4 =
1,B=0b] =Pr[Y =1|A =0,B = b] for all b. That is, ALY |B. Graphically,
we say that a box placed around variable B blocks the flow of association
through the path A - B =Y.

Let us now return to Figure 6.3. We concluded in the previous section that
carrying a lighter A was associated with the risk of lung cancer Y because
the path A + L — Y was open to the flow of association from A to Y. The
question we ask now is whether A is associated with Y conditional on L. This
new question is represented by the box around L in Figure 6.6. Suppose the
investigator restricts the study to nonsmokers (L = 0). In that case, learning
that an individual carries a lighter (A = 1) does not help predict his risk of
lung cancer (Y = 1) because the entire argument for better prediction relied
on the fact that people carrying lighters are more likely to be smokers. This
argument is irrelevant when the study is restricted to nonsmokers or, more
generally, to people who smoke with a particular intensity. Even though A
and Y are marginally associated, A and Y are conditionally independent given
L because the risk of lung cancer is the same in the treated and the untreated
within levels of L: Pr[Y =1|A=1,L =1 =Pr[Y = 1|A =0,L =] for all
I. That is, ALY |L. Graphically, we say that the flow of association between
A and Y is interrupted because the path A < L — Y is blocked by the box
around L.

Finally, consider Figure 6.4 again. We concluded in the previous section
that having the haplotype A was independent of being a cigarette smoker
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See Chapter 8 for more on associ-
ations due to conditioning on com-
mon effects.
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Figure 6.8

The mathematical theory underly-
ing the graphical rules is known as
“d-separation” (Pearl 1995).
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Figure 6.9

Y because the path between A and Y, A — L + Y, was blocked by the
collider L. We now argue heuristically that, in general, A and Y will be
conditionally associated within levels of their common effect L. Suppose that
the investigators, who are interested in estimating the effect of haplotype A
on smoking status Y, restricted the study population to individuals with heart
disease (L = 1). The square around L in Figure 6.7 indicates that they are
conditioning on a particular value of L. Knowing that an individual with heart
disease lacks haplotype A provides some information about her smoking status
because, in the absence of A, it is more likely that another cause of L such
as Y is present. That is, among people with heart disease, the proportion of
smokers is increased among those without the haplotype A. Therefore, A and
Y are inversely associated conditionally on L = 1. The investigator will make a
mistake if he concludes that A has a causal effect on Y just because A and Y are
associated within levels of L. In the extreme, if A and Y were the only causes
of L, then among people with heart disease the absence of one of them would
perfectly predict the presence of the other. Causal graphs theory shows that
indeed conditioning on a collider like L opens the path A — L + Y, which
was blocked when the collider was not conditioned on. Intuitively, whether
two variables (the causes) are associated cannot be influenced by an event
in the future (their effect), but two causes of a given effect generally become
associated once we stratify on the common effect.

As another example, the causal diagram in Figure 6.8 adds to that in Figure
6.7 a diuretic medication C' whose use is a consequence of a diagnosis of heart
disease. A and Y are also associated within levels of C' because C' is a common
effect of A and Y. Causal graphs theory shows that conditioning on a variable
C affected by a collider L also opens the path A — L < Y. This path is blocked
in the absence of conditioning on either the collider L or its consequence C'.

This and the previous section review three structural reasons why two vari-
ables may be associated: one causes the other, they share common causes, or
they share a common effect and the analysis is restricted to certain level of
that common effect (or of its descendants). Along the way we introduced a
number of graphical rules that can be applied to any causal diagram to deter-
mine whether two variables are (conditionally) independent. The arguments
we used to support these graphical rules were heuristic and relied on our causal
intuitions. These arguments, however, have been formalized and mathemat-
ically proven. See Fine Point 6.1 for a systematic summary of the graphical
rules, and Fine Point 6.2 for an introduction to the concept of faithfulness.

There is another possible source of association between two variables that
we have not discussed yet: chance or random variability. Unlike the structural
reasons for an association between two variables—causal effect of one on the
other, shared common causes, conditioning on common effects—random vari-
ability results in chance associations that become smaller when the size of the
study population increases.

To focus our discussion on structural associations rather than chance asso-
ciations, we continue to assume until Chapter 10 that we have recorded data on
every individual in a very large (perhaps hypothetical) population of interest.

6.4 Positivity and consistency in causal diagrams

Because causal diagrams encode our qualitative expert knowledge about the
causal structure, they can be used as a visual aid to help conceptualize causal
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Fine Point 6.1
D-separation. We define a path to be either blocked or open according to the following graphical rules.

1. If there are no variables being conditioned on, a path is blocked if and only if two arrowheads on the path collide
at some variable on the path. In Figure 6.1, the path L — A — Y is open, whereas the path A — Y < L is
blocked because two arrowheads on the path collide at Y. We call Y a collider on the path A — Y « L.

2. Any path that contains a non-collider that has been conditioned on is blocked. In Figure 6.5, the path between
A and Y is blocked after conditioning on B. We use a square box around a variable to indicate that we are
conditioning on it.

3. A collider that has been conditioned on does not block a path. In Figure 6.7, the path between A and Y is open
after conditioning on L.

4. A collider that has a descendant that has been conditioned on does not block a path. In Figure 6.8, the path
between A and Y is open after conditioning on C, a descendant of the collider L.

Rules 1-4 can be summarized as follows. A path is blocked if and only if it contains a non-collider that has been
conditioned on, or it contains a collider that has not been conditioned on and has no descendants that have been
conditioned on. Two variables are d-separated if all paths between them are blocked (otherwise they are d-connected).
Two sets of variables are d-separated if each variable in the first set is d-separated from every variable in the second set.
Thus, A and L are not d-separated in Figure 6.1 because there is one open path between them (L — A), despite the
other path (A — Y <« L)’s being blocked by the collider Y. In Figure 6.4, however, A and Y are d-separated because
the only path between them is blocked by the collider L.

The relationship between statistical independence and the purely graphical concept of d-separation relies on the
causal Markov assumption (Technical Point 6.1): In a causal DAG, any variable is independent of its non-descendants
conditional on its parents. Pearl (1988) proved the following fundamental theorem: The causal Markov assumption
implies that, given any three disjoint sets A, B, C of variables, if A is d-separated from B conditional on C, then A
is statistically independent of B given C. The assumption that the converse holds, i.e., that A is d-separated from B
conditional on C' if A is statistically independent of B given C, is a separate assumption—the faithfulness assumption
described in Fine Point 6.2. Under faithfulness, A is conditionally independent of Y given B in Figure 6.5, A is not
conditionally independent of Y given L in Figure 6.7, and A is not conditionally independent of Y given C' in Figure
6.8. The d-separation rules (‘d-' stands for directional) to infer associational statements from causal diagrams were
formalized by Pearl (1995). An equivalent set of graphical rules, known as “moralization”, was developed by Lauritzen
et al. (1990).

problems and guide data analyses. In fact, the formulas that we described in

Chapter 2 to quantify treatment effects—standardization and IP weighting—

can also be derived using causal graphs theory, as part of what is sometimes
Pearl (2009) reviews quantitative referred to as the do-calculus. Therefore, our choice of counterfactual theory
methods for causal inference that in Chapters 1-5 did not really privilege one particular approach but only one
are derived from graph theory. particular notation.

Regardless of the notation used (counterfactuals or graphs), exchangeabil-
ity, positivity, and consistency are conditions required for causal inference via
standardization or IP weighting. If any of these conditions does not hold, the
numbers arising from the data analysis may not be appropriately interpreted
as measures of causal effect. In the next section (and in Chapters 7 and 8) we
discuss how the exchangeability condition is translated into graph language.

A more precise discussion of posi- Here we focus on positivity and consistency.
tivity in causal graphs is given by Positivity is roughly translated into graph language as the condition that
Richardson and Robins (2013). the arrows from the nodes L to the treatment node A are not deterministic.
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Faithfulness. In a causal DAG the absence of an arrow from A to Y indicates that the sharp null hypothesis of no
causal effect of A on any individual's Y holds, and an arrow A — Y (as in Figure 6.2) indicates that A has a causal
effect on the outcome Y of at least one individual in the population. Thus, we would generally expect that, under
Figure 6.2, the average causal effect of A on Y, Pr[Y=! = 1] — Pr[Y*=C = 1], and the association between A and Y,
Pr[Y =1|A =1]—-Pr[Y = 1]A = 0], are not null. However, that is not necessarily true: a setting represented by Figure
6.2 may be one in which there is neither an average causal effect nor an association. For an example, remember the
data in Table 4.1. Heart transplant A increases the risk of death Y in women (half of the population) and decreases the
risk of death in men (the other half). Because the beneficial and harmful effects of A perfectly cancel out, the average
causal effect is null, Pr[Y*=! = 1] = Pr[Y=Y = 1]. Yet Figure 6.2 is the correct causal diagram because treatment A
affects the outcome Y of some individuals—in fact, of all individuals—in the population.

Formally, faithfulness is the assumption that, for three disjoint sets A, B, C on a causal DAG (where C' may be the
empty set), A independent of B given C implies A is d-separated from B given C'. When, as in our example, the causal
diagram makes us expect a non-null association that does not actually exist in the data, we say that the joint distribution
of the data is not faithful to the causal DAG. In our example the unfaithfulness was the result of effect modification
(by sex) with opposite effects of exactly equal magnitude in each half of the population. Such perfect cancellation of
effects is rare, and thus we will assume faithfulness throughout this book. Because unfaithful distributions are rare, in
practice lack of d-separation (See Fine Point 6.1) can be almost always equated to non-zero association.

There are, however, instances in which faithfulness is violated by design. For example, consider the prospective study
in Section 4.5. The average causal effect of A on Y was computed after matching on L. In the matched population, L
and A are not associated because the distribution of L is the same in the treated and the untreated. That is, individuals
are selected into the matched population because they have a particular combination of values of L and A. The causal
diagram in Figure 6.9 represents the setting of a matched study in which selection S (1: yes, 0: no) is determined by
both A and L. The box around S indicates that the analysis is restricted to those selected into the matched cohort
(S =1). According to d-separation rules, there are two open paths between A and L when conditioning on S: L — A
and L. - S <+ A. Thus one would expect L and A to be associated conditionally on S. However, matching ensures
that L and A are not associated (see Chapter 4). Why the discrepancy? Matching creates an association via the path
L — S + A that is of equal magnitude, but opposite direction, as the association via the path L — A. The net result
is a perfect cancellation of the associations. Matching leads to unfaithfulness.

Finally, faithfulness may be violated when there exist deterministic relations between variables on the graph. Specifi-
cally, when two variables are linked by paths that include deterministic arrows, then the two variables are independent
if all paths between them are blocked, but might also be independent even if some paths are open. In this book we
will assume faithfulness unless we say otherwise. Faithfulness is also assumed when the goal of the data analysis is
discovering the causal structure (see Fine Point 6.3)

The first component of consistency—well-defined interventions—means that
the arrow from treatment A to outcome Y corresponds to a possibly hypothet-
ical but relatively unambiguous intervention. In the causal diagrams discussed
in this book, positivity is implicit unless otherwise specified, and consistency
is embedded in the notation because we only consider treatment nodes with
relatively well-defined interventions. Positivity is concerned with arrows into
the treatment nodes, and well-defined interventions are only concerned with
arrows leaving the treatment nodes.

Thus, the treatment nodes are implicitly given a different status compared
with all other nodes. Some authors make this difference explicit by including
decision nodes in causal diagrams. Though this decision-theoretic approach
largely leads to the same methods described here, we do not include decision
nodes in the causal diagrams presented in this chapter. Because we are always
explicit about the potential interventions on the variable A, the additional
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Influence diagrams are causal di-
agrams augmented with decision
nodes to represent the interventions
of interest (Dawid 2000, 2002).

Recently, Pearl (2018, 2019) has
suggested a concept of causation
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that for every variable there are
well-defined counterfactuals.

Figure 6.10

Graphical representation of causal effects

nodes (to represent the potential interventions) would be somewhat redun-
dant. However, we will give a different status to treatment nodes when using
SWIGs—causal diagrams with nodes representing counterfactual variables—in
subsequent chapters.

The different status of treatment nodes compared with other nodes was also
graphically explicit in the causal trees introduced in Chapter 2, in which non-
treatment branches corresponding to non-treatment variables L and Y were
enclosed in circles, and in the “pies” representing sufficient causes in Chapter
5, which distinguish between potential treatments A and E and background
factors U. Also, our discussion on sufficiently well-defined interventions of
treatment in Chapter 3 emphasizes the requirements imposed on the treatment
variables A that do not apply to other variables.

In contrast, the causal diagrams in this chapter apparently assign the same
status to all variables in the diagram—this is indeed the case when causal dia-
grams are considered as representations of nonparametric structural equations
models with independent errors (see Technical Point 6.2). The apparently
equal status of all variables in causal diagrams may be misleading because
some of those variables correspond to ill-defined interventions. It may be okay
to draw a causal diagram that includes a node for “obesity” as the outcome
Y or even as a covariate L (more about this on Section 9.5). However, for the
reasons discussed in Chapter 3, it is generally not okay to draw a causal dia-
gram that includes a node for “obesity” as a treatment A. In causal diagrams,
nodes for treatment variables need to correspond to sufficiently well-defined
interventions.

For example, suppose that we are interested in the potential causal effect
of “weight loss” A on mortality Y, as discussed in Chapter 3. The causal
diagram in Figure 6.10 includes nodes for A and Y as well as nodes for factors
that affect body weight. For simplicity, the causal diagram includes only 3 of
those factors: caloric intake Z which (let us assume) can only affect mortality
through weight loss, exercise L which can affect mortality through pathways
other than weight loss, and genetic traits U which can affect mortality through
other pathways that are also independent of weight loss.

Identifying and interpreting the effect of a treatment A on an outcome
Y requires knowledge about how to intervene on A. When there are several
potential ways to intervene on A and some of those potential interventions
have direct effects on the outcome Y as in Figure 6.10, it becomes unclear
what “the effect of A on Y” means. In our example, reducing weight via
caloric restriction Z would result in a different risk of mortality than reducing
weight via increased exercise L or via genetic manipulation U. Even if one
were willing to disregard the ill-defined causal effect, identifying the variables
needed to achieve exchangeability would be a formidable challenge, as discussed
in Chapter 3.

Being explicit about the interventions of interest is an important step to-
wards having a well-defined causal effect, identifying relevant data, and choos-
ing adjustment variables.

6.5 A structural classification of bias

The word “bias” is frequently used by investigators making causal inferences.
There are several related, but technically different, uses of the term “bias” (see
Chapter 10). We say that there is systematic bias when the data are insufficient
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Fine Point 6.3

Discovery of causal structure. In this book we use causal diagrams as a way to represent our expert knowledge—or
assumptions—about the causal structure of the problem at hand. That is, the causal diagram guides the data analysis.
How about going in the opposite direction? Can we learn the causal structure by conducting data analyses without
making assumptions about the causal structure? The process of learning components of the causal structure through
data analysis is referred to as discovery. See the books by Spirtes et al. (2000) and by Peters et al. (2017) for
descriptions of approaches to causal discovery.

We now briefly discuss causal discovery under the assumption that the observed data arose from an unknown causal
DAG that includes, in addition to the observed variables, an unknown number of unobserved variables U. The approach to
causal discovery that we discuss in this Fine Point requires that we assume faithfulness, so that statistical independencies
in the observed data distribution imply missing causal arrows on the DAG. Even assuming faithfulness, discovery is often
impossible. For example, suppose that we find a strong association between two variables B and C' in our data. We
cannot learn much about the causal structure involving B and C because their association is consistent with many causal
diagrams: B causes C' (B — C), C causes B, (C'— B), B and C share an unmeasured cause U (B +— U — C), B
and C have an unobserved common effect U that has been conditioned on, and various combinations. If we knew the
time sequence of B and C, we could only rule out causal diagrams with either B — C' (if C predates B) or C' — B (if
B predates C').

There are, however, some settings in which learning causal structure from data appears possible. Suppose we have
an infinite amount of data on 3 variables Z, A, Y and we know that their time sequence is Z first, A second, and Y
last. Our data analysis finds that all 3 variables are marginally associated with each other, and that the only conditional
independence that holds is Z1LY|A. Then, if we are willing to assume that faithfulness holds, the only possible causal
diagram consistent with our analysis is Z — A — Y with perhaps a common cause U of Z and A in addition to (or
in place of) the arrow from Z to A. This is because, if either Z was a parent of Y or shared a cause with Y, or an
unmeasured common cause of A and Y was present, then Z and Y could not have been statistically independent given
A (assuming faithfulness). Thus, to explain the marginal dependency of Y and A, there must be a causal arrow from
AtoY.

In summary, the causal DAG learned implies that Z is not a direct cause (parent) of Y, that no unmeasured common
cause of A and Y exists, and that, in fact, the average causal effect of A on Y is identified by E[Y|A = 1]—E[Y|A = 0].
The problem, of course, is that we do not have an infinite sample size. We postpone a discussion about the implications
of random variability for causal discovery until Technical Point 10.7.

to identify—compute—the causal effect even with an infinite sample size. (In
this chapter, due to the assumption of an infinite sample size, bias refers to
systematic bias.) Informally, we often refer to systematic bias as any structural
association between treatment and outcome that does not arise from the causal
effect of treatment on outcome in the population of interest. Because causal
diagrams are helpful to represent different sources of association, we can use
causal diagrams to classify systematic bias according to its source, and thus to
sharpen discussions about bias.

Take the crucial source of bias that we have discussed in previous chapters:
lack of exchangeability between the treated and the untreated. For the average
causal effect in the entire population, we say that there is (unconditional) bias
when Pr[Ye=! = 1] - Pr[Y*=0 = 1] # Pr[Y = 1|A = 1] - Pr[Y = 1|A = 0],
which is the case when (unconditional) exchangeability Y% 1L A does not hold.
Absence of (unconditional) bias implies that the association measure (e.g.,

When there is systematic bias, no  associational risk ratio or difference) in the population is a consistent estimate
estimator can be consistent. Re-  of the corresponding effect measure (e.g., causal risk ratio or difference) in the
view Chapter 1 for a definition of  population.

consistent estimator. Lack of exchangeability results in bias even when the null hypothesis of no
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For example, conditioning on some
variables may cause selection bias
under the alternative (i.e., off the
null) but not under the null, as de-
scribed by Greenland (1977) and
Herndn (2017). See also Chapter
18.

Another form of bias may also re-
sult from (nonstructural) random
variability. See Chapter 10.

Graphical representation of causal effects

causal effect of treatment on the outcome holds. That is, even if the treatment
had no causal effect on the outcome, treatment and outcome would be associ-
ated in the data. We then say that lack of exchangeability leads to bias under
the null. In the observational study summarized in Table 3.1, there was bias
under the null because the causal risk ratio was 1 whereas the associational
risk ratio was 1.26. Any causal structure that results in bias under the null
will also cause bias under the alternative (i.e., when treatment does have a
non-null effect on the outcome). However, the converse is not true.

For the average causal effects within levels of L, we say that there is con-
ditional bias whenever Pr[Y %=1 = 1|L =[] — Pr[Y =0 = 1|L = [] differs from
PrlY =1L =1,A=1] - Pr[Y = 1|L = [,A = 0] for at least one stratum
[, which is generally the case when conditional exchangeability Y 1L A|L =1
does not hold for all a and .

So far in this book we have referred to lack of exchangeability multiple
times. However, we have yet to explore the causal structures that generate
lack of exchangeability. With causal diagrams added to our methodological
arsenal, we will be able to describe how lack of exchangeability can result from
two different causal structures:

1. Common causes: When the treatment and outcome share a common
cause, the association measure generally differs from the effect measure.
Many epidemiologists use the term confounding to refer to this bias.

2. Conditioning on common effects: This structure is the source of bias that
many epidemiologists refer to as selection bias under the null.

Chapter 7 will focus on confounding bias due to the presence of common
causes, and Chapter 8 on selection bias due to conditioning on common effects.
Again, both are examples of bias under the null due to lack of exchangeability.

Chapter 9 will focus on another source of bias: measurement error. So far
we have assumed that all variables—treatment A , outcome Y, and covariates
L— are perfectly measured. In practice, however, some degree of measurement
error is expected. The bias due to measurement error is referred to as mea-
surement bias or information bias. As we will see, some types of measurement
bias also cause bias under the null.

Therefore, in the next three chapters we turn our attention to the three
types of systematic bias—confounding, selection, and measurement. These bi-
ases may arise both in observational studies and in randomized experiments.
The susceptibility to bias of randomized experiments may not be obvious from
previous chapters, in which we conceptualized observational studies as some
sort of imperfect randomized experiments, while only considering ideal random-
ized experiments with no participants lost during the follow-up, all participants
adhering to their assigned treatment, and unknown treatment assignment for
both study participants and investigators. While our quasi-mythological char-
acterization of randomized experiments was helpful for teaching purposes, real
randomized experiments rarely look like that. The remaining chapters of Part
I will elaborate on the sometimes fuzzy boundary between experimenting and
observing.

Before that, we take a brief detour to describe causal diagrams in the
presence of effect modification.
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Identifying potential sources of bias is a key use of causal diagrams: we can
use our causal expert knowledge to draw graphs and then search for sources of
association between treatment and outcome. Causal diagrams are less helpful
to illustrate the concept of effect modification that we discussed in Chapter 4.

Suppose heart transplant A was randomly assigned in an experiment to
identify the average causal effect of A on death Y. For simplicity, let us
assume that there is no bias, and thus Figure 6.2 adequately represents this
study. Computing the effect of A on the risk of Y presents no challenge.
Because association is causation, the associational risk difference Pr[Y = 1|4 =
1]—Pr[Y = 1|4 = 0] can be interpreted as the causal risk difference Pr[Y*=! =
1] = Pr[Y =% = 1]. The investigators, however, want to go further because they
suspect that the causal effect of heart transplant varies by the quality of medical
care offered in each hospital participating in the study. Thus, the investigators
classify all individuals as receiving high (V' = 1) or normal (V = 0) quality of
care, compute the stratified risk differences in each level of V' as described in
Chapter 4, and indeed confirm that there is effect modification by V on the
additive scale. The causal diagram in Figure 6.11 includes the effect modifier
V with an arrow into the outcome Y but no arrow into treatment A (which is
randomly assigned and thus independent of V). Two important caveats.

First, the causal diagram in Figure 6.11 would still be a valid causal diagram
if it did not include V' because V is not a common cause of A and Y. It is
only because the causal question makes reference to V' (i.e., what is the average
causal effect of A on Y within levels of V'7), that V needs to be included on the
causal diagram. Other variables measured along the path between “quality of
care” V and the outcome Y could also qualify as effect modifiers. For example,
Figure 6.12 shows the effect modifier “therapy complications” N, which partly
mediates the effect of V on Y.

Second, the causal diagram in Figure 6.11 does not necessarily indicate the
presence of effect modification by V. The causal diagram implies that both A
and V affect death Y, but it does not distinguish among the following three
qualitatively distinct ways that V' could modify the effect of A on Y:

1. The causal effect of treatment A on mortality Y is in the same direction
(i.e., harmful or beneficial) in both stratum V = 1 and stratum V = 0.

2. The direction of the causal effect of treatment A on mortality Y in stra-
tum V = 1 is the opposite of that in stratum V = 0 (i.e., there is
qualitative effect modification).

3. Treatment A has a causal effect on Y in one stratum of V' but no causal
effect in the other stratum A only kills individuals with V' = 0.

That is, valid causal graphs such as Figure 6.11 fail to distinguish between
the above three different qualitative types of effect modification by V.

In the above example, the effect modifier V' had a causal effect on the
outcome. Many effect modifiers, however, do not have a causal effect on the
outcome. Rather, they are surrogates for variables that have a causal effect
on the outcome. Figure 6.13 includes the variable “cost of the treatment” S
(1: high, 0: low), which is affected by “quality of care” V but has itself no
effect on mortality Y. An analysis stratified by S (but not by V') will generally
detect effect modification by S even though the variable that truly modifies
the effect of A on Y is V. The variable S is a surrogate effect modifier whereas
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For a finer classification of ef-
fect modification via causal di-
agrams, see VanderWeele and
Robins (2007b)

Some intuition for the association
between W and V in low-cost hos-
pitals S = 0: suppose that low-
cost hospitals that use mineral wa-
ter need to offset the extra cost of
mineral water by spending less on
components of medical care that
decrease mortality. Then use of
mineral water would be inversely
associated with quality of medical
care in low-cost hospitals.

Graphical representation of causal effects

the variable V is a causal effect modifier (see Section 4.2). Because causal and
surrogate effect modifiers are often indistinguishable in practice, the concept
of effect modification comprises both. As discussed in Section 4.2, some prefer
to use the neutral term “heterogeneity of causal effects,” rather than “effect
modification,” to avoid confusion. For example, someone might be tempted
to interpret the statement “cost modifies the effect of heart transplant on
mortality because the effect is more beneficial when the cost is higher” as an
argument to increase the price of medical care without necessarily increasing
its quality.

A surrogate effect modifier is simply a variable associated with the causal
effect modifier. Figure 6.13 depicts the setting in which such association is
due to the effect of the causal effect modifier on the surrogate effect modifier.
However, such association may also be due to shared common causes or con-
ditioning on common effects. For example, Figure 6.14 includes the variables
“place of residence” (1: Greece, 0: Rome) U and “passport-defined national-
ity” P (1: Greece, 0: Rome). Place of residence U is a common cause of both
quality of care V' and nationality P. Thus P will behave as a surrogate effect
modifier because P is associated with the causal effect modifier V. Another
(admittedly silly) example to illustrate this issue: Figure 6.15 includes the
variables “cost of care” S and “use of bottled mineral water (rather than tap
water) for drinking at the hospital” W. Use of mineral water W affects cost
S but not mortality Y in developed countries. If the study were restricted to
low-cost hospitals (S = 0), then use of mineral water W would be generally
associated with medical care V', and thus W would behave as a surrogate effect
modifier. In summary, surrogate effect modifiers can be associated with the
causal effect modifier by structures including common causes, conditioning on
common effects, or cause and effect.

Causal diagrams are in principle agnostic about the presence of interaction
between two treatments A and E. However, causal diagrams can encode infor-
mation about interaction when augmented with nodes that represent sufficient-
component causes (see Chapter 5), i.e., nodes with deterministic arrows from
the treatments to the sufficient-component causes. Because the presence of
interaction affects the magnitude and direction of the association due to con-
ditioning on common effects, these augmented causal diagrams are discussed
in Chapter 8.



Chapter 7
CONFOUNDING

Suppose an investigator conducted an observational study to answer the causal question “does one’s looking up to
the sky make other pedestrians look up too?” She found an association between a first pedestrian’s looking up and
a second one’s looking up. However, she also found that pedestrians tend to look up when they hear a thunderous
noise above. Thus it was unclear what was making the second pedestrian look up, the first pedestrian’s looking
up or the thunderous noise? She concluded the effect of one’s looking up was confounded by the presence of a
thunderous noise.

In randomized experiments treatment is assigned by the flip of a coin, but in observational studies treatment
(e.g., a person’s looking up) may be determined by many factors (e.g., a thunderous noise). If those factors affect
the risk of developing the outcome (e.g., another person’s looking up), then the effects of those factors become
entangled with the effect of treatment. We then say that there is confounding, which is just a form of lack of
exchangeability between the treated and the untreated. Confounding is often viewed as the main shortcoming of
observational studies. In the presence of confounding, the old adage “association is not causation” holds even if the
study population is arbitrarily large. This chapter provides a definition of confounding and reviews the methods
to adjust for it.

7.1 The structure of confounding

The structure of confounding, the bias due to common causes of treatment
and outcome, can be represented by using causal diagrams. For example, the

o diagram in Figure 7.1 (same as Figure 6.1) depicts a treatment A, an outcome

L — A >Y Y, and their shared (or common) cause L. This diagram shows two sources
of association between treatment and outcome: 1) the path A — Y that

Figure 7.1 represents the causal effect of A on Y, and 2) the path A « L — Y between

A and Y that includes the common cause L. The path A «+ L — Y that links
A and Y through their common cause L is an example of a backdoor path.
If the common cause L did not exist in Figure 7.1, then the only path
In a causal DAG, a backdoor path  between treatment and outcome would be A — Y, and thus the entire asso-
is a noncausal path between treat- ciation between A and Y would be due to the causal effect of A on Y. That
ment and outcome that remains is, the associational risk ratio Pr[Y = 1|A = 1] /Pr[Y = 1]A = 0] would equal
even if all arrows pointing from the causal risk ratio Pr [Y“zl = 1] / Pr [Y“:O = 1}; association would be cau-
treatment to other variables (the sation. But the presence of the common cause L creates an additional source of
descendants of treatment) are re- association between the treatment A and the outcome Y, which we refer to as
moved. That is, the path has an  confounding for the effect of A on Y. Because of confounding, the associational
arrow pointing into treatment. risk ratio does not equal the causal risk ratio; association is not causation.
Examples of confounding abound in observational research. Consider the
following examples of confounding for the effect of various kinds of treatments
on health outcomes:

e Occupational factors: The effect of working as a firefighter A on the risk
of death Y will be confounded if “being physically fit” L is a cause of
both being an active firefighter and having a lower mortality risk. This
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Figure 7.2

Some authors prefer to replace the
unmeasured common cause U (and
the two arrows leaving it) by a bidi-
rectional edge between the mea-
sured variables that U causes.

Figure 7.3

Early statistical descriptions of con-
founding were provided by Yule
(1903) for discrete variables and by
Pearson et al. (1899) for contin-
uous variables. Yule described the
association due to confounding as
“fictitious”, "“illusory”, and “appar-
ent”. Pearson et al. (1899) re-
ferred to it as a “spurious” corre-
lation. However, there is nothing
fictitious, illusory, apparent, or spu-
rious about these associations. As-
sociations due to common causes
are quite real associations, though
they cannot be causally interpreted
as treatment effects. Or, in Yule's
words, they are associations “to
which the most obvious physical
meaning must not be assigned.”

Confounding

bias, depicted in the causal diagram in Figure 7.1, is often referred to as
a healthy worker bias.

e Clinical decisions: The effect of drug A (say, aspirin) on the risk of
disease Y (say, stroke) will be confounded if the drug is more likely to
be prescribed to individuals with certain condition L (say, heart disease)
that is both an indication for treatment and a risk factor for the disease.
Heart disease L is a risk factor for stroke Y because L has a direct causal
effect on Y as in Figure 7.1 or, as in Figure 7.2, because both L and Y
are caused by atherosclerosis U, an unmeasured variable. This bias is
known as confounding by indication or channeling, the last term often
being reserved to describe the bias created by patient-specific risk factors
L that encourage doctors to use certain drug A within a class of drugs.

o Lifestyle: The effect of behavior A (say, exercise) on the risk of Y (say,
death) will be confounded if the behavior is associated with another
behavior L (say, cigarette smoking) that has a causal effect on Y and
tends to co-occur with A. The structure of the variables L, A, and Y is
depicted in the causal diagram in Figure 7.3, in which the unmeasured
variable U represents the sort of personality and social factors that lead to
both lack of exercise and smoking. Another frequent problem: subclinical
disease U results both in lack of exercise A and an increased risk of
clinical disease Y. This form of confounding is often referred to as reverse
causation when L is unknown.

e Genetic factors: The effect of a DNA sequence A on the risk of developing
certain trait Y will be confounded if there exists a DNA sequence L that
has a causal effect on Y and is more frequent among people carrying A.
This bias, also represented by the causal diagram in Figure 7.3, is known
as linkage disequilibrium or population stratification, the last term often
being reserved to describe the bias arising from conducting studies in a
mixture of individuals from different ethnic groups. Thus the variable
U can stand for ethnicity or other factors that result in linkage of DNA
sequences.

e Social factors: The effect of income at age 65 A on the level of disability
at age 75 Y will be confounded if the level of disability at age 55 L affects
both future income and disability level. This bias may be depicted by
the causal diagram in Figure 7.1.

e Environmental exposures: The effect of airborne particulate matter A on
the risk of coronary heart disease Y will be confounded if other pollutants
L whose levels co-vary with those of A cause coronary heart disease. This
bias is also represented by the causal diagram in Figure 7.3, in which the
unmeasured variable U represent weather conditions that affect the levels
of all types of air pollution.

In all these cases, the bias has the same structure: it is due to the pres-
ence of a cause (L or U) that is shared by the treatment A and the outcome
Y, which results in an open backdoor path between A and Y. We refer to
the bias caused by shared causes of treatment and outcome as confounding,
and we use other names to refer to biases caused by structural reasons other
than the presence of shared causes of treatment and outcome. For simplicity
of presentation, we assume throughout this chapter that positivity and consis-
tency hold, that all nodes in the causal diagrams are perfectly measured, that



7.2 Confounding and exchangeability 87

there are no selection nodes S with a box around them (that is, the data are a
random sample from the population of interest), and that random variability
is absent. Causal diagrams with selection nodes will be discussed in Chap-
ter 8, and causal diagrams with mismeasured nodes in Chapter 9. Random
variability is discussed in Chapter 10.

7.2 Confounding and exchangeability

See Greenland and Robins (1986,
2009) for a detailed discussion on
the relations between confounding
and exchangeability.

Under conditional exchangeability,
E[Ye=l] - E[Yy*=Y] =

YLEYIL=1,A=1]Pr[L
YLEYIL=1,A=0]Pr[L

] -
i

Pearl (1995, 2009) proposed the
backdoor criterion for nonparamet-
ric identification of causal effects.

We now link the concept of confounding, which we have defined using causal
diagrams, with the concept of exchangeability, which we have defined using
counterfactuals in earlier chapters.

When exchangeability Y® 1L A holds, as in a marginally randomized experi-
ment in which all individuals have the same probability of receiving treatment,
the average causal effect can be identified without adjustment for any vari-
ables. For a binary treatment A, the average causal effect E[Y*=!] — E[Y*=7]
is calculated as the difference of conditional means E[Y'|A =1] — E[Y |4 =0].

When exchangeability Y 1l A does not hold but conditional exchangeabil-
ity Y 1L A|L does, as in a conditionally randomized experiment in which the
probability of receiving treatment varies across values of L, the average causal
effect can also be identified. However, as we described in Chapter 2, iden-
tification of the causal effect E[Y?=!] — E[Y%=Y] in the population requires
adjustment for the variables L via standardization or IP weighting. Also, as
we described in Chapter 4, conditional exchangeability also allows the identifi-
cation of the conditional causal effects E[Y*=!|L =[] — E[Y*=Y|L =[] for any
value [ via stratification.

In practice, if we believe confounding is likely, a key question arises: can
we determine whether there exists a set of measured covariates L for which
conditional exchangeability holds? Answering this question is difficult because
thinking in terms of conditional exchangeability Y* Ll A|L is often not intuitive
in complex causal systems.

In this chapter, we will see that answering this question is possible if one
knows the causal DAG that generated the data. To do so, suppose that we
know the true causal DAG (for now, it doesn’t matter how we know it: perhaps
we have sufficient subject-matter knowledge, or perhaps an omniscient god gave
it to us). How does the causal DAG allow us to determine whether there exists
a set of variables L for which conditional exchangeability holds? There are
two main approaches: (i) the backdoor criterion applied to the causal DAG
and (ii) the transformation of the causal DAG into a SWIG. Though the use
of SWIGs is a more direct approach, it also requires a bit more machinery so
we are going to first explain the backdoor criterion; we will describe the SWIG
approach in Section 7.5.

A set of covariates L satisfies the backdoor criterion if all backdoor paths
between A and Y are blocked by conditioning on L and L contains no variables
that are descendants of treatment A. Under faithfulness and a further condition
discussed in Technical Point 7.1, conditional exchangeability Y'* 1l A|L holds if
and only if L satisfies the backdoor criterion. (A simple proof of this fact will
be given below based on SWIGs.) Hence, we can now answer any query we may
have about whether, for a given set of covariates L, conditional exchangeability
given L holds. Thus, by trying every subset of measured non-descendants of
treatment, we can answer the question of whether conditional exchangeability
holds for any subset. (In fact, algorithms exist that can greatly reduce the
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Technical Point 7.1

Does conditional exchangeability imply the backdoor criterion? That L satisfies the backdoor criterion always
implies conditional exchangeability given L, even in the absence of faithfulness. In the main text we also said that,
given faithfulness, conditional exchangeability given L implies that L satisfies the backdoor criterion. This last sentence
is true under an FFRCISTG model (see Technical Point 6.2). In contrast, under an NPSEM-IE model, conditional
exchangeability can hold even if the backdoor criterion does not, as is the case in a causal DAG with nodes A, L, Y and
arrows A — L, A — Y. In this book we always assume an FFRCISTG model and faithfulness, unless stated otherwise.

This difference between causal models is due to the fact that the NPSEM-IE, unlike an FFRCISTG model, assumes
cross-world independencies between counterfactuals. However a cross-world independence can never be verified, even in
principle, by any randomized experiment, which was the very reason that Robins (1986, 1987) did not assume cross-world
independencies in his FFRCISTG model. We will return to this issue in Chapter 23.

number of subsets that must be tried in order to answer the question.)
Let us now relate the backdoor criterion (i.e., exchangeability) to confound-
ing. The two settings in which the backdoor criterion is satisfied are

1. No common causes of treatment and outcome. In Figure 6.2, there are
no common causes of treatment and outcome, and hence no backdoor
paths that need to be blocked. Then the set of variables that satisfies
the backdoor criterion is the empty set and we say that there is no con-
founding.

2. Common causes of treatment and outcome but a subset L of measured
non-descendants of A suffices to block all backdoor paths. In Figure 7.1,
the set of variables that satisfies the backdoor criterion is L. Thus, we
say that there is confounding, but that there is no residual confounding
whose elimination would require adjustment for unmeasured variables
(which, of course, is not possible). For brevity, we say that there is no
unmeasured confounding.

The first setting describes a marginally randomized experiment in which
confounding is not expected because treatment assignment is solely deter-
mined by the flip of a coin—or its computerized upgrade: the random number
generator—and the flip of the coin cannot cause the outcome. That is, when the
treatment is unconditionally randomly assigned, the treated and the untreated
are expected to be exchangeable because no common causes exist or, equiva-
lently, because there are no open backdoor paths. Marginal exchangeability,
ie., Y1l A, is equivalent to no common causes of treatment and outcome.

The second setting describes a conditionally randomized experiment in
which the probability of receiving treatment is the same for all individuals
with the same value of L but, by design, this probability varies across values
of L, that is there is an arrow L — A. This experimental design guarantees
confounding if L is also either a cause of the outcome (as in Figure 7.1) or the
descendant of an unmeasured cause of the outcome as in Figure 7.2. Hence,
there are open backdoor paths. However, conditioning on the covariates L
will block all backdoor paths and therefore conditional exchangeability, i.e.,
Yol A|L, will hold. We say that a set L of measured non-descendants of A
is a sufficient set for confounding adjustment when conditioning on L blocks
all backdoor paths—that is, the treated and the untreated are exchangeable
within levels of L.
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Take our heart transplant study, a conditionally randomized experiment,
as an example. Individuals who received a transplant (A = 1) are different
from the others (A = 0) because, had the treated remained untreated, their
risk of death Y would have been higher than that of those that were actually
untreated—the treated had a higher frequency of severe heart disease L, a
common cause of A and Y. The presence of common causes of treatment
and outcome implies that the treated and the untreated are not marginally
exchangeable but are conditionally exchangeable given L. This second setting
is also what one hopes for in observational studies in which many variables L
have been measured.

The backdoor criterion does not answer questions regarding the magnitude
or direction of confounding. It is logically possible that some unblocked back-
door paths are weak (e.g., if L does not have a large effect on either A or Y)
and thus induce little bias, or that several strong backdoor paths induce bias
in opposite directions and thus result in a weak net bias. Because unmeasured
confounding is not an “all or nothing” issue, in practice, it is important to
consider the expected direction and magnitude of the bias (see Fine Point 7.1).

7.3 Confounding and the backdoor criterion
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We now describe several examples of the application of the backdoor criterion
to determine whether the causal effect of A on Y is identifiable and, if so, which
variables are required to ensure conditional exchangeability. Remember that
all causal DAGs in this chapter include perfectly measured nodes that are not
conditioned on.

In Figure 7.1 there is confounding because the treatment A and the outcome
Y share the cause L, i.e., because there is an open backdoor path between A
and Y through L. However, this backdoor path can be blocked by conditioning
on L. Thus, if the investigators collected data on L for all individuals, there
is no unmeasured confounding given L.

In Figure 7.2 there is confounding because the treatment A and the outcome
Y share the unmeasured cause U, i.e., there is a backdoor path between A and
Y through U. (Unlike the variables L, A, and Y, the variable U was not
measured by the investigators.) This backdoor path could be theoretically
blocked, and thus confounding eliminated, by conditioning on U, had data on
this variable been collected. However, this backdoor path can also be blocked
by conditioning on L. Thus, there is no unmeasured confounding given L.

In Figure 7.3 there is also confounding because the treatment A and the
outcome Y share the cause U, and the backdoor path can also be blocked by
conditioning on L. Therefore there is no unmeasured confounding given L.

Now consider Figure 7.4. In this causal diagram there are no common
causes of treatment A and outcome Y, and therefore there is no confounding.
The backdoor path between A and Y through L (A «+ Uy — L « U; —
Y') is blocked because L is a collider on that path. Thus all the association
between A and Y is due to the effect of A on Y: association is causation. For
example, suppose A represents physical activity, Y cervical cancer, U; a pre-
cancer lesion, L a diagnostic test (Pap smear) for pre-cancer, and Us a health-
conscious personality (more physically active, more visits to the doctor). Then,
under the causal diagram in Figure 7.4, the effect of physical activity A on
cancer Y is unconfounded and there is no need to adjust for L to compute either
Pr[Y%=1] or Pr[Y%=Y] and thus to compute the causal effect in the population.
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Fine Point 7.1

The strength and direction of confounding bias. Suppose you conducted an observational study to identify the effect
of heart transplant A on death Y and that you assumed no unmeasured confounding. A thoughtful critic says “the
inferences from this observational study may be incorrect because of potential confounding due to cigarette smoking
L.” A crucial question is whether the bias results in an attenuated or an exaggerated estimate of the effect of heart
transplant. For example, suppose that the risk ratio from your study was 0.6 (heart transplant was estimated to reduce
mortality during the follow-up by 40%) and that, as the reviewer suspected, cigarette smoking L is a common cause
of A (cigarette smokers are less likely to receive a heart transplant) and Y (cigarette smokers are more likely to die).
Because there are fewer cigarette smokers (L = 1) in the heart transplant group (A = 1) than in the other group
(A = 0), one would have expected to find a lower mortality risk in the group A = 1 even under the null hypothesis of
no effect of treatment A on Y. Adjustment for cigarette smoking will therefore move the effect estimate upwards (say,
from 0.6 to 0.7). In other words, lack of adjustment for cigarette smoking resulted in an exaggeration of the beneficial
average causal effect of heart transplant.

An approach to predict the direction of confounding bias is the use of signed causal diagrams. Consider the causal
diagram in Figure 7.1 with dichotomous L, A, and Y variables. A positive sign over the arrow from L to A is added if
L has a positive average causal effect on A (i.e., if the probability of A = 1 is greater among those with L = 1 than
among those with L = 0), otherwise a negative sign is added if L has a negative average causal effect on A (i.e., if the
probability of A =1 is greater among those with L = 0 than among those with L = 1). Similarly a positive or negative
sign is added over the arrow from L to Y. If both arrows are positive or both arrows are negative, then the confounding
bias is said to be positive, which implies that effect estimate will be biased upwards in the absence of adjustment for
L. If one arrow is positive and the other one is negative, then the confounding is said to be negative, which implies
that the effect estimate will be biased downwards in the absence of adjustment for L. Unfortunately, this simple rule
may fail in more complex causal diagrams or when the variables are non dichotomous. See VanderWeele, Hernan, and
Robins (2008) for a more detailed discussion of signed diagrams in the context of average causal effects.

Regardless of the sign of confounding, another key issue is the magnitude of the bias. Biases that are not large enough
to affect the conclusions of the study may be safely ignored in practice, whether the bias is upwards or downwards. A
large confounding bias requires a strong confounder-treatment association and a strong confounder-outcome association
(conditional on the treatment). For discrete confounders, the magnitude of the bias depends also on prevalence of
the confounder (Cornfield et al. 1959, Walker 1991). If the confounders are unknown, one can only guess what the
magnitude of the bias is. Educated guesses can be organized by conducting sensitivity analyses (i.e., repeating the
analyses under several assumptions regarding the magnitude of the bias), which may help quantify the maximum bias
that is reasonably expected. See Rosenbaum (2005), Greenland (1996a), Robins, Rotnitzky, and Scharfstein (1999),
Greenland and Lash (2008), and VanderWeele and Arah (2011) for detailed descriptions of sensitivity analyses for
unmeasured confounding.

Suppose, as in the last four examples, that data on L, A, and Y suffice to

An informal definition for Figures
7.1 to 7.4: 'A confounder is any
variable that can be used to adjust
for confounding.” Note this defini-
tion is not circular because we have
previously provided a definition of
confounding. Another example of
a non-circular definition: “A musi-
cian is a person who plays music,”
stated after we have defined what
music is.

identify the causal effect. In such setting we define L to be a confounder if
the data on A and Y do not suffice for identification (i.e., we have structural
confounding). We define L to be a non-confounder if data on A, Y alone suffice
for identification. These definitions are equivalent to defining L as a confounder
if there is conditional exchangeability but not unconditional exchangeability
(i.e., structural confounding) and as a non-confounder if there is unconditional
exchangeability.

Thus, in Figures 7.1-7.3, L is a confounder because Pr[Y® = 1] is identified
by the standardized risk >, Pr[Y = 1|A = a,L =[]Pr[L =]. In Figures 7.2
and 7.3, L is not a common cause of A and Y, yet we still say that L is a
confounder because it is needed to block the open backdoor path attributable
to the unmeasured common cause U of A and Y. In Figure 7.4, L is a non-
confounder and the identifying formula for Pr[Y® = 1] is just the conditional
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The possibility of identification of
unconditional effects without iden-
tification of conditional effects was
non-graphically demonstrated by
Greenland and Robins (1986). The
conditional bias in Figure 7.4 was
described by Greenland, Pearl, and
Robins (1999) and referred to as M-
bias (Greenland 2003) because the
structure of the variables involved
in it—Us, L, U;—resembles a letter
M lying on its side.

If Uy caused Usy, or Us caused Uq,
or an unmeasured Us caused both,
there would exist a common cause
of A and Y, and we would have nei-
ther unconditional nor conditional
exchangeability given L.

The definition of collider is path-
specific: L is a collider on the path
A+ Uy — L+« U; =Y, but not
onthepath A« L+ U; =Y.

P

U,

Y

Figure 7.5

-

T

L —A—Y

[
U,

Figure 7.6

mean Pr[Y = 1|4 = qa].

Interestingly, in Figure 7.4, conditional exchangeability given L does not
hold and thus the counterfactual risks Pr[Y* = 1|L = I] are not equal to
the stratum-specific risks Pr[Y = 1|4 = a, L = ], and the conditional treat-
ment effects with strata of L are not identified. Further, adjustment for L via
standardization ), Pr[Y =1|A =a,L =[] Pr[L =[] gives a biased estimate
of Pr[Y%]. This follows from the fact that adjustment for L would induce bias
because conditioning on the collider L opens the backdoor path between A
and Y (A« Uy — L «+ Uy — Y), which was previously blocked by the col-
lider itself. Thus the association between A and Y would be a mixture of the
association due to the effect of A on Y and the association due to the open
backdoor path. Association would not be causation any more. This is the first
example we have seen for which unconditional exchangeability holds but con-
ditional exchangeability does not: the average causal effect is identified, but
generally not the conditional causal effects within levels of L. We refer to the
resulting bias in the conditional effect as selection bias because it it arises from
selecting (conditioning) on the common effect L of two marginally independent
variables U; and Us, one of which is associated with A and the other with Y
(see Chapter 8).

The causal diagram in Figure 7.5 is a variation of the one in Figure 7.4.
The difference is that, in Figure 7.5, there is an arrow L — A. The presence
of this arrow creates an open backdoor path A < L < U; — Y because Uy
is a common cause of A and Y, and so confounding exists. Conditioning on
L would block that backdoor path but would simultaneously open a backdoor
path on which L is a collider (A <~ Us - L <+ U; = Y).

Therefore, in Figure 7.5, the bias is intractable: attempting to block the
confounding path opens a selection bias path. There is neither unconditional
exchangeability nor conditional exchangeability given L. A solution to the bias
in Figure 7.5 would be to measure either (i) a variable L between U; and either
AorY, or (ii) a variable Ly between U and either A or L. In the first case we
would have conditional exchangeability given L;. In the second case we would
have conditional exchangeability given both Ly and L. For example, Figure
7.6 includes the variable L; between U; and Y and the variable Lo, between
Us; and A. See Fine Point 7.2 for a discussion of identification of causal effects
depending on what variables are measured in Figure 7.6.

The causal diagrams in this section depict two structural sources of lack of
exchangeability that are due to the presence of open backdoor paths between
treatment and outcome. The first source is the presence of common causes
of treatment and outcome—which creates an open backdoor path. The sec-
ond source is conditioning on a common effect—which may open a previously
blocked backdoor path. For pedagogic purposes, we have reserved the term
“confounding” for the first and “selection bias” for the latter. An alterna-
tive way to structurally define confounding could be the “bias due to an open
backdoor path between A and Y.” This alternative definition is identical to
ours except that it labels the bias due to conditioning on L in Figure 7.4 as
confounding rather than as selection bias. The alternative definition can be
equivalently expressed as follows: confounding is “any systematic bias that
would be eliminated by randomized assignment of A”. To see this, note that
the bias induced in Figure 7.4 by conditioning on L could not occur in an
experiment in which treatment A is randomly assigned because the random
assignment ensures the absence of an unmeasured Us that is a common cause
of A and L and thus conditioning on L would no longer open a backdoor path.

One interesting distinction between these two definitions is the following.
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Fine Point 7.2

Identification of conditional and unconditional effects. Under any causal diagram, the causal effects that can be
identified depend on the variables that are measured in addition to the treatment and the outcome. Take Figure 7.6 as
an example. If we measure only Ly (but not L and L), we have neither unconditional nor conditional exchangeability
given Lo, and no causal effects can be identified. If we measure Ly and L, we have conditional exchangeability given
Lo and L, but we do not have conditional exchangeability given either Ly alone or L alone. However, we can identify:

e The conditional causal effects within joint strata of Ly and L. The identifying formula for each of the counterfactual
meansis E[Y|A=a,L =1,Ly =]

e The unconditional causal effect. The identifying formula for each of the counterfactual means is
Y ENY[IA=a,L=1Ly=0L|Pr[L=1,Ly =l

e The conditional causal effects within strata of L. The identifying formula for each of the counterfactual means is
YL EY[A=a,L =1Ly =1]Pr[ly =l|L =1].

e The conditional causal effects within strata of L. The identifying formula for each of the counterfactual means
is Zl E [Y|A = a,L = l,LQ = lg] Pr [L = l|L2 = lg]

If we only measure Lq, then we have conditional exchangeability given L; so we can identify the conditional causal
effects within strata of L; and the unconditional causal effect. If we measure L1 and L, then we can also identify the
conditional causal effects within joint strata of L; and L, and within strata of L alone. If we measure L, L1, and Lo,
then we can also identify the conditional effects within joint strata of all three variables.

The existence of a common cause of treatment and the outcome (the structural
definition of confounding) is a substantive fact about the study population
and the world, independent of the method chosen to analyze the data. On
the other hand, the definition of confounding as any bias that would have been
eliminated by randomization implies that the existence of confounding depends
on the method of analysis. In Figure 7.4, we have no confounding if we do not
adjust for L, but we introduce confounding if we do adjust.

Nonetheless, the choice of one definition over the other is just a matter of
taste with no practical implications as all our conclusions regarding identifia-
bility are based solely on whether conditional or unconditional exchangeability
holds and not on our definition of confounding. The next chapter provides
more detail on the distinction between confounding and selection bias.

7.4 Confounding and confounders

In the previous section, we have described how to use causal diagrams to
decide whether confounding exists and, if so, to identify whether a given set
of measured variables L is a sufficient set for confounding adjustment. The
procedure requires a priori knowledge of the causal DAG that includes all
causes—both measured and unmeasured—shared by the treatment A and the
outcome Y. Once the causal diagram is known, we simply need to apply the
backdoor criterion to determine what variables need to be adjusted for.

In contrast, the traditional approach to handle confounding was based
mostly on observed associations rather than on prior causal knowledge. The
traditional approach first labels variables that meet certain (mostly) associa-
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Technically, investigators do not
need structural knowledge. They
only need to know a set of vari-
ables that guarantees conditional
exchangeability. However, ac-
quiring the structural knowledge—
and therefore drawing the causal
diagram—is arguably the most nat-
ural approach to reason about con-
ditional exchangeability.
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tional conditions as confounders and then mandates that these so-called con-
founders are adjusted for in the analysis. Confounding is said to exist when
the adjusted estimate differs from the unadjusted estimate.

Under the traditional approach, a confounder was defined as a variable that
meets the following three conditions: (1) it is associated with the treatment,
(2) it is associated with the outcome conditional on the treatment (with “con-
ditional on the treatment” often replaced by “in the untreated”), and (3) it
does not lie on a causal pathway between treatment and outcome. However,
this traditional approach may lead to inappropriate adjustment. To see why,
let us revisit Figures 7.1-7.4.

In Figure 7.1, the variable L is associated with the treatment (because it
has a causal effect on A), is associated with the outcome conditional on the
treatment (because it has a direct causal effect on Y), and it does not lie
on the causal pathway between treatment and outcome. In Figure 7.2, the
variable L is associated with the treatment (because it has a causal effect on
A), is associated with the outcome conditional on the treatment (because it
shares the cause U with Y'), and it does not lie on the causal pathway between
treatment and outcome. In Figure 7.3, L is associated with the treatment (it
shares the cause U with A), is associated with the outcome conditional on
the treatment (it has a causal effect on Y'), and it does not lie on the causal
pathway between treatment and outcome.

Therefore, according to the traditional approach, L is a confounder in the
settings represented by Figures 7.1-7.3 and it needs be adjusted for. That was
also our conclusion when using the backdoor criterion in the previous section.
For Figures 7.1-7.3, there is no discrepancy between the traditional, mostly
associational approach and the application of the backdoor criterion to the
causal diagram.

Now consider Figure 7.4 again in which there is no confounding and L is a
non-confounder by the definition given in Section 7.3. However, L meets the
criteria for a traditional confounder: it is associated with the treatment (it
shares the cause Us with A), it is associated with the outcome conditional on
the treatment (it shares the cause U; with V), and it does not lie on the causal
pathway between treatment and outcome. Hence, according to the traditional
approach, L is a confounder that should be adjusted for, even in the absence
of confounding! But, as we saw above, adjustment for L results in a biased
estimator of the causal effect in the population due to selection bias. Figure
7.7 is another example in which the traditional approach leads to inappropriate
adjustment for L by inducing selection bias.

These examples show that associational or statistical criteria are insufficient
to characterize confounding. An approach based on a definition of confounder
that relies almost exclusively on statistical considerations may lead, as shown
by Figures 7.4 and 7.7, to the wrong advice: adjust for a “confounder” even
when structural confounding does not exist. To eliminate this problem for Fig-
ure 7.4, a follower of the traditional approach might replace the associational
condition “(2) it is associated with the outcome conditional on the treatment”
by the structural condition “(2) it is a cause of the outcome.” This modified def-
inition of confounder prevents inappropriate adjustment for L in Figure 7.4,
but only to create a new problem by not considering L a confounder—that
needs to be adjusted for—in Figure 7.2. See Technical Point 7.2.

The traditional approach misleads investigators into adjusting for variables
when adjustment is harmful. The problem arises because the traditional ap-
proach starts by defining confounders in the absence of sufficient causal knowl-
edge about the sources of confounding, and then mandates adjustment for
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Fine Point 7.3

Surrogate confounders. Under the causal DAG in Figure 7.8, there is confounding for the effect of A on Y because
of the presence of the unmeasured common cause U. The measured variable L is a proxy or surrogate for U. For
example, the unmeasured variable socioeconomic status U may confound the effect of physical activity A on the risk
of cardiovascular disease Y. Income L is a surrogate for the often ill-defined variable socioeconomic status. Should
we adjust for the variable L7 On the one hand, it can be said that L is not a confounder because it does not lie on
a backdoor path between A and Y. On the other hand, adjusting for the measured L, which is associated with the
unmeasured U, may indirectly adjust for some of the confounding caused by U. In the extreme, if L were perfectly
correlated with U then it would make no difference whether one conditions on L or on U. Indeed if L is binary and is
a nondifferentially misclassified (see Chapter 9) version of U, conditioning on L will result in a partial blockage of the
backdoor path A +— U — Y under some weak conditions (Greenland 1980, Ogburn and VanderWeele 2012). Therefore
we will typically prefer to adjust, rather than not to adjust, for L.

We refer to variables that can be used to reduce confounding bias even though they are not on a backdoor path (and
so could never completely eliminate confounding) as surrogate confounders. A possible strategy to fight confounding is
to measure as many surrogate confounders as possible and adjust for all of them. See Chapter 18 for discussion.

those so-called confounders. If the adjusted and unadjusted estimates dif-
fer, the traditional approach declares the existence of confounding. However,
change in estimates may occur for reasons other than confounding, including
selection bias when adjusting for non-confounders (see Chapter 8) and the use
of noncollapsible effect measures (see Fine Point 4.3). Attempts to define con-
founding based on change in estimates have been long abandoned because of
these problems.

In contrast, a structural approach starts by explicitly identifying the sources
of confounding—the common causes of treatment and outcome that, were they
all measured, would be sufficient to adjust for confounding—and then identifies
a sufficient set of adjustment variables.

The structural approach makes clear that including a particular variable

in a sufficient set depends on the variables already included in the set. For

example, in Figures 7.2 and 7.3 the set of variables L is needed to block a

backdoor path because the set of variables U is not measured. We could then

say that the variables in L are confounders. However, if the variables U had

been measured and used to block the backdoor path, then the variables L

would not be confounders given U (see also Fine Point 7.3). Given a causal

VanderWeele and Shpitser (2013) DAG, confounding is an absolute concept whereas confounder is a relative one.

also proposed a formal definition of A structural approach to confounding emphasizes that causal inference from

confounder. observational data requires a priori causal knowledge. This causal knowledge
is summarized in a causal DAG that encodes the researchers’ beliefs or as-
sumptions about the causal network. Of course, there is no guarantee that the
researchers’ causal DAG is correct and thus it is possible that, contrary to the
researchers’ beliefs, their chosen set of adjustment variables fails to eliminate
confounding or introduces selection bias. However, the structural approach
to confounding has two important advantages. First, it prevents inconsisten-
cies between beliefs and actions. For example, if you believe Figure 7.4 is the
true causal diagram—and therefore that there is no confounding for the effect
of A on Y—then you will not adjust for the variable L, regardless of what
non-structural definitions of confounder may say. Second, the researchers’ as-
sumptions about confounding become explicit and therefore can be explicitly
criticized by other investigators.
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Technical Point 7.2

Fixing the traditional definition of confounder. Figures 7.4 and 7.7 depict two graphical examples in which the
traditional non-graphical definition of confounder and confounding misleads investigators into adjusting for a variable
when adjustment for such variable is not only superfluous but also harmful. The traditional definition fails because it
relies on two incorrect statistical criteria—conditions (1) and (2)—and one incorrect causal criterion—condition (3). To
“fix" the traditional definition one needs to do two things:

1. Replace condition (3) by the condition that “there exist variables L and U such that there is conditional exchange-
ability within their joint levels Y* 1L A|L,U. This new condition is stronger than the earlier condition because it
effectively implies that L is not on a causal pathway between A and Y and that E[Y*|L = [, U = u] is identified
by E[Y|L=1,U =u,A=q].

2. Replace conditions (1) and (2) by the following condition: U can be decomposed into two disjoint subsets U; and
Us (i.e., U =Uy UUsz and U; NUs is empty) such that (i) U; and A are not associated within strata of L, and
(ii) Uz and Y are not associated within joint strata of A, L, and U;. The variables in U; may be associated with
the variables in Us. U; can always be chosen to be the largest subset of U that is unassociated with treatment.

If these two new conditions are met we say U is a non-confounder given data on L. These conditions were proposed
by Robins (1997a, Theorem 4.3) and further discussed by Greenland, Pearl, and Robins (1999, pp. 45-46, note the
condition that U = U; U Uy was inadvertently left out). These conditions overcome the difficulties found in Figures 7.4
and 7.7 because they allow us to dismiss variables as non-confounders (Robins 1997a). For example, Greenland, Pearl,
and Robins applied these conditions to Figure 7.4 to show that there is no confounding.

7.5 Single-world intervention graphs

Exchangeability is translated into graph language as the lack of open paths
between the treatment A and outcome Y nodes—other than those originating
from A—that would result in an association between A and Y. Chapters 7—
9 describe different ways in which lack of exchangeability can be represented
in causal diagrams. For example, in this chapter we discuss confounding, a
violation of exchangeability due to the presence of an open backdoor path
between treatment and outcome.

The equivalence between unconditional exchangeability Y* 1L A and the
backdoor criterion seems rather magical: there appears to be no obvious re-
lationship between counterfactual independence and the absence of backdoor
paths because counterfactuals are not included as variables on causal diagrams.
Since graphs are so useful for evaluating independencies via d-separation, it
seems natural to want to construct graphs that include counterfactuals as
nodes, so that unconditional and conditional exchangeability can be directly
read off the graph.

A new type of graph—Single-world intervention graphs (SWIGs)— unify
the counterfactual and graphical approaches by explicitly including the coun-

Richardson and Robins (2013) terfactual variables on the graph. A SWIG depicts the variables and causal
showed that SWIGs overcome some  relations that would be observed in a hypothetical world in which all individ-
of the shortcomings of previously uals received treatment level a. That is, a SWIG is a graph that represents
proposed twin causal diagrams a counterfactual world created by a single intervention. In contrast, the vari-
(Balke and Pearl 1994). ables on a standard causal diagram represent the actual world. A SWIG can
then be viewed as a function that transforms a given causal diagram under a
given intervention. The following examples describe this transformation.
Suppose the causal diagram in Figure 7.2 represents the observed study
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Under an FFRCISTG model, it can
be shown that d-separation also
implies statistical independence on
the SWIG.

In the single intervention world, a
is a constant and thus cannot af-
fect other variables. When draw-
ing SWIGs, however, we include ar-
rows from a as a convenient way to
keep track of the variables directly
affected by A in the original DAG.

Confounding

data. The SWIG in Figure 7.9 is a transformation of Figure 7.2 that represents
a world in which all individuals have received an intervention that sets their
treatment to the fixed value a.

In the SWIG, the treatment node is split into left and right sides which are
to be regarded as separate nodes (variables) once split. The right side encodes
the treatment value a under the intervention and inherits all the arrows that
were out of A in the original causal DAG. The left side encodes the value of
treatment A that would have been observed in the absence of intervention,
i.e., the natural value of treatment. It inherits all nodes that were into A on
the causal DAG because its causal inputs are the same in the intervened on
(counterfactual) world as in the actual world. Note that A does not have
an arrow into a because the value a is the same for all individuals, i.e., is a
constant in the intervened on world.

We assume that the natural value of treatment A is well defined even though
we are generally unable to measure it under intervention a. In some settings,
though, A may be measurable: recent experiments suggest that electroen-
cephalogram recordings can detect the choice individuals will make up to 1/2
second before individuals becomes conscious of their decision. If so, A could
actually be measured via electroencephalogram, while still leaving 1/2 second
to intervene and give treatment a.

In the SWIG, the outcome is Y%, the value of Y in the intervened on world.
Because the remaining variables are temporally prior to A, they are not affected
by the intervention and therefore take the same value as in the observed world.
i.e., they are not labeled as a counterfactual variable. In fact, any variable
that is a non-descendant of A need not be labeled as a counterfactual because,
under the faithfulness assumption (which we make), treatment has no causal
effect on its non-descendants for any individual. Under our causal model,
conditional exchangeability Y 1L A|L holds because all paths between Y* and
A are blocked after conditioning on L, i.e., Y* and A are d-separated given L.

Consider now the causal diagram in Figure 7.4 and the SWIG in Figure
7.10. Marginal exchangeability Y* 1L A holds because, on the SWIG, all paths
between Y® and A are blocked (without conditioning on L). In contrast,
conditional exchangeability Y 1L A|L does not hold because, on the SWIG, the
path Y% «+— Uy — L +— Us — A is open when the collider L is conditioned
on. This is why the marginal A-Y association is causal, but the conditional A-
Y association given L is not, and thus any method that adjusts for L results in
bias. These examples show how SWIGs unify the counterfactual and graphical
approaches. In fact it is straightforward to see that, on the SWIG, Y is d-
separated from A given L if and only if L is a non-descendant of A that blocks
all backdoor paths from A to Y (see also Fine Point 7.4).

7.6 Confounding adjustment

Figure 7.11

In the absence of randomization, causal inference relies on the uncheckable
assumption that we have measured a set of variables L that is a sufficient
set for confounding adjustment, i.e., a set of non-descendants of treatment
A that includes enough variables to block all backdoor paths from A to Y.
Under this assumption of conditional exchangeability given L, standardization
and TP weighting can be used to compute the average causal effect in the
population. But, as discussed in Section 4.6, standardization and IP weighting
are not the only available methods to adjust for confounding in observational
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Fine Point 7.4

Confounders cannot be descendants of treatment, but can be in the future of treatment. Consider the causal
DAG in Figure 7.11. L is a descendant of treatment A that blocks all backdoor paths from A to Y. Unlike in Figures
7.4 and 7.7, conditioning on L does not cause selection bias because no collider path is opened. Rather, because the
causal effect of A on Y is solely through the intermediate variable L, conditioning on L completely blocks this pathway.
This example shows that adjusting for a variable L that blocks all backdoor paths does not eliminate bias when L is a
descendant of A.

Since conditional exchangeability Y* 1L A|L implies that the adjustment for L eliminates all bias, it must be the case
that conditional exchangeability fails to hold and the average treatment effect E[Y ?=1] — E[Y =] cannot be identified
in this example. This failure can be verified by analyzing the SWIG in Figure 7.12, which depicts a counterfactual world
in which A has been set to the value a. In this world, the factual variable L is replaced by the counterfactual variable
L%, i.e., the value of L that would have been observed if all individuals had received treatment value a. Since L® blocks
all paths from Y to A we conclude that Y* L A|L® holds, but we cannot conclude that conditional exchangeability
Y1 A|L holds as L is not even on the graph. (Under an FFRCISTG, any independence that cannot be read off the
SWIG cannot be assumed to hold.) Therefore, we cannot ensure that the average treatment effect E[Y%=1] — E[Y%=Y]
is identified from data on (L, A,Y).

The problem arises because L is a descendant of A, not because L is in the future of A. If, in Figure 7.11, the arrow
from A to L did not exist, then L would be a non-descendant of A that blocks all the backdoor paths. Analogously,
on the SWIG in Figure 7.12, we can replace L® by L as A is no longer a cause of L (note Y* and A are now d-
separated by L). Therefore adjusting for L would eliminate all bias, even if L were still in the future of A. What
matters is the topology of the causal diagram (which variables cause which variables), not the time sequence of the
nodes. Rosenbaum (1984) and Robins (1986, section 11) give non-graphical discussions of the control of confounding
by temporally post-treatment variables.

studies. Methods that adjust for confounders L can be classified into two broad
categories:

A |a —> Ja—> Ya e G-methods: Standardization, IP weighting, and g-estimation. These
methods (the ‘g’ stands for ‘generalized’) exploit conditional exchange-
f ability given L to estimate the causal effect of A on Y in the entire
population or in any subset of the population. In our heart transplant
U study, we used g-methods to adjust for confounding by disease severity
L in Sections 2.4 (standardization) and 2.5 (IP weighting). Part II de-
Figure 7.12 scribes model-based extensions of g-methods: the parametric g-formula
(standardization), IP weighting of marginal structural models, and g-

estimation of nested structural models.

e Conventional methods for stratification-based adjustment: Stratifica-

tion (including restriction) and matching. These methods exploit con-

ditional exchangeability given L to estimate the association between A

and Y in subsets defined by L. In our heart transplant study, we used

stratification-based methods to adjust for confounding by disease severity

A common variation of stratifica- L in Sections 4.4 (stratification) and 4.5 (matching). Part IT describes the

tion and matching replaces each model-based extension of conventional stratification: outcome regression.
individual's variables L by the in-

dividual's estimated probability of Standardization and IP weighting simulate the A-Y association in the pop-

receiving treatment Pr[A = 1|L]: ulation if backdf)or paths iI}VOlVng. the measgred variables L did ngt e).<ist. Eor
the propensity score (Rosenbaum example, IP weighting achieves this by creating a pseudo-population in which
and Rubin 1983). See Chapter 15. treatment A is independent of the measured confounders L, i.e., by “deleting”
the arrow from L to A. In contrast, conventional methods based on stratifica-
tion do not delete the arrow from L to A but rather compute the conditional
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A practical example of the ap-
plication of expert knowledge of
the causal structure to confounding
evaluation was described by Herndn
et al (2002).
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Figure 7.13

Confounding

effect in a subset of the observed population, which is represented by adding a
selection box. In Part III, focused on time-varying treatments, we describe why
“deleting” the arrow L — A is advantageous when using standardization or
IP weighting, and why g-estimation is the only generally valid stratification-
based method. The bias of conventional stratification-based methods is de-
scribed in Chapter 20. In settings with time-varying treatments, and therefore
time-varying confounders, g-methods are the methods of choice to adjust for
confounding because conventional stratification-based methods may result in
selection bias.

All the above methods require conditional exchangeability given L. How-
ever, confounding can sometimes be handled by methods that do not require
conditional exchangeability. Some examples of these methods are difference-
in-differences (Technical Point 7.3), instrumental variable estimation (Chapter
16), proximal inference (Technical Point 7.3), the front door criterion (Tech-
nical Point 7.4), and others. Unfortunately, these methods require alternative
assumptions that, like conditional exchangeability, are unverifiable. Therefore,
in practice, the validity of the resulting effect estimates is not guaranteed.
Also, these methods cannot be generally employed for causal questions involv-
ing time-varying treatments. As a result, these methods are disqualified from
consideration for many research problems. For time-fixed treatment, the choice
of adjustment method will depend on which unverifiable assumptions—either
conditional exchangeability or the alternative conditions—are believed more
likely to hold in a particular setting.

Achieving conditional exchangeability may be an unrealistic goal in many
observational studies but, as discussed in Section 3.2, expert knowledge about
the causal structure can be used to get as close as possible to that goal. There-
fore, in observational studies, investigators measure many variables L (which
are non-descendants of treatment) in an attempt to ensure that the treated and
the untreated are conditionally exchangeable. The hope is that, even though
common causes may exist (confounding), the measured variables L are suf-
ficient to block all backdoor paths (no unmeasured confounding). However,
there is no guarantee that this attempt will be successful, which makes causal
inference from observational data a risky undertaking.

In addition, expert knowledge can be used to avoid adjusting for variables
that may introduce bias. At the very least, investigators should generally
avoid adjustment for variables affected by either the treatment or the outcome.
Of course, thoughtful and knowledgeable investigators could believe that two
or more causal structures, possibly leading to different conclusions regarding
confounding and confounders, are equally plausible. In that case they would
perform multiple analyses and explicitly state the assumptions about causal
structure required for the validity of each. Unfortunately, one can never be
certain that the set of causal structures under consideration includes the true
one; this uncertainty is unavoidable with observational data.

There is a scientific consequence to the always present threat of confound-
ing in observational studies. Suppose you conducted an observational study to
quantify the effect of heart transplant A on death Y. You did your best (e.g.,
consulting subject-matter experts) to identify and measure confounders, and
assumed no unmeasured confounding after adjusting for disease severity L. A
critic of your study says “the inferences from this observational study may be
incorrect because of potential confounding.” The critic is not making a scien-
tific statement, but a logical one. Since the findings from any observational
study may be confounded, it is obviously true that those of your study can be
confounded. If the critic’s intent was to provide evidence about the shortcom-
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ings of your particular study, he failed. His criticism is noninformative because
he simply restated a characteristic of observational research that you and the
critic already knew before the study was conducted.

To appropriately criticize your study, the critic needs to engage in a truly
scientific conversation. For example, the critic may cite experimental or obser-
vational evidence that contradict your findings, or he can say something along
the lines of “the inferences from this observational study may be incorrect
because of potential confounding due to cigarette smoking, a common cause
through which a backdoor path may remain open”. This latter option provides
you with a testable challenge to your assumption of no unmeasured confound-
ing. The burden of the proof is again yours. Your next move is to try and
adjust for smoking or, if data on smoking could not be obtained, to conduct a
sensitivity analysis to investigate the possible bias induced by smoking.

Though the above discussion was restricted to bias due to confounding, the
absence of biases due to selection and measurement is also needed for valid
causal inference from observational data. But, unlike confounding, these other
biases may arise in both randomized experiments and observational studies.
After having explored confounding in this chapter, the next chapter presents
another potential source of lack of exchangeability between the treated and the
untreated: selection of individuals into the analysis.
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Technical Point 7.3

Difference-in-differences and negative outcome controls. Suppose we want to compute the average causal effect
of aspirin A (1. yes; 0: no) on blood pressure Y, but there are unmeasured common causes U of A and Y such
as history of heart disease. Then we cannot compute the effect via standardization or IP weighting because there is
unmeasured confounding. But there is an alternative method that, under some conditions, may adjust for the unmeasured
confounding: the use of negative outcome controls (also known as “placebo tests").

Suppose further that, for each individual in the population, we have also measured the value of the outcome right
before treatment was available. We refer to this pre-treatment outcome C' as a negative outcome control (also referred
to as negative control outcome). As depicted in Figure 7.13, U is a cause of both Y and C, and treatment A is obviously
not a cause of the pre-treatment C. Now, even though the causal effect of A on C' is known to be zero, the contrast
E[C|A =1] —E[C|A = 0] is not zero because of confounding by U. In fact, E[C|A = 1] — E[C|A = 0] measures the
magnitude of confounding for the effect of A on C on the additive scale. If the magnitude of additive confounding for
the effect of A on the negative control outcome C' is the same as for the effect of A on the true outcome Y, then
we can compute the effect of A on Y in the treated. Specifically, under the assumption of additive equi-confounding
E[Y°[A=1] -E[Y°A=0] =E[C|A=1] - E[C|A = 0], the effect is

EY'-Y°|A=1]=(E[Y|[A=1-E[Y[A=0])— (E[C|JA=1]-E[C|A=0))

That is, the effect in the treated is equal to the association between treatment A and outcome Y (which is a mixture
of the causal effect and confounding) minus the confounding as measured by the association between A and C. Note
that the direct arrow from C to Y in Figure 7.13 is not necessary for C' to be a negative outcome control.

This method for confounding adjustment is known as difference-in-differences (Card 1990, Meyer 1995, Angrist and
Krueger 1999). In practice, the method is often combined with adjustment for measured covariates using parametric
or semiparametric approaches (Abadie 2005). However, difference-in-differences is a somewhat restrictive approach to
negative outcome controls (Sofer et al. 2016): it requires measurement of the outcome both pre- and post-treatment
(or at least that the true outcome Y and the negative control outcome C' are measured on the same scale) and it
requires additive equi-confounding. Sofer et al. (2016) describe more general methods that allow for Y and C' to be on
different scales, rely on weaker versions of equi-confounding, and incorporate adjustment for measured covariates. For
a general introduction to the use of negative outcome controls to detect confounding, see Lipsitch et al. (2010) and
Flanders et al. (2011).

Surprisingly, when one has both a negative outcome control C' and a negative treatment control Z, the causal effect
can be nonparametrically identified even in the presence of unmeasured confounders U under additional assumptions.
In fact, if U, C, and Z are discrete and C and Z have at least as many levels as does U, then the causal effect of A
on Y will quite generally be identified (Miao et al. 2018). This identification approach is referred to as proximal causal
inference (Cui et al. 2020). Figure 7.15 is one example in which C'is a negative outcome control and Z is a negative
treatment control.
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Technical Point 7.4

The front door criterion. The causal diagram in Figure 7.14 depicts a setting in which the treatment A and the
binary outcome Y share an unmeasured cause U, and in which there is a variable M that fully mediates the effect of
A onY and that shares no unmeasured causes with either A or Y. Under this causal structure, a data analyst cannot
directly use standardization (nor IP weighting) to compute the counterfactual risks Pr [Y“zl = 1} and Pr [Y“:O = 1]
because the variable U, which is necessary to block the backdoor path between A and Y, is not available. Therefore,
the average causal effect of A on Y cannot be identified using the methods described in previous chapters. However,
Pearl (1995) showed that Pr[Y® = 1] is identified by the so-called front door formula

ZPr[M:m|A:a]ZPr[Y: 1M =m,A=d]Pr[A=d]

Pearl refers to this identification formula as front door adjustment because it relies on the existence of a path from A
and Y that, contrary to a backdoor path, goes through a descendant M of A that completely mediates the effect of A on
Y. Pearl often uses the term backdoor formula to refer to the identification formula that we refer to as standardization
or the point treatment g-formula (Robins 1986). A proof of the front door identification formula follows.

Note that Pr(Y* =1] = 3  Pr[M®=m|Pr[Y* =1|M* =m] and that, under Figure 7.14, Pr[M®* =m] =
Pr[M = m|A = a] because there is no confounding for the effect of Aon M (i.e., ALM?*), and Pr[Y® = 1|M* =m] =
Yo PrlY =1M=m,A=d]Pr[A=d']. To prove the last equality, first note that Pr[Y* =1|M®=m| =
Pr[Y™ =1] because (i) Y* = Y™ when M* = m (A affects Y only through M in Figure 7.14) and (ii)
Y™ 1L M®? by d-separation on a SWIG under the joint intervention in which M is set to m and A to a. Fi-
nally, by conditional exchangeability Y™ 1LM|A on the SWIG where we intervene on M alone, Pr(Y™ =1] =
Y PrlY =1M=m,A=d]Pr[A=2d].

The above proof requires well-defined counterfactual outcomes Y under interventions on M. In Technical Points
21.11 and 21.12 we present alternative proofs of the front door formula that do not require this condition.
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Chapter 8
SELECTION BIAS

Suppose an investigator conducted a randomized experiment to answer the causal question “does one’s looking
up to the sky make other pedestrians look up too?” She found a strong association between her looking up and
other pedestrians’ looking up. Does this association reflect a causal effect? Well, by definition of randomized
experiment, confounding bias is not expected in this study. However, there was another potential problem: The
analysis included only those pedestrians that, after having been part of the experiment, gave consent for their data
to be used. Shy pedestrians (those less likely to look up anyway) and pedestrians in front of whom the investigator
looked up (who felt tricked) were less likely to participate. Thus participating individuals in front of whom the
investigator looked up (a reason to decline participation) are less likely to be shy (an additional reason to decline
participation) and therefore more likely to look up. That is, the process of selection of individuals into the analysis
guarantees that one’s looking up is associated with other pedestrians’ looking up, regardless of whether one’s
looking up actually makes others look up.

An association created as a result of the process by which individuals are selected into the analysis is referred to
as selection bias. Unlike confounding, this type of bias is not due to the presence of common causes of treatment and
outcome, and can arise in both randomized experiments and observational studies. Like confounding, selection
bias is just a form of lack of exchangeability between the treated and the untreated. This chapter provides a
definition of selection bias and reviews the methods to adjust for it.

8.1 The structure of selection bias

The term “selection bias” encompasses various biases that arise from the proce-
dure by which individuals are selected into the analysis. Here we focus on bias
that would arise even if the treatment had a null effect on the outcome, i.e.,
selection bias under the null (as described in Section 6.5). The structure of se-

A >Y 5 lection bias can be represented by using causal diagrams like the one in Figure
8.1, which depicts dichotomous treatment A, outcome Y, and their common
Figure 8.1 effect C. Suppose Figure 8.1 represents a study to estimate the effect of folic

acid supplements A given to pregnant women shortly after conception on the
fetus’s risk of developing a cardiac malformation Y (1: yes, 0: no) during the
first two months of pregnancy. The variable C represents death before birth.
A cardiac malformation increases mortality (arrow from Y to C), and folic
acid supplementation decreases mortality by reducing the risk of malforma-
tions other than cardiac ones (arrow from A to C). The study was restricted
Pearl (1995) and Spirtes et al to fetuses who survived until birth. That is, the study was conditioned on no
(2000) used causal diagrams to de-  death C' = 0 and hence the box around the node C.
scribe the structure of bias resulting The diagram in Figure 8.1 shows two sources of association between treat-
from selection of individuals. ment and outcome: 1) the open path A — Y that represents the causal effect
of Aon Y, and 2) the open path A — C <+ Y that links A and Y through
their (conditioned on) common effect C. An analysis conditioned on C will
generally result in an association between A and Y. We refer to this induced
association between the treatment A and the outcome Y as selection bias due
to conditioning on C'. Because of selection bias, the associational risk ratio
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Selection bias

PrlY =1/A=1,C = 0]/Pr[Y = 1|A = 0,C = 0] does not equal the causal
risk ratio Pr [Y?=! = 1] /Pr [V =% = 1]; association is not causation. If the
analysis were not conditioned on the common effect (collider) C, then the only
open path between treatment and outcome would be A — Y, and thus the
entire association between A and Y would be due to the causal effect of A on
Y. That is, the associational risk ratio Pr[Y = 1|A = 1]/Pr[Y = 1|4 = 0]
would equal the causal risk ratio Pr [Y“:l = 1] / Pr [Y“ZO = 1}; association
would be causation.

The causal diagram in Figure 8.2 shows another example of selection bias.
This diagram includes all variables in Figure 8.1 plus a node S representing
parental grief (1: yes, 0: no), which is affected by vital status at birth. Suppose
the study was restricted to non grieving parents S = 0 because the others were
unwilling to participate. As discussed in Chapter 6, conditioning on a variable
S affected by the collider C' also opens the path A — C « Y.

Both Figures 8.1 and 8.2 depict examples of selection bias in which the bias
arises because of conditioning on a common effect of treatment and outcome:
Cin Figure 8.1 and S in Figure 8.2. This bias arises regardless of whether there
is an arrow from A to Y, i.e., it is selection bias under the null. Remember
that causal structures that result in bias under the null also cause bias when
the treatment has a non-null effect. Both confounding due to common causes
of treatment and outcome (see previous chapter) and selection bias due to
conditioning on common effects of treatment and outcome are examples of
bias under the null. However, selection bias under the null can be defined
more generally as illustrated by Figures 8.3 to 8.6.

Consider the causal diagram in Figure 8.3, which represents a follow-up
study of individuals with HIV infection to estimate the effect of certain an-
tiretroviral treatment A on the 3-year risk of death Y (to reduce clutter, there
is no arrow from A to Y). The unmeasured variable U represents high level
of immunosuppression (1: yes, 0: no). Individuals with U = 1 have a greater
risk of death. Individuals who drop out from the study or are otherwise lost to
follow-up are censored (C' = 1). Individuals with U = 1 are more likely to be
censored because the severity of their disease prevents them from participating
in the study. The effect of U on censoring C' is mediated by the presence of
symptoms (fever, weight loss, diarrhea, and so on), CD4 count, and viral load
in plasma, all included in L, which could or could not be measured. (The
role of L, when measured, in data analysis is discussed in Section 8.5; in this
section, we take L to be unmeasured.) Individuals receiving treatment are at a
greater risk of experiencing side effects, which could lead them to dropout, as
represented by the arrow from A to C. The square around C' indicates that the
analysis is restricted to individuals who remained uncensored (C = 0) because
those are the only ones in which Y can be assessed.

According to the rules of d-separation, conditioning on the collider C' opens
the path A — C «+ L + U — Y and thus association flows from treatment A
to outcome Y, i.e., the associational risk ratio is not equal to 1 even though
the causal risk ratio is equal to 1. Figure 8.3 can be viewed as a simple
transformation of Figure 8.1: the association between Y and C' resulting from
a direct effect of Y on C in Figure 8.1 is now the result of U, a common
cause of Y and C. Some intuition for this bias: If a treated individual with
treatment-induced side effects (and thereby at a greater risk of dropping out)
did in fact not drop out (C = 0), then it is generally less likely that a second
independent cause of dropping out (e.g., U = 1) was present. Therefore, an
inverse association between A and U would be expected in those who did
not drop out (C' = 0). Because U is positively associated with the outcome



8.2 Examples of selection bias

Figures 8.5 and 8.6 show examples
of M-bias

More generally, selection bias can
be defined as the bias resulting from
conditioning on the common ef-
fect of two variables, one of which
is either the treatment or associ-
ated with the treatment, and the
other is either the outcome or asso-
ciated with the outcome (Herndn,
Herndndez-Diaz, and Robins 2004).
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Y, restricting the analysis to individuals who did not drop out of this study
induces an inverse association between A and Y.

The bias in Figure 8.3 is an example of selection bias that results from condi-
tioning on censoring C, which is a common effect of treatment A and of a cause
U of the outcome Y, rather than a common effect of treatment and outcome.
We now present three additional causal diagrams that could lead to selection
bias by differential loss to follow up. In Figure 8.4 prior treatment A has a
direct effect on symptoms L. Restricting the study to the uncensored individ-
uals again implies conditioning on the common effect C' of A and U, thereby
introducing an association between treatment and outcome. Figures 8.5 and
8.6 are variations of Figures 8.3 and 8.4, respectively, in which there is a com-
mon cause W of A and another measured variable. W indicates unmeasured
lifestyle/personality /educational variables that determine both treatment (ar-
row from W to A) and either attitudes toward attending study visits (arrow
from W to C in Figure 8.5) or threshold for reporting symptoms (arrow from
W to L in Figure 8.6).

We have described some different causal structures, depicted in Figures
8.1-8.6, that may lead to selection bias under the null. In all these cases, the
bias is the result of selection on a common effect of two other variables in the
diagram, i.e., a collider. We will use the term selection bias to refer to all
biases that arise from conditioning on a common effect of two variables, one of
which is either the treatment or a cause of treatment, and the other is either
the outcome or a cause of the outcome. We now describe some examples of
selection bias that share this structure.

8.2 Examples of selection bias

The distinction between the two
structures leading to lack of ex-
changeability is not universally
made across disciplines.  Condi-
tional exchangeability is often re-
ferred as “weak ignorability” or “ig-
norable treatment assignment” in
statistics (Rosenbaum and Rubin
1983, Rosenbaum 2002), “selection
on observables” in the social sci-
ences (Barnow, Cain, and Gold-
berger, 1980), and “no ommitted
variable bias" or “exogeneity”" in
econometrics (Imbens, 2004).

Consider the following examples of bias due to the mechanism by which indi-
viduals are selected into the analysis:

o Differential loss to follow-up: This is precisely the bias described in the
previous section and summarized in Figures 8.3-8.6. It is also referred to
as bias due to informative censoring.

e Missing data bias,nonresponse bias: The variable C' in Figures 8.3-8.6
can represent missing data on the outcome for any reason, not just as a
result of loss to follow up. For example, individuals could have missing
data because they are reluctant to provide information or because they
miss study visits. Regardless of the reasons why data on Y are missing,
restricting the analysis to individuals with complete data (C' = 0) may
result in bias.

e Healthy worker bias: Figures 8.3-8.6 can also describe a bias that could
arise when estimating the effect of an occupational exposure A (e.g., a
chemical) on mortality Y in a cohort of factory workers. The underlying
unmeasured true health status U is a determinant of both death Y and
of being at work C' (1: no, 0: yes). The study is restricted to individuals
who are at work (C' = 0) at the time of outcome ascertainment. (L
could be the result of blood tests and a physical examination.) Being
exposed to the chemical reduces the probability of being at work in the
near future, either directly (e.g., exposure can cause disabling asthma),
like in Figures 8.3 and 8.4, or through a common cause W (e.g., certain
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Fine Point 8.1

Selection bias in case-control studies. Figure 8.1 can be used to represent selection bias in a case-control study.
Suppose a certain investigator wants to estimate the effect of postmenopausal estrogen treatment A on coronary heart
disease Y. The variable C' indicates whether a woman in the study population (the underlying cohort, in epidemiologic
terms) is selected for the case-control study (1: no, 0: yes). The arrow from disease status Y to selection C indicates
that cases in the population are more likely to be selected than noncases, which is the defining feature of a case-control
study. In this particular case-control study, the investigator decided to select controls (Y = 0) preferentially among
women with a hip fracture. Because treatment A has a protective causal effect on hip fracture, the selection of controls
with hip fracture implies that treatment A now has a causal effect on selection C. This effect of A on C is represented
by the arrow A — C. One could add an intermediate node F' (representing hip fracture) between A and C, but that is
unnecessary for our purposes.

In a case-control study, the association measure (the treatment-outcome odds ratio) is by definition conditional on
having been selected into the study (C' = 0). If individuals with hip fracture are oversampled as controls, then the
probability of control selection depends on a consequence of treatment A (as represented by the path from A to ()
and “inappropriate control selection” bias will occur. Again, this bias arises because we are conditioning on a common
effect C' of treatment and outcome. A heuristic explanation of this bias follows. Among individuals selected for the
study (C = 0), controls are more likely than cases to have had a hip fracture. Therefore, because estrogens lower
the incidence of hip fractures, a control is less likely to be on estrogens than a case, and hence the A-Y odds ratio
conditional on C' = 0 would be greater than the causal odds ratio in the population. Other forms of selection bias
in case-control studies, including some biases described by Berkson (1946) and incidence-prevalence bias, can also be
represented by Figure 8.1 or modifications of it, as discussed by Herndn, Herndndez-Diaz, and Robins (2004).

exposed jobs are eliminated for economic reasons and the workers laid
off) like in Figures 8.5 and 8.6.

o Self-selection bias, volunteer bias: Figures 8.3-8.6 can also represent a
Berkson (1955) described the struc- study in which C' is agreement to participate (1: no, 0: yes), A is cigarette
ture of bias due to self-selection. smoking, Y is coronary heart disease, U is family history of heart disease,
and W is healthy lifestyle. (L is any mediator between U and C such as
heart disease awareness.) Under any of these structures, selection bias
may be present if the study is restricted to those who volunteered or

elected to participate (C' = 0).

o Selection affected by treatment received before study entry: Suppose that
C in Figures 8.3-8.6 represents selection into the study (1: no, 0: yes)

Robins, Herndn, and Rotnitzky and that treatment A took place before the study started. If treatment
(2007) used causal diagrams to de- affects the probability of being selected into the study, then selection
scribe the structure of bias due to bias is expected. The case of selection bias arising from the effect of
the effect of pre-study treatments treatment on selection into the study can be viewed as a generalization
on selection into the study. of self-selection bias. This bias may be present in any study that at-

tempts to estimate the causal effect of a treatment that occurred before
the study started or in which treatment includes a pre-study component.
For example, selection bias may arise when treatment is measured as the
lifetime exposure to certain factor (medical treatment, lifestyle behav-
ior...) in a study that recruited 50 year-old participants. In addition to
selection bias, it is also possible that there exists unmeasured confound-
ing for the pre-study component of treatment if confounders were only
measured during the study.

In addition to the biases described here, as well as in Fine Point 8.1 and
Technical Point 8.1, causal diagrams have been used to characterize various
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For example, selection bias may be
induced by attempts to eliminate
bias from ascertainment (Robins
2001), to estimate direct effects
(Cole and Herndn 2002), and by
conventional adjustment for vari-
ables affected by previous treat-
ment (see Part Il1).
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other biases that arise from conditioning on a common effect. These examples
show that selection bias may occur in retrospective studies—those in which data
on treatment A are collected after the outcome Y occurs—and in prospective
studies—those in which data on treatment A are collected before the outcome
Y occurs. Further, these examples show that selection bias may occur both in
observational studies and in randomized experiments.

Take Figures 8.3 and 8.4, which could depict either an observational study
or an experiment in which treatment A is randomly assigned, because there are
no common causes of A and any other variable. Individuals in both randomized
experiments and observational studies may be lost to follow-up or drop out of
the study before their outcome is ascertained. When this happens, the risk
Pr[Y = 1|A = a] cannot be computed because the value of the outcome Y is
unknown for the censored individuals (C' = 1). Therefore only the risk among
the uncensored Pr[Y = 1|4 = a,C = 0] can be computed. This restriction of
the analysis to the uncensored individuals may induce selection bias because
uncensored individuals who remained through the end of the study (C' = 0)
may not be exchangeable with individuals that were lost (C' = 1).

Hence a key difference between confounding and selection bias: random-
ization protects against confounding, but not against selection bias when the
selection occurs after the randomization. On the other hand, no bias arises
in randomized experiments from selection into the study before treatment is
assigned. For example, only volunteers who agree to participate are enrolled
in randomized clinical trials, but such trials are not affected by volunteer bias
because participants are randomly assigned to treatment only after agreeing to
participate (C' = 0). Thus none of Figures 8.3-8.6 can represent volunteer bias
in a randomized trial. Figures 8.3 and 8.4 are eliminated because treatment
cannot cause agreement to participate C. Figures 8.5 and 8.6 are eliminated
because, as a result of the random treatment assignment, there cannot exist a
common cause of treatment and any other variable.

8.3 Selection bias and confounding

Figure 8.7

For the same reason, social scien-
tists often refer to unmeasured con-
founding as selection on unobserv-
ables.

In this and the previous chapter, we describe two reasons why the treated and
the untreated may not be exchangeable: 1) the presence of common causes of
treatment and outcome, and 2) conditioning on common effects of treatment
and outcome (or causes of them). We refer to biases due to the presence of
common causes as “confounding” and to those due to conditioning on common
effects as “selection bias.” This structural definition provides a clear-cut clas-
sification of confounding and selection bias, even though it might not coincide
perfectly with the traditional terminology of some disciplines. For example,
statisticians and econometricians often use the term “selection bias” to refer
to both types of biases. Their rationale is that in both cases the bias is due
to selection: selection of individuals into the analysis (the structural “selection
bias”) or selection of individuals into a treatment (the structural “confound-
ing”). Our goal, however, is not to be normative about terminology, but rather
to emphasize that, regardless of the particular terms chosen, there are two dis-
tinct causal structures that lead to bias.

The end result of both structures is lack of exchangeability between the
treated and the untreated—which implies that these two biases occur even
under the null. For example, consider a study restricted to firefighters that
aims to estimate the causal effect of being physically active A on the risk
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Technical Point 8.1

The built-in selection bias of hazard ratios. The causal DAG in Figure 8.8 describes a randomized experiment of the
effect of heart transplant A on death at times 1 (Y1) and 2 (Y2). The arrow from A to Y; represents that transplant
decreases the risk of death at time 1. The lack of an arrow from A to Y5 indicates that A has no direct effect on death
at time 2. That is, heart transplant does not influence the survival status at time 2 of any individual who would survive

past time 1 when untreated (and thus when treated). U is an unmeasured haplotype that decreases the individual's risk
_ Pr[Y1:1|A:1

of death at all times. Because of the absence of confounding, the associational risk ratios aRR Ay, = m and
aRRAy, = % are unbiased measures of the effect of A on death at times 1 and 2, respectively. Even though

A has no direct effect on Y5, aRR 4y, will be less than 1 because it is a measure of the effect of A on total mortality
through time 2.

Consider now the time-specific hazard ratio (which, for all practical purposes, is equivalent to the rate ratio). In
discrete time, the hazard of death at time 1 is the probability of dying at time 1 and thus the associational hazard ratio
is the same as aRR 4v,. However, the hazard at time 2 is the probability of dying at time 2 among those who survived
past time 1. Thus, the associational hazard ratio at time 2 is then aRR4y,|y,—0 = %. The square
around Y7 in Figure 8.8 indicates this conditioning. Treated survivors of time 1 are less likely than untreated survivors of
time 1 to have the protective haplotype U (because treatment can explain their survival) and therefore are more likely
to die at time 2. That is, conditional on Y7, treatment A is associated with a higher mortality at time 2. Thus, the
hazard ratio at time 1 is less than 1, whereas the hazard ratio at time 2 is greater than 1, i.e., the hazards have crossed.
We conclude that the hazard ratio at time 2 is a biased estimate of the direct effect of treatment on mortality at time
2. The bias is selection bias arising from conditioning on a common effect Y7 of treatment A and of U, which is a cause
of Y5 that opens the associational path A — Y7 + U — Y, between A and Y5. In the survival analysis literature, an
unmeasured cause of death that is marginally unassociated with treatment such as U is often referred to as a frailty.

In contrast, the conditional hazard ratio aRR sy,|y,—o,r is 1 within each stratum of U because the path A — Y] «
U — Y5 is now blocked by conditioning on the non-collider U. Thus, the conditional hazard ratio correctly indicates
the absence of a direct effect of A on Y. That the unconditional hazard ratio a RR 4y, |y,—o differs from the stratum-
specific hazard ratios aRR ay,|y,—o,u, even though U is independent of A, shows the noncollapsibility of the hazard
ratio (Greenland, 1996b). Unfortunately, the unbiased measure aRR 4y, |y,—o,v of the direct effect of A on Y5 cannot
be computed because U is unobserved. In the absence of data on U, it is impossible to know whether A has a direct
effect on Y. That is, the data cannot determine whether the true causal DAG generating the data was that in Figure
8.8 or in Figure 8.9. All of the above applies to both observational studies and randomized experiments.

of heart disease Y as represented in Figure 8.7. For simplicity, we assume
that, unknown to the investigators, A does not cause Y. Parental socioe-
conomic status L affects the risk of becoming a firefighter C' and, through
A— —>,Y, childhood diet, of heart disease Y. Attraction toward activities that involve
physical activity (an unmeasured variable U) affects the risk of becoming a
firefighter and of being physically active (A). U does not affect Y, and L does
U not affect A. According to our terminology, there is no confounding because
there are no common causes of A and Y. Thus, the associational risk ratio
Figure 8.8 Pr[Y =1A=1]/Pr[Y = 1|4 = 0] is expected to equal the causal risk ratio
Pr[ye=t =1] /Pr[ye=0=1] =1.
However, in a study restricted to firefighters (C' = 0), the associational

and causal risk ratios would differ because conditioning on a common effect C'

/\ of causes of treatment and outcome induces selection bias resulting in lack of
A > 1Y, >Y, exchangeability of the treated and untreated firefighters. To the study investi-
gators, the distinction between confounding and selection bias is moot because,

Figure 8.9 regardless of nomenclature, they must adjust for L to make the treated and

the untreated firefighters comparable. This example demonstrates that a struc-
tural classification of bias does not always have consequences for the analysis



8.4 Selection bias and censoring

The choice of terminology usually
has no practical consequences, but
disregard for the causal structure
may lead to apparent paradoxes.
For example, the so-called Simp-
son's paradox (1951) was the re-
sult of ignoring the difference be-
tween common causes and common
effects. Interestingly, Blyth (1972)
failed to grasp the causal structure
of the paradox in Simpson’s exam-
ple and misrepresented it as an ex-
treme case of confounding. Be-
cause most people read Blyth's pa-
per but not Simpson’s paper, the
misunderstanding was perpetuated.
See Hernan, Clayton, and Keiding
(2011) for details.
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of a study. Indeed, for this reason, many epidemiologists use the term “con-
founder” for any variable L that needs to be adjusted for, regardless of whether
the lack of exchangeability is the result of conditioning on a common effect or
the result of a common cause of treatment and outcome.

There are, however, advantages of adopting a structural approach to the
classification of sources of non-exchangeability. First, the structure of the
problem frequently guides the choice of analytical methods to reduce or avoid
the bias. For example, in longitudinal studies with time-varying treatments,
identifying the structure allows us to detect situations in which adjustment
for confounding via stratification would introduce selection bias (see Part III).
In those cases, g-methods are a better alternative. Second, even when under-
standing the structure of bias does not have implications for data analysis (like
in the firefighters’ study), it could still help study design. For example, inves-
tigators running a study restricted to firefighters should make sure that they
collect information on joint risk factors for the outcome Y and for the selection
variable C' (i.e., becoming a firefighter), as described in the first example of
confounding in Section 7.1. Third, selection bias resulting from conditioning
on pre-treatment variables (e.g., being a firefighter) could explain why cer-
tain variables behave as “confounders” in some studies but not others. In our
example, parental socioeconomic status L would not necessarily need to be
adjusted for in studies not restricted to firefighters. Finally, causal diagrams
enhance communication among investigators and may decrease the occurrence
of misunderstandings.

As an example of the last point, consider the “healthy worker bias”, which
in the previous section we described as a bias that arises from conditioning on
the variable C—a common effect of (a cause of) treatment and (a cause of) the
outcome. Thus the bias can be represented by the causal diagrams in Figures
8.3-8.6. However, the term “healthy worker bias” is also used to describe the
bias that occurs when comparing the risk in certain group of workers with that
in a group of individuals from the general population.

This second bias can be depicted by the causal diagram in Figure 7.1 in
which L represents health status, A represents membership in the group of
workers, and Y represents the outcome of interest. There are arrows from L to
A and Y because being healthy affects job type and risk of subsequent outcome,
respectively. In this case, the bias is caused by the common cause L and we
would refer to it as confounding. The use of causal diagrams to represent the
structure of the “healthy worker bias” prevents any confusions that may arise
from employing the same term for different sources of non-exchangeability.

All the above considerations ignore the magnitude or direction of selec-
tion bias and confounding. However, it is possible that some noncausal paths
opened by conditioning on a collider are weak and thus induce little bias. Be-
cause selection bias is not an “all or nothing” issue, in practice, it is important
to consider the expected direction and magnitude of the bias (see Fine Point
8.2).

8.4 Selection bias and censoring

Suppose an investigator conducted a marginally randomized experiment to
estimate the average causal effect of wasabi intake on the one-year risk of
death (Y = 1). Half of the 60 study participants were randomly assigned to
eating meals supplemented with wasabi (A = 1) until the end of follow-up or
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For example, we may want to com-

pute the causal risk ratio
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Selection bias

death, whichever occurred first. The other half were assigned to meals that
contained no wasabi (A = 0). After 1 year, 17 individuals died in each group.
That is, the associational risk ratio Pr[Y =1|A =1] /Pr[Y = 1|A = 0] was 1.
Because of randomization, the causal risk ratio Pr [Y*=! = 1] /Pr [Y*=0 = 1]
is also expected to be 1. (If ignoring random variability bothers you, please
imagine the study had 60 million patients rather than 60.)

Unfortunately, the investigator could not observe the 17 deaths that oc-
curred in each group because many patients were lost to follow-up, or censored,
before the end of the study (i.e., death or one year after treatment assignment).
The proportion of censoring (C' = 1) was higher among patients with heart dis-
ease (L = 1) at the start of the study and among those assigned to wasabi sup-
plementation (A = 1). In fact, only 9 individuals in the wasabi group and 22
individuals in the other group were not lost to follow-up. The investigator ob-
served 4 deaths in the wasabi group and 11 deaths in the other group. That is,
the associational risk ratio Pr[Y =1|A=1,C=0]/Pr[Y =1]A=0,C = (]
was (4/9)/(11/22) = 0.89 among the uncensored. The risk ratio of 0.89 in
the uncensored differs from the causal risk ratio of 1 in the entire population:
There is selection bias due to conditioning on the common effect C.

The causal diagram in Figure 8.3 depicts the relation between the variables
L, A, C,and Y in the randomized trial of wasabi. U represents atherosclerosis,
an unmeasured variable, that affects both heart disease L and death Y. Figure
8.3 shows that there are no common causes of A and Y, as expected in a
marginally randomized experiment, and thus there is no need to adjust for
confounding to compute the causal effect of A on Y. On the other hand,
Figure 8.3 shows that there is a common cause U of C and Y. The presence
of this backdoor path C' <~ L + U — Y implies that, were the investigator
interested in estimating the causal effect of censoring C' on Y (which is null in
Figure 8.3), she would have to adjust for confounding due to the common cause
U. The backdoor criterion says that such adjustment is possible because the
measured variable L can be used to block the backdoor path C <~ L+ U — Y.

The causal contrast we have considered so far is “the risk if everybody
had been treated”, Pr [Y“Zl = 1], versus “the risk if everybody had remained
untreated”, Pr [Y“:O = 1], and this causal contrast does not involve C at all.
Why then are we talking about confounding for the causal effect of C'?7 It turns
out that the causal contrast of interest needs to be modified in the presence
of censoring or, in general, of selection. Because selection bias would not exist
if everybody had been uncensored C' = 0, we would like to consider a causal
contrast that reflects what would have happened in the absence of censoring.

Let Y2=1:¢=0 be an individual’s counterfactual outcome if he had received
treatment A = 1 and he had remained uncensored C' = 0. Similarly, let
Y@=0:¢=0 bhe an individual’s counterfactual outcome if he had not received
treatment A = 0 and he had remained uncensored C' = 0. Our causal contrast
of interest is now “the risk if everybody had been treated and had remained
uncensored”, Pr [Y“ZLC:O = 1], versus “the risk if everybody had remained
untreated and uncensored”, Pr [Y*=0:=0 = 1],

Often it is reasonable to assume that censoring does not have a causal
effect on the outcome (an exception would be a setting in which being lost to
follow-up prevents people from getting additional treatment). Because of the
lack of effect of censoring C' on the outcome Y, one might imagine that the
definition of causal effect could ignore censoring, i.e., that we could omit the
superscript ¢ = 0. However, omitting the superscript would obscure the fact
that considerations about confounding for C' become central when computing
the causal effect of A on Y in the presence of selection bias. In fact, when
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conceptualizing the causal contrast of interest in terms of Y%=, we can think
of censoring C' as just another treatment. That is, the goal of the analysis is
to compute the causal effect of a joint intervention on A and C. To eliminate
selection bias for the effect of treatment A, we need to adjust for confounding
for the effect of treatment C.

Since censoring C' is now viewed as a treatment, it follows that we will need
to (i) ensure that the identifiability conditions of exchangeability, positivity,
and consistency hold for C' as well as for A, and (ii) use analytical methods
that are identical to those we would have to use if we wanted to estimate the
effect of censoring C'. Under these identifiability conditions and using these
methods, selection bias can be eliminated via analytic adjustment and, in the
absence of measurement error and confounding, the causal effect of treatment
A on outcome Y can be identified. The next section explains how to do so.

8.5 How to adjust for selection bias

We have described IP weights to
adjust for confounding, W4 =
1/f (A|L), and selection bias.
W€ = 1/Pr[C = 0|A, L]. When
both confounding and selection bias
exist, the product weight WAW
can be used to adjust simultane-
ously for both biases under assump-
tions described in Chapter 12 and
Part II1.

Though selection bias can sometimes be avoided by an adequate design (see
Fine Point 8.1), it is often unavoidable. For example, loss to follow up, self-
selection, and, in general, missing data leading to bias can occur no matter how
careful the investigator. In those cases, the selection bias needs to be explicitly
corrected in the analysis. This correction can sometimes be accomplished by
IP weighting (or by standardization), which is based on assigning a weight W¢
to each selected individual (C' = 0) so that she accounts in the analysis not
only for herself, but also for those like her, i.e., with the same values of L and
A, who were not selected (C' = 1). The IP weight W is the inverse of the
probability of her selection Pr[C = 0|L, A].

To describe the application of IP weighting for selection bias adjustment
consider again the wasabi randomized trial described in the previous section.
The tree graph in Figure 8.10 presents the trial data. Of the 60 individuals in
the trial, 40 had (L = 1) and 20 did not have (L = 0) heart disease at the time
of randomization. Regardless of their L status, all individuals had a 50/50
chance of being assigned to wasabi supplementation (A = 1). Thus 10 individ-
uals in the L = 0 group and 20 in the L = 1 group received treatment A = 1.
This lack of effect of L on A is represented by the lack of an arrow from L to A
in the causal diagram of Figure 8.3. The probability of remaining uncensored
varies across branches in the tree. For example, 50% of the individuals without
heart disease that were assigned to wasabi (L = 0, A = 1), whereas 60% of
the individuals with heart disease that were assigned to no wasabi (L = 1,
A = 0), remained uncensored. This effect of A and L on C is represented
by arrows from A and L into C' in the causal diagram of Figure 8.3. Finally,
the tree shows how many people would have died (Y = 1) both among the
uncensored and the censored individuals. Of course, in real life, investigators
would never know how many deaths occurred among the censored individuals.
It is precisely the lack of this knowledge which forces investigators to restrict
the analysis to the uncensored, opening the door for selection bias. Here we
show the deaths in the censored to document that, as depicted in Figure 8.3,
treatment A is marginally independent of Y, and censoring C is independent
of Y within levels of L. It can also be checked that the risk ratio in the entire
population (inaccessible to the investigator) is 1 whereas the risk ratio in the
uncensored (accessible to the investigator) is 0.89.
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Let us now describe the intuition behind the use of IP weighting to adjust
for selection bias. Look at the bottom of the tree in Figure 8.10. There
are 20 individuals with heart disease (L = 1) who were assigned to wasabi
supplementation (A = 1). Of these, 4 remained uncensored and 16 were lost
to follow-up. That is, the conditional probability of remaining uncensored in
this group is 1/5, i.e., Pr[C =0|L = 1,A = 1] =4/20 = 0.2. In an IP weighted
analysis the 16 censored individuals receive a zero weight (i.e., they do not
contribute to the analysis), whereas the 4 uncensored individuals receive a
weight of 5, which is the inverse of their probability of being uncensored (1/5).
IP weighting replaces the 20 original individuals by 5 copies of each of the
4 uncensored individuals. The same procedure can be repeated for the other
branches of the tree, as shown in Figure 8.11, to construct a pseudo-population
of the same size as the original study population but in which nobody is lost to
follow-up. (We let the reader derive the IP weights for each branch of the tree.)
The associational risk ratio in the pseudo-population is 1, the same as the risk
ratio Pr [YG:LC:O = 1] / Pr [Y“zoﬁ:o = 1] that would have been computed in
the original population if nobody had been censored.
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Figure 8.11

The association measure in the pseudo-population equals the effect measure
in the original population if the following three identifiability conditions are
met.

First, the average outcome in the uncensored individuals must equal the
unobserved average outcome in the censored individuals with the same val-
ues of A and L. This provision will be satisfied if the probability of selection
Pr[C = 0|L = 1,A = 1] is calculated conditional on treatment A and on all
additional factors that independently predict both selection and the outcome,
that is, if the variables in A and L are sufficient to block all backdoor paths
between C' and Y. Unfortunately, one can never be sure that these additional
factors were identified and recorded in L, and thus the causal interpretation
of the resulting adjustment for selection bias depends on this untestable ez-
changeability assumption.

Second, IP weighting requires that all conditional probabilities of being
uncensored given A and the variables in L must be greater than zero. Note

this positivity condition is required for the probability of being uncensored
(C = 0) but not for the probability of being censored (C = 1) because we are
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A competing event is an event that
prevents the outcome of interest
from happening. A typical exam-
ple of competing event is death be-
cause, once an individual dies, no
other outcomes can occur.
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not interested in inferring what would have happened if study individuals had
been censored, and thus there is no point in constructing a pseudo-population
in which everybody is censored. For example, the tree in Figure 8.10 shows
that Pr[C = 1|L = 0, A = 0] = 0, but this zero does not affect our ability to
construct a pseudo-population in which nobody is censored.

The third condition is consistency, including sufficiently well-defined inter-
ventions. IP weighting is used to create a pseudo-population in which censoring
C has been abolished, and in which the effect of the treatment A is the same
as in the original population. Thus, the pseudo-population effect measure is
equal to the effect measure had nobody been censored. This effect measure
may be relatively well defined when censoring is the result of loss to follow up
or nonresponse, but not when censoring is defined as the occurrence of a com-
peting event. For example, in a study aimed at estimating the effect of certain
treatment on the risk of Alzheimer’s disease, death from other causes (cancer,
heart disease, and so on) is a competing event. Defining death as a form of
censoring is problematic: we might not wish to base our effect estimates on a
pseudo-population in which all other causes of death have been removed, be-
cause it is unclear even conceptually what sort of intervention would produce
such a population. Also, no feasible intervention could possibly remove just
one cause of death without affecting the others as well.

Finally, one could argue that IP weighting is not necessary to adjust for
selection bias in a setting like that described in Figure 8.3. Rather, one might
attempt to remove selection bias by stratification (i.e., by estimating the ef-
fect measure conditional on the L variables) rather than by IP weighting.
Stratification could yield unbiased conditional effect measures within levels of
L because conditioning on L is sufficient to block the backdoor path from C
to Y. That is, the conditional risk ratio

PrlY =1|A=1,C=0,L=1]/Pr[Y =1|A=0,C =0,L =]

can be interpreted as the effect of treatment among the uncensored with L = [.
For the same reason, under the null, stratification would work (i.e., it would
provide an unbiased conditional effect measure) if the data can be represented
by the causal structure in Figure 8.5. Stratification, however, would not work
under the structure depicted in Figures 8.4 and 8.6.

Take Figure 8.4. Conditioning on L blocks the backdoor path from C to Y
but also opens the path A — L <+ U — Y from A to Y because L is a collider
on that path. Thus, even if the causal effect of A on Y is null, the conditional
(on L) risk ratio would be generally different from 1. And similarly for Figure
8.6. In contrast, IP weighting appropriately adjusts for selection bias under
Figures 8.3-8.6 because this approach is not based on estimating effect measures
conditional on the covariates L, but rather on estimating unconditional effect
measures after reweighting the individuals according to their treatment and
their values of L.

This is the first time we discuss a situation in which stratification cannot
be used to validly compute the causal effect of treatment, even if the three
conditions of exchangeability, positivity, and consistency hold. We will discuss
other situations with a similar structure in Part III when considering the effect
of time-varying treatments.
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The causal diagram in Figure 8.12 represents a hypothetical study with di-
chotomous variables surgery A, certain genetic haplotype E, and death Y.
According to the rules of d-separation, surgery A and haplotype E are (i)
marginally independent, i.e., the probability of receiving surgery is the same
for people with and without the genetic haplotype, and (ii) associated con-
ditionally on Y, i.e., the probability of receiving surgery varies by haplotype
when the study is restricted to, say, the survivors (Y = 0).

Indeed conditioning on the common effect Y of two independent causes A
and E always induces a conditional association between A and E in at least
one of the strata of Y (say, Y = 1). However, there is a special situation under
which A and E remain conditionally independent within the other stratum
(say, Y =0).

Suppose A and E affect survival through totally independent mechanisms
in such a way that E cannot possibly modify the effect of A on Y, and vice
versa. For example, suppose that the surgery A affects survival through the
removal of a tumor, whereas the haplotype F affects survival through increasing
levels of low-density lipoprotein-cholesterol levels resulting in an increased risk
of heart attack (whether or not a tumor is present). In this scenario, we can
consider 3 cause-specific mortality variables: death from tumor Y4, death from
heart attack Yz, and death from any other causes Y. The observed mortality
variable Y is equal to 1 (death) when Y4 or Yg or Yo is equal to 1, and Y is
equal to 0 (survival) when Y4 and Yg and Yo equal 0. The causal diagram in
Figure 8.13, an expansion of that in Figure 8.12, represents a causal structure
linking all these variables. We assume data on underlying cause of death (Y4,
Yg, Yo) are not recorded and thus the only measured variables are those in
Figure 8.12 (4, E, Y).

Because the arrows from Yy, Yg and Yy to Y are deterministic, condition-
ing on observed survival (Y = 0) is equivalent to simultaneously conditioning
on Yy =0, Y =0, and Yo = 0 as well, i.e., conditioning on Y = 0 implies
Y4 =Yg = Yo = 0. As a consequence, we find by applying d-separation to
Figure 8.13 that A and F are conditionally independent given Y = 0, i.e.,
when conditioning on collider Y = 0, the path between A and E through
Y is blocked by conditioning on the non-colliders Y, Y and Yp. On the
other hand, conditioning on death Y = 1 does not imply conditioning on any
specific values of Yy, Yg and Yo as the event Y = 1 is compatible with 7 pos-
sible unmeasured events: (Y4 =1,Yg =0,Yp =0), (Y4 =0,Yg =1,Yo =0),
Ya=0,Yg=0,Yo=1), Ya=1Ye=1Y5=0),Ya=0,Yg=1,Ys =1),
Ya=1Yr=0,Yo=1),and (Ya=1,Yg =1,Yp =1). Thus, A and FE are
associated given Y = 1, i.e., when conditioning on collider Y = 1, the path
between A and E through Y is not blocked.

In contrast with the situation represented in Figure 8.13, the variables
A and E will not be independent conditionally on Y = 0 when one of the
situations represented in Figures 8.14-8.16 occur. If A and E affect survival
through a common mechanism, then there will exist an arrow either from A
to Yg or from E to Y4, as shown in Figure 8.14. In that case, A and E
will be dependent within both strata of Y. Similarly, if Y4 and Yy are not
independent because of a common cause V' as shown in Figure 8.15, A and E
will be dependent within both strata of Y. Finally, if the causes Y4 and Yo,
and Yg and Yy, are not independent because of common causes W and W5 as
shown in Figure 8.16, then A and E will also be dependent within both strata
of Y. When the data can be summarized by Figure 8.13, we say that the data
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Technical Point 8.2

Multiplicative survival model. When the conditional probability of survival Pr[Y = 0|E = e, A = a] given A and E'is
equal to a product g(e)h(a) of functions of e and a, we say that a multiplicative survival model holds. A multiplicative
survival model

PriY =0/E =e¢,A=a] =g(e)h(a)

is equivalent to a model that assumes the survival ratio Pr[Y =0|E =e, A =a] /Pr[Y =0|E = e, A = 0] does not
depend on e and is equal to h(a). The data follow a multiplicative survival model when there is no interaction between
A and FE for Y = 0 on the multiplicative scale. A proof that Figure 8.13 represents a multiplicative survival model
proceeds as follows:

PrlY =0E=¢,A=a] =

Pr[Yo=0,Y4=0,Ys =0/E=¢,A=a] =Pr[Yo =0]Pr[Y4 =0/A =a]Pr[Yg = 0|E = €],
where the first equality is by determinism and the second by the DAG factorization.

Now set g(e) = Pr[Yg = 0|E = €] and h(a) = Pr[Yp = 0] Pr[Y4 =0/A=a]. Note if Pr[Y =0|E=¢,A=a] =

g(e)h(a), then Pr[Y =1|E =¢,A=a] =1— g(e)h(a) does not follow a multiplicative mortality model. Hence, when
A and FE are conditionally independent given Y = 0, they will be conditionally dependent given Y = 1.

follow a multiplicative survival model (see Technical Point 8.2).
What is interesting about Figure 8.13 is that by adding the unmeasured
variables Y4, Yg and Yo, which functionally determine the observed variable
Augmented causal DAGs, intro- Y, we have created an augmented causal diagram that succeeds in representing
duced by Herndn, Herndndez-Diaz,  both the conditional independence between A and E given Y = 0 and the their
and Robins (2004), can be ex- conditional dependence given Y = 1.

tended to represent the sufficient In summary, conditioning on a collider always induces an association be-
causes described in Chapter 5 (Van-  tween its causes, but this association could be restricted to certain levels of the
derWeele and Robins, 2007c). common effect. In other words, it is theoretically possible that selection on a

common effect does not result in selection bias when the analysis is restricted
to a single level of the common effect. Collider stratification is not always a
source of selection bias.
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Fine Point 8.2

The strength and direction of selection bias. We have referred to selection bias as an “all or nothing” issue: either
bias exists or it doesn’t. In practice, however, it is important to consider the expected direction and magnitude of the
bias.

The direction of the conditional association between 2 marginally independent causes A and E within strata of their
common effect Y depends on how the two causes A and FE interact to cause Y. For example, suppose that, in the
presence of an undiscovered background factor U that is unassociated with A or E, having either A =1o0or E =1 is
sufficient and necessary to cause death (an “or” mechanism), but that neither A nor F causes death in the absence
of U. Then among those who died (Y = 1), A and E will be negatively associated, because it is more likely that an
individual with A = 0 had E = 1 because the absence of A increases the chance that E was the cause of death. (Indeed,
the logarithm of the conditional odds ratio OR qgjy—1 will approach minus infinity as the population prevalence of U
approaches 1.0.) This “or” mechanism was the only explanation given in the main text for the conditional association
of independent causes within strata of a common effect; nonetheless, other possibilities exist.

For example, suppose that in the presence of the undiscovered background factor U, having both A=1and E=11is
sufficient and necessary to cause death (an “and” mechanism) and that neither A nor E causes death in the absence of
U. Then, among those who die, those with A = 1 are more likely to have F =1, i.e., A and FE are positively correlated.
A standard DAG such as that in Figure 8.12 fails to distinguish between the case of A and FE interacting through an
“or” mechanism from the case of an “and” mechanism. Causal DAGs with sufficient causation structures (VanderWeele
and Robins, 2007c) overcome this shortcoming.

Regardless of the direction of selection bias, another key issue is its magnitude. Biases that are not large enough
to affect the conclusions of the study may be safely ignored in practice, whether the bias is upwards or downwards.
Generally speaking, a large selection bias requires strong associations between the collider and both treatment and
outcome. Greenland (2003) studied the magnitude of selection bias under the null, which he referred to as collider-
stratification bias, in several scenarios.
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Chapter 9
MEASUREMENT BIAS AND “NONCAUSAL" DIAGRAMS

Suppose an investigator conducted a randomized experiment to answer the causal question “does one’s looking
up to the sky make other pedestrians look up too?” She found a weak association between her looking up and
other pedestrians’ looking up. Does this weak association reflect a weak causal effect? By definition of randomized
experiment, confounding bias is not expected in this study. In addition, no selection bias was expected because
all pedestrians’ responses—whether they did or did not look up—were recorded. However, there was another
problem: the investigator’s collaborator who was in charge of recording the pedestrians’ responses made many
mistakes. Specifically, the collaborator missed half of the instances in which a pedestrian looked up and recorded
these responses as “did not look up.” Thus, even if the treatment (the investigator’s looking up) truly had a strong
effect on the outcome (other people’s looking up), the misclassification of the outcome will result in a dilution of
the association between treatment and the (mismeasured) outcome.

We say that there is measurement bias when the association between treatment and outcome is weakened or
strengthened as a result of the process by which the study data are measured. Since measurement errors can occur
under any study design—including both randomized experiments and observational studies—measurement bias
need always be considered when interpreting effect estimates. This chapter provides a description of biases due to
measurement error.

9.1 Measurement error

In previous chapters we implicitly made the unrealistic assumption that all
variables were perfectly measured. Consider an observational study designed to
estimate the effect of a cholesterol-lowering drug A on the risk of liver disease Y.
18] A We often expect that treatment A will be measured imperfectly. For example,
if the information on drug use is obtained by medical record abstraction, the
abstractor may make a mistake when transcribing the data, the physician may

A* forget to write down that the patient was prescribed the drug, or the patient
may not take the prescribed treatment. Thus, the treatment variable in our
T analysis data set will not be the true use of the drug, but rather the measured

use of the drug. We will refer to the measured treatment as A* (read A-star),
which will not necessarily equal the true treatment A for a given individual.
Figure 9.1 The psychological literature sometimes refers to A as the “construct” and to
A* as the “measure” or “indicator.” The challenge in observational disciplines
is making inferences about the unobserved construct (e.g., cholesterol-lowering
drug use) by using data on the observed measure (e.g., information on statin
use from medical records).
The causal diagram in Figure 9.1 depicts the variables A, A*, and Y. For
simplicity, we chose a setting with neither confounding nor selection bias for
the causal effect of A on Y. The true treatment A affects both the outcome Y
and the measured treatment A*. The causal diagram also includes the node
U4 to represent all factors other than A that determine the value of A*. We
refer to the difference between an individual’s mismeasured value A* and true
value A as the measurement error of A for that individual. The magnitude and

A—Y
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Technical Point 9.1

Independence and nondifferentiality of measurement errors. For each individual, we define the measurement error
of A as the difference ey = A* — A and the measurement error of Y as the difference ey =Y* — Y.

Let f(-) denote a probability density function (pdf). The measurement error e4 of treatment and the measurement
error ey of outcome are independent if their joint pdf equals the product of each marginal pdf, ie., f(ey,ea) =
f(ey)f(ea). The measurement error e4 of treatment is nondifferential if its pdf is independent of the outcome Y, i.e.,
f(ealY) = f(ea). Analogously, the measurement error ey of the outcome is nondifferential if its pdf is independent of
the treatment A, i.e., f(ey|A) = f(ey).

Measurement error for discrete vari-  direction of the measurement error is determined by the factors in U4. Note

ables is known as misclassification.  that including the node U4 in the causal diagram is not strictly necessary
because Uy is neither a cause shared by other variables on the diagram nor a
variable that is conditioned on. We include it, however, to provide an explicit
representation of the factors responsible for measurement error and for a direct
comparison with the causal diagrams that we will discuss next.

u A UY Besides treatment A, the outcome Y can be measured with error too. The
causal diagram in Figure 9.2 includes the measured outcome Y*, and the factors
l l Uy responsible for the measurement error of Y. Figure 9.2 illustrates a common
A* Y* situation in practice. One wants to compute the average causal effect of the
treatment A on the outcome Y, but these variables A and Y have not been, or
T T cannot be, measured correctly. Rather, only the mismeasured versions A* and
Y* are available to the investigator who aims at identifying the causal effect

A Y of AonY.
Figure 9.2 Figure 9.2 also represents a setting in which there is neither confounding

nor selection bias for the causal effect of treatment A on outcome Y. Ac-

cording to our reasoning in previous chapters, association is causation in this

setting. We can compute any A-Y association measure and endow it with a

causal interpretation as the effect of A on Y. For example, the associational

Uy risk ratio Pr[Y = 1]A = 1] /Pr[Y = 1|A = 0] is equal to the causal risk ratio
/ \ Pr [Ye=! =1] /Pr[Y*=" = 1]. Our implicit assumption in previous chapters,

which we now make explicit, was that perfectly measured data on A and Y

UA UY were available.
We now consider the more realistic setting in which only the mismea-
sured versions of treatment and outcome, A* and Y*, are available. Then
A* * there is no guarantee that the measure of association between A* and Y™ will

PriY*=1/A*=1]/Pr[Y* = 1|A* = 0] will generally differ from the causal

risk ratio Pr [Y“zl = 1} / Pr [Y“:O = 1}. We say that there is measurement

bias or information bias. In the presence of measurement bias, the identifia-

Figure 9.3 bility conditions of exchangeability, positivity, and consistency are insufficient
to compute the causal effect of treatment A on outcome Y.

Y
T T equal the measure of causal effect of A on Y. The associational risk ratio
Y

A—

9.2 The structure of measurement error

The causal structure of confounding can be summarized as the presence of
common causes of treatment and outcome, and the causal structure of selec-
tion bias can be summarized as conditioning on common effects of treatment
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and outcome (or of their causes). Measurement bias arises in the presence of
measurement error, but there is no single structure to summarize measurement
error. This section classifies the structure of measurement error according to
two properties—independence and nondifferentiality—that we describe below
(see Technical Point 9.1 for formal definitions).

The causal diagram in Figure 9.2 depicts the measurement errors Uy and
Uy for both treatment A and outcome Y, respectively. According to the rules
of d-separation, the measurement errors U,y and Uy are independent because
the path between them is blocked by colliders (either A* or Y*). Independent
measurement errors are expected to arise if, e.g., information on both drug
use A and liver toxicity Y was obtained from electronic medical records in
which data entry errors occurred haphazardly. In other settings, however, the
measurement errors for exposure and outcome may be dependent, as depicted
in Figure 9.3. For example, dependent measurement errors will occur if the
information were obtained retrospectively by phone interview and an individ-
ual’s ability to recall her medical history (Uasy) affected the measurement of
both treatment A and outcome Y.

Figures 9.2 and 9.3 represent settings in which the factors U4 responsible
for the measurement error of the treatment are independent of the true value
of the outcome Y, and the factors Uy responsible for the measurement error
for the outcome are independent of the true value of treatment A. We then say
that the measurement error for treatment is nondifferential with respect to the
outcome, and that the measurement error for the outcome is nondifferential
with respect to the treatment. The causal diagram in Figure 9.4 shows an
example of independent but differential measurement error in which the true
value of the outcome affects the measurement of the treatment (i.e., an arrow
from Y to Uy). We now describe some examples of differential measurement
error of the treatment.

Suppose that the outcome Y was dementia rather than liver toxicity, and
that drug use A was ascertained by interviewing study participants. Since the
presence of dementia affects the ability to recall A, one would expect an arrow
from Y to U,. Similarly, one would expect an arrow from Y to Uy in a study
to compute the effect of alcohol use during pregnancy A on birth defects Y
if alcohol intake is ascertained by recall after delivery—because recall may be
affected by the outcome of the pregnancy. The resulting measurement bias in
these two examples is often referred to as recall bias. A bias with the same
structure might arise if blood levels of drug A* are used in place of actual drug
use A, and blood levels are measured after liver toxicity Y is present—because
liver toxicity affects the measured blood levels of the drug. The resulting
measurement bias is often referred to as reverse causation bias.

The causal diagram in Figure 9.5 shows an example of independent but
differential measurement error in which the true value of the treatment affects
the measurement of the outcome (i.e., an arrow from A to Uy ). A differential
measurement error of the outcome will occur if physicians, suspecting that drug
use A causes liver toxicity Y, monitored patients receiving drug more closely
than other patients. Figures 9.6 and 9.7 depict measurement errors that are
both dependent and differential, which may result from a combination of the
settings described above.

In summary, we have discussed four types of measurement error: indepen-
dent nondifferential (Figure 9.2), dependent nondifferential (Figure 9.3), inde-
pendent differential (Figures 9.4 and 9.5), and dependent differential (Figures
9.6 and 9.7). The particular structure of the measurement error determines
the methods that can be used to correct for it. For example, there is a large
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Fine Point 9.1

The strength and direction of measurement bias. In general, measurement error will result in bias. A notable
exception is the setting in which A and Y are unassociated and the measurement error is independent and nondifferential:
If the arrow from A to Y did not exist in Figure 9.2, then both the A-Y association and the A*-Y™ association would
be null. In all other circumstances, measurement bias may result in an A*-Y™* association that is either further from
or closer to the null than the A-Y association. Worse, even under the independent and nondifferential measurement
error structure of Figure 9.2, non-extreme measurement bias may result in A*-Y™* and A-Y trends in opposite directions
for non-dichotomous ordinal treatments and for continuous treatments. This trend reversal under independent and
nondifferential measurement error occurs when the conditional mean of A* given A is a nonmonotonic function of A.
See Dosemeci, Wacholder, and Lubin (1990) and Weinberg, Umbach, and Greenland (1994) for details. VanderWeele
and Herndn (2009) described a more general framework using signed causal diagrams.

The magnitude of the measurement bias depends on the magnitude of the measurement error. That is, measurement
bias generally increases with the strength of the arrows from U4 to A* and from Uy to Y*. Causal diagrams do not
encode quantitative information, and therefore they cannot be used to describe the magnitude of the bias.

literature on methods for measurement error correction when the measurement
error is independent nondifferential. In general, methods for measurement er-
ror correction rely on a combination of modeling assumptions and validation
samples, i.e., subsets of the data in which key variables are measured with
little or no error. The description of methods for measurement error correc-
tion is beyond the scope of this book. Rather, our goal is to highlight that
the act of measuring variables (like that of selecting individuals) may intro-
duce bias (see Fine Point 9.1 for a discussion of its strength and direction).
Realistic causal diagrams need to simultaneously represent biases arising from
confounding, selection, and measurement. The best method to fight bias due
to mismeasurement is, obviously, to improve the measurement procedures for
the variables used in our analysis.

9.3 Mismeasured confounders and colliders

Besides the treatment A and the outcome Y, the confounders L may also be
measured with error. Mismeasurement of confounders may result in bias even
if both treatment and outcome are perfectly measured.

To see this, consider the causal diagram in Figure 9.8, which includes the
variables drug use A, liver disease Y, and history of hepatitis L. Individuals
with prior hepatitis L are less likely to be prescribed drug A and more likely
to develop liver disease Y. As discussed in Chapter 7, there is confounding

.k for the effect of the treatment A on the outcome Y because there exists an
open backdoor path A + L — Y, but there is no unmeasured confounding
given L because the backdoor path A - L — Y can be blocked by condition-
ing on L. That is, there is exchangeability of the treated and the untreated
conditional on the confounder L, and one can apply IP weighting or standard-
Figure 9.8 ization to compute the average causal effect of A on Y. The standardized, or
IP weighted, risk ratio based on L, Y, and A will equal the causal risk ratio

Pr[y*=! = 1] /Pr [y*=0 = 1].
Again the implicit assumption in the above reasoning is that the confounder
L was perfectly measured. Suppose investigators did not have access to the

[
L—A—™Y
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Figure 9.9

—~— =
A—Y —>C—

Figure 9.10
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study participants’ medical records. Rather, to ascertain previous diagnoses of
hepatitis, investigators had to ask participants via a questionnaire. Since not all
participants provided an accurate recollection of their medical history—some
did not want anyone to know about it, others had memory problems or simply
made a mistake when responding to the questionnaire—the confounder L was
measured with error. Note that Figure 9.8 does not explicitly represent the
factors Uy, responsible for the measurement error of L because the particular
structure of this error is not relevant to our discussion.

Investigators had data on the mismeasured variable L* rather than on the
variable L. Unfortunately, the backdoor path A « L — Y cannot be gener-
ally blocked by conditioning on L*. The standardized (or IP weighted) risk
ratio based on L*, Y, and A will generally differ from the causal risk ratio
Pr [Y“Zl = 1] / Pr [Y“:O = 1]. We then say that there is measurement bias
or information bias. The causal diagram in Figure 9.9 shows an example of
confounding of the causal effect of A on Y in which L is not the common cause
shared by A and Y. Here too mismeasurement of L leads to measurement bias
because the backdoor path A <~ L < U — Y cannot be generally blocked by
conditioning on L*.

Alternatively, one could view the bias due to mismeasured confounders in
Figures 9.8 and 9.9 as a form of unmeasured confounding rather than as a form
of measurement bias. In fact the causal diagram in Figure 9.8 is equivalent
to that in Figure 7.8. One can think of L as an unmeasured variable and of
L* as a surrogate confounder (see Fine Point 7.2). The particular choice of
terminology—unmeasured confounding versus bias due to mismeasurement of
the confounders—is irrelevant for practical purposes. In some settings, how-
ever, the use of mismeasured variables is sufficient to adjust for confounding.
See Fine Point 9.2 for some examples.

Mismeasurement of confounders may also result in apparent effect modi-
fication. As an example, suppose that all study participants who reported a
prior diagnosis of hepatitis (L* = 1) and half of those who reported no prior
diagnosis of hepatitis (L* = 0) did actually have a prior diagnosis of hepatitis
(L =1). That is, the true and the measured value of the confounder coincide
in the stratum L* = 1, but not in the stratum L* = 0. Suppose further that
treatment A has no effect on any individual’s liver disease Y, i.e., the sharp
null hypothesis holds. When investigators restrict the analysis to the stratum
L* = 1, there will be no confounding by L because all participants included
in the analysis have the same value of L (i.e., L = 1). Therefore they will
find no association between A and Y in the stratum L* = 1. However, when
the investigators restrict the analysis to the stratum L* = 0, there will be
confounding by L because the stratum L* = 0 includes a mixture of individ-
uals with both L = 1 and L = 0. Thus the investigators will find a non-null
association between A and Y as a consequence of uncontrolled confounding
by L. If the investigators are unaware of the fact that there is mismeasure-
ment of the confounder in the stratum L* = 0 but not in the stratum L* =1,
they could naively conclude that both the association measure in the stratum
L* = 0 and the association measure in the stratum L* = 1 can be interpreted
as effect measures. Because these two association measures are different, the
investigators will say that L* is a modifier of the effect of A on Y even though
no effect modification by the true confounder L exists.

Finally, it is also possible that a collider C' is measured with error. This
situation is represented in the causal diagram in Figure 9.10, which is equivalent
to Figure 8.2. When interested in the effect of A on Y under Figure 9.10,
conditioning on the mismeasured collider C* will generally introduce selection
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Fine Point 9.2

When mismeasured confounders are not a problem. In many medical applications, measurement error in the
confounders does not introduce any bias. Suppose that high blood pressure L affects both the probability of receiving
antihypertensive therapy A and of having a stroke Y. Doctors and patients, however, do not make their treatment
decisions based on the true blood pressure L but based on the blood pressure measurement L* that was recorded in the
doctor's office. That is, L* is the only information about blood pressure that is accessible to decision makers.

Figure 9.11 (which is structurally equivalent to Figure 7.2) represents this situation. The possibly mismeasured L*
fully mediates the effect of L on A because any component of L that was not captured by L* remained unknown and
thus could not influence the decision to administer the treatment. It follows that the backdoor path between A and Y
can be blocked by conditioning on either the true L or the measured L*. Therefore, it is irrelevant whether investigators
had access to the true L or to the measured L*. Either variable is sufficient to adjust for confounding.

A more extreme example is shown in Figure 9.12. Under this causal diagram, having data on the true L is insufficient
to adjust for confounding whereas having data on the measured L* is sufficient to adjust for confounding. The general
point is that effects can be identified whenever we have as much information in the data as the decision makers had to
make their decisions, regardless of whether that information resulted from perfectly measured variables or from variables
measured with error.

bias because C* is a descendant of the collider and therefore a common effect
of the treatment A and the outcome Y.

9.4 Causal diagrams without mismeasured variables?

When drawing causal diagrams in previous chapters, we have been implicitly
L ——> A ——Y making two simplifying, and related, assumptions. In this and the next section
we make those assumptions and their implications explicit.
T The first assumption is that all variables on the diagram are perfectly mea-
sured. This assumption is not realistic because, in practice, measurement error
L is often unavoidable for treatments, outcomes, confounders, and any other vari-
ables of interest. In this chapter, we have described how causal diagrams can be
Figure 9.11 used to represent mismeasured variables under different types of measurement
error. We have also explored the consequences of using the mismeasured vari-
ables, which are the only ones available to investigators, for the identification
U, of causal effects.
For example, suppose that we are interested in the effect of the treatment
\4 A on the outcome Y, but we only have data on the measured treatment A*
—> L —>A—>Y and the measured outcome Y*. We have seen how measurement error of treat-
ment or outcome may induce a noncausal association between the measured
f / treatment A* and the measured outcome Y*, even if treatment A has a null
effect on the outcome Y and even if there is no confounding and no selection
U, bias. Also, in the presence of confounding, we have seen how measurement
error of a confounder may prevent the measured confounder L* from blocking
a backdoor path that would be successfully blocked if we had access to the
true confounder L.

Because all variables can be expected to be measured with some error, it
might be argued that a causal diagram should always represent both true and
measured values of all its variables. Yet, in many settings, the magnitude of
the measurement error may be judged, or known, to be too small to matter. In

Figure 9.12
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those settings, a causal DAG that makes no distinction between measured and
true values of a variable may be preferable for simplicity. If confounding and
selection bias exist under perfect measurement of all variables, then these biases
will typically exist under measurement error too (though exceptions exist as
shown in Fine Point 9.2). Drawing causal diagrams without measurement error
allows us to focus on confounding and selection bias without being distracted
by measurement issues.

Considering causal diagrams without measurement error is often a helpful
first approximation. Once we have a good understanding of possible biases
under perfect measurement, we can add measurement error as an additional
layer of complexity. This 2-step approach to the drawing of causal diagrams
helps us isolate the study of two sources of bias—confounding and selection—
without being overburdened by the third one—measurement. We follow this
approach in the book: when the emphasis is on confounding and selection bias,
we omit the distinction between true and measured values of the variables on
the causal diagram.

The second assumption we have made so far, also related to measurement, is
a fundamental assumption in any causal diagram. We discuss this assumption
in the next section.

9.5 Many proposed causal diagrams include noncausal arrows

e
L—A—Y

Figure 9.13

Consider the causal diagram in Figure 9.13 (which is equal to Figure 7.1). Let
A, Y and L be three binary variables representing an antiviral treatment given
to patients with COVID-19, death, and obesity (defined as body mass index
greater than 30), respectively. Patients with obesity are more likely to receive
treatment and to be hospitalized in the absence of treatment. Therefore, ex-
perts draw a DAG with arrows from L into both A and Y. For simplicity, we
will assume that the decision to give treatment is only influenced by L and
by the physician’s preference, which is unrelated to any other variables on the
diagram. Also for simplicity, we assume no measurement error for any variable.
Specifically, the true value of L equals its measured value L* so the latter does
not need be included on the diagram.

We have previously discussed how, in causal diagrams, treatment nodes
have a different status than other nodes (see Section 6.4). The reason is that
meaningful quantitative causal inference about the effect of treatment A on
outcome Y requires well-defined, actual or hypothetical, interventions on A.
Otherwise the counterfactual outcomes Y remain undefined and cannot be
linked to the observed outcomes Y, i.e., the consistency condition does not hold
(see Chapter 3). In our example, the intervention represented by treatment A is
well-defined because we have a good understanding of how antiviral treatment
can be administered or withheld. Thus, the presence or absence of an arrow
from A to Y is well defined too.

We now extend our discussion to nodes that are not considered a treatment,
such as obesity L in Figure 9.13. As we discussed extensively in Chapter 3,
interventions on obesity L on death are not well defined. Thus, the counter-
factual outcomes Y! remain undefined.

So far in this book we have ignored this problem, but many DAGs pro-
posed in the health and social sciences have arrows emanating from variables
for which well-defined interventions do not exist, like L in Figure 9.13. Those
arrows, like the arrow L — Y in Figure 9.13, do not have a causal interpreta-
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Fine Point 9.3

Whether interventions are well-defined depends on the outcome of interest. In the main text we said that there
may exist well-defined interventions for the effect of L on A even if there are no well-defined interventions for the effect
of L on Y. This statement needs a better explanation because, if we truly knew how to intervene on L to study its
effect on A, then what would prevent us from using the same intervention to study its effect on Y7

This apparent contradiction results from an abuse of notation. In our example, we used the symbol L to refer to
two concepts: (i) the physical quantity body weight (measured in kilos), and (ii) the recorded value of that quantity
(measured in kilos). In a world without measurement error, both (i) and (ii) have the same numerical value and
thus conflating both concepts has no practical impact. However, when we described in the main text a well-defined
intervention for L on A, we were referring to an intervention on (ii) rather than on (i), and thus a distinction between
both concepts is warranted.

Let us use the symbol L to depict the physical quantity “body weight”, and the symbol L* to depict the recording
of L. If we add L* to the causal DAG, there would be a deterministic arrow from L to L* (assuming no measurement
error) and a regular arrow from L* to A. According to this expanded causal DAG, body weight L only affects treatment
A when the doctor learns the value L*. Therefore, if we intervene on the recorded value L*, even if we leave the
physical quantity L unchanged, the doctors' behavior would be the same as if we could somehow intervene on L. It is
in this sense that we say in the main text that there are well-defined interventions on L when the outcome is A—the
counterfactuals A’ are well defined—but not when the outcome is Y—the counterfactuals Y are not well defined.

tion. To explore the consequences of using these DAGs with noncausal arrows,
we now discuss Figure 9.13 in more detail. Let us consider separately the
arrows L - Aand L —» Y.

When experts drew the arrow from L — A, they were appropriately using
their subject-matter knowledge. Experts knew that doctors are more likely
to administer treatment to obese patients upon learning that they are obese.
One could imagine well-defined interventions for the effect of L on A, such as
presenting the treating physician with a patient whose body mass index differs
from that of the patient for whom the treatment decision is being made. There-
fore, drawing the arrow from I — A is reasonable. For additional discussion
on this point, see Fine Point 9.3 after reading the next paragraph.

Were the experts justified in drawing the arrow L — Y? Suppose the
experts know that obese patients are more likely to die, but cannot propose
well-defined interventions for the effect of L and Y. Then the arrow L — Y
has no causal interpretation. In this chapter and generally throughout the
book, we restrict the term causal DAG to DAGs for which all arrows have
a well-defined causal interpretation. Therefore, under our restriction and the
current state of knowledge, Figure 9.13 is a “noncausal” diagram. We have
placed the word “noncausal” in quotes as a reminder that many papers in
the causal literature continue to define DAGs that include both causal and
noncausal arrows as causal diagrams. See Fine Point 9.4 for more discussion
on “noncausal” diagrams.

Now suppose that a second group of experts proposes an alternative in-

L > A >Y terpretation for the known fact that “obese patients are more likely to die”:

/ obesity is a surrogate or proxy for a hidden factor H that has a causal effect
on Y. The corresponding causal diagram is Figure 9.14 (structurally identical

H to Figure 7.2), which includes unmeasured and possibly unknown variables H
such as genetic factors, metabolic factors related to body fat stores, microbiota,

Figure 9.14 and probably others not yet discovered by science. According to Figure 9.14,

the effect of the factors H on the treatment A is fully mediated through L.
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Fine Point 9.4

“Noncausal” diagrams with well-defined statistical interpretations. Consider a DAG representation for an FFR-
CISTG model that assumed (i) the treatment A was the only variable with well-defined interventions with counterfactuals
(M, Y?) and (ii) the distribution of the variables on the DAG factored according to the DAG, i.e., each variable was
conditionally independent of its non-descendants given its parents. In these DAGs, the arrows do not, in general, have a
causal interpretation. Rather, the arrows simply encode, via d-separation, the conditional independencies satisfied by the
variables on the diagram and on the associated SWIG (see Technical Point 21.12). Under this noncausal interpretation
of DAGs, the L — Y arrow need not be removed in Figure 9.13 just because interventions on L are not well-defined.

Richardson and Robins (2013) pointed out serious difficulties with this approach. Specifically, if arrows have no
causal interpretation, then there is no reason to expect the distribution of the study variables to be representable by
(i.e., factor according to) any (incomplete) DAG. This difficulty is magnified in the presence of unmeasured variables U
because then it is not even possible to empirically check some conditional independencies from the observed data. For
example, the front door graph of Figure 7.14 implies that Y is independent of A given M and U. Any investigator who
chooses Figure 7.14 as the appropriate causal DAG must have had substantive reasons for postulating this conditional
independence. Indeed many researchers might find it hard to imagine what those reasons could be other than the belief
that A and Y share a common cause U and that the causal effect of A on Y is completely mediated by M—a belief
that endows every arrow on the diagram with a causal interpretation. See also Fine Point 9.5.

One can alternatively view the use of noncausal arrows as a response by researchers who are skeptical of the strong
causal claim that M-counterfactuals Y™ exist. This “noncausal” approach interprets Figure 7.14 as representing the
hypothesized statistical independence Y LL A|M among the observed variables that would hold in a future trial in which
A is randomly assigned. Thus, if this independence fails to hold in the future trial, the justification of the strong causal
claim that M-counterfactuals exist has been falsified along with the structure in Figure 7.14.

That is, there is no direct arrow from H to A. This assumption is reasonable if,
for example, the only information used to make real world treatment decisions
is obesity L.

Like Figure 9.13, Figure 9.14 encodes the (reasonable) assumptions that
there are well-defined interventions for the effect of obesity L on treatment
A—this assumption is represented by the arrow L — A—and that there is no
direct effect of L on Y not through A. Therefore, the associated counterfactuals
are A' and Y, which imply the existence of a well-defined intervention of L on
Y with Y! = YA'. That is, Y' is equal to Y@ for a equal to the counterfactual
Al In the language of Technical Point 6.2, we say that Y' is obtained from
Y® and A! by recursive substitution. Note there is no contradiction in Y
being well-defined for the causal diagram of Figure 19.14 but not for Figure
9.13 because, assuming Figure 9.14 is a causal diagram, Figure 9.13 is not, as
Figure 9.13 fails to include the common cause H of L and Y. See also Fine
Point 9.6.

Figure 9.14 also encodes the assumption that well-defined interventions ex-
ist for the effect of the unknown factors H on both L and Y. That is, the
arrows H — L and H — Y on Figure 9.14 imply that there exist counter-
factuals L" and Y, respectively, associated with a well-defined intervention
on H. It may seem counterintuitive for us to stipulate simultaneously that (i)
the current state of knowledge is insufficient to even characterize many of the
factors in H, and (ii) well-defined interventions exist for the effect of H on
both L and Y. To explain why we might do so and hence regard Figure 9.14
as a causal diagram under the current state of knowledge, let us define H more
precisely.

When, as in Figure 9.13, there exists a variable L on a proposed causal
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Fine Point 9.5

A connection to the front door formula. Figure 9.14 is precisely the front door diagram in Figure 7.14 with L — A
substituted for A — M. Hence E [Y'] is identified by the front door formula in Technical Point 7.4 with L,l,l’
substituted for A, a,a’ and A, a substituted for M, m.

Suppose a researcher modifies Figure 9.14 by adding a direct L — Y arrow. The justification is that, when dietitians
and physical therapists are referred an individual who has a high value of L, they provide additional ancillary care (such
as dietary advice, exercises to prevent deep vein thrombosis, etc.), which is not recorded in the medical record available
to the researchers. The counterfactual variable Y in the unmodified diagram in Figure 9.14 differs from the variable Y
in the modified diagram with a direct L — Y arrow. In the unmodified graph Y* — Y is the causal effect of [ versus
I’ via the causal pathway L — A — Y. In contrast, in the modified graph, Y — Y is the total effect along the two
pathways L — Y and L — A — Y. In fact, in contrast to the unmodified graph, E [Y] is not identified under the
modified graph.

One might conjecture that the effect of [ versus I’ along the pathway L — A — Y should be the same in the two
graphs and thus remain identified by the front door formula. This conjecture is indeed true, although we must defer a
proof until we study the identification of path-specific effects in Chapter 23.

diagram for which Y is ill-defined, we introduce a high-dimensional parent H
of L that encodes all unmeasured—known and unknown—causal determinants
of L (other than any known, but unmeasured, variables U already present on
the diagram). H may be a direct cause and thus a parent of other variables
such as Y as well. We regard L as the lower-dimensional effect of, or surrogate
for, H that has been recorded for data analysis. For example, in our obesity
example, the continuous variable body mass index L is an effect of the largely
unknown factors H that regulate body weight. In some instances, . may be
thought of as a deterministic (many to one) function of H.

Even though we are ignorant of the precise intervention on the components
(many unknown) of H that affect Y, we nonetheless assume that there exist
factors H that have a causal effect on Y. Because current knowledge does not
rule out the existence of well-defined interventions for the effect of H on Y,
the arrow H — Y is tentatively justified and therefore we consider Figure 9.14
to be a causal diagram.

Note that, for clarity, in this section we distinguished between H, unmea-
sured common causes between two variables when the effect of one of the
variables on the other is ill-defined, from U, unmeasured common causes be-
tween two variables when the effect of one of the variables on the other is
well-defined. In most of the book, we do not make this distinction and simply
use U to represent all unmeasured variables.

9.6 Does it matter that many proposed diagrams include noncausal arrows?

We have seen that the original DAG (Figure 9.13) proposed by the experts is
not a causal DAG because one of its arrows (the one from L to Y') cannot be
causally interpreted. Yet, despite being causally wrong, this DAG is adequate
for causal inference about the effect of treatment A on the outcome Y: regard-
less of whether we use the noncausal DAG in Figure 9.13 or the causal DAG in
Figure 9.14, we conclude that all backdoor paths between A and Y are blocked
by conditioning on L.
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Thus the DAG in Figure 9.13, which lacks the node U and includes the non-
causal arrow L — Y, correctly guides data analysis because adjusting for L is
all that is needed in the identifying formula—standardization or IP weighting
in our example—for the average causal effect of A on Y. This conclusion is
expected because, in both DAGs, there are no arrows from unmeasured vari-
ables into treatment A (see also Fine Point 9.2). This oversimplified scenario
illustrates a general issue: in realistic complex settings, expert knowledge is
rarely good enough to draw a causal diagram in which all of its components
are known.

In fact, many DAGs proposed in the health and social sciences are actually
noncausal DAGs because they lack the hidden variables H that make the DAG
causal. By including a variable without well-defined interventions for its effect
on its descendants (like obesity and its descendant death), we are effectively
declaring that our DAG is noncausal. It is, however, possible that the identify-
ing formula for the causal effect of interest is the same when derived from the
noncausal DAG and from the causal DAG with hidden nodes. This is exactly
what happened in our example: if Figure 9.14 is the correct DAG, using the
DAG in Figure 9.13 will result in the same identifying formula.

But noncausal DAGs may be misleading. Consider the DAG in Figure 9.15.
Declaring that this DAG is a causal DAG implies that we believe there are well-
defined interventions for the effect of L on Y (because there is a direct arrow
from L to Y). Conversely, in the absence of such well-defined interventions,
the DAG is noncausal and we can only hope that the identifying formula based
on L happens to be correct.

Following our reasoning above, Figure 9.16 depicts our measured variable
L is actually a surrogate of an unknown variable H for which well-defined
interventions exist. In Figure 9.15 the backdoor path between A and Y is
blocked by L, but in Figure 9.16 it is not.

Therefore, if investigators unaware of the status of their measured variable
as a surrogate confounder L proposed Figure 9.15 instead of Figure 9.16, they
would reach the incorrect conclusion that L is sufficient to block all backdoor
paths, as discussed in Section 9.3. When drawing causal DAGs, we need to
think carefully whether the variables that happen to be measured are also the
variables for which well-defined interventions exist. Otherwise, lack of attention
to the noncausal arrows of a DAG may give us false confidence in the validity
of our effect estimates. See Fine Point 9.6 for another example.

We have come a long way since we introduced causal diagrams in Chapter
6. Causal DAGs and SWIGs are formidable tools for investigators to organize
and communicate their causal assumptions but, as we have seen in this chapter,
these diagrams are subject to the same practical constraints that are inherent
to causal inference in general. Specifically, a causal arrow X — Y cannot be
meaningfully interpreted in the absence of well-defined interventions for the
effect of X on Y.

When proposing a causal DAG, we need to think carefully about the inter-
pretation of each of its arrows. A scientifically blind acceptance of DAGs with
noncausal arrows may lead to incorrect conclusions for causal inference. This
level of scrutiny is unnecessary for causal diagrams representing an electrical
circuit in which all interventions are well-defined, but indispensable for the
causal diagrams proposed in the health and social sciences.

The above discussion simplifies the concept of well-defined intervention for
pedagogic purposes. As discussed in Chapter 3, no intervention is perfectly
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Fine Point 9.6

From noncausal diagrams to causal diagrams. Suppose some investigators interested in the effect of A on Y
proposed the DAG in Figure 9.17. To draw this DAG, they relied on prior knowledge about the temporal order of the
variables and the following two facts: (i) the measured variable L is associated with Y, and (ii) there is one set of
unmeasured, but known, factors U that affect A and are associated with L. As discussed in Fine Point 7.4, the effect
of A on Y is not identifiable if Figure 9.17 is the true causal diagram because L is a descendant of A.

Upon further reflection, the investigators realize that there are no well-defined interventions for the effect of L on Y.
Therefore, the arrow L — Y is not a causal arrow and their DAG is not causal. To transform Figure 9.17 into a causal
diagram, they add the hidden variable H with a causal arrow into Y and represent L as a surrogate of H. Figure 9.18
depicts their revised DAG. The effect of A on Y is not identifiable if Figure 9.18 is the true causal diagram because the
backdoor path A <+~ U — H — Y cannot be blocked by any measured variable.

Note that the investigators kept the arrow U — A, which implies that they believe that there are well-defined
interventions for the effect of U and A. They also redirected the arrows from U and A to L in Figure 9.17 towards H
in Figure 9.18. This implies that the investigators believe that there must exist well-defined interventions for the effect
of both U and A on H and that the effects of both U and A on L are fully mediated by their effect on H. (Even if
L were a deterministic function of H, which is compatible with Figure 9.18, conditioning on L would not block paths
through H because H is not a deterministic function of L, as it is of higher dimensionality and complexity than L.)

The inheritance by H in Figure 9.18 of all the arrows into L in Figure 9.17 is not always warranted. For example, U
may have direct effect on L as in the causal DAG in Figure 9.19 rather than on H as in Figure 9.18. If, in fact, Figure
9.19 is the true causal DAG then the effect of A on Y would be identifiable because there are no open backdoor paths
between A and Y. Note that, in Figure 19.9, the surrogate L cannot be a deterministic function of H as it is also
affected by U. An example where, as in Figure 9.19, U has a direct effect on the surrogate L but no direct effect on H
is the following: U denotes a physician's decision to order a particular diagnostic test, L the result of the test, and H
the underlying biological determinants of the test result.

well-defined but, for some interventions, the scientific consensus is that they

o are sufficiently well-defined. We have argued that quantitative causal inference
A——> H—>Y fundamentally relies on the (admittedly fuzzy) concept of sufficiently well-
defined interventions. Therefore, in the remainder of this book, except for

f l several well sign-posted exceptions, we will assume all DAGs are strictly causal

in the sense that every arrow on the DAG represents a sufficiently well-defined
intervention. That is, each arrow is associated with an intervention that can
be specified in such a way that no meaningful vagueness remains based on
current scientific knowledge. In a few years or decades, we may find out that
our beliefs, and thus our causal diagrams, were incorrect.

U—>L

Figure 9.19



Chapter 10
RANDOM VARIABILITY

Suppose an investigator conducted a randomized experiment to answer the causal question “does one’s looking
up to the sky make other pedestrians look up too?” She found an association between her looking up and other
pedestrians’ looking up. Does this association reflect a causal effect? By definition of randomized experiment,
confounding bias is not expected in this study. In addition, no selection bias was expected because all pedestrians’
responses—whether they did or did not look up—were recorded, and no measurement bias was expected because
all variables were perfectly measured. However, there was another problem: the study included only 4 pedestrians,
2 in each treatment group. By chance, 1 of the 2 pedestrians in the “looking up” group, and neither of the 2
pedestrians in the “looking straight” group, was blind. Thus, even if the treatment (the investigator’s looking
up) truly had a strong average effect on the outcome (other people’s looking up), half of the individuals in the
treatment group happened to be immune to the treatment. The small size of the study population led to a dilution
of the estimated effect of treatment on the outcome.

There are two qualitatively different reasons why causal inferences may be wrong: systematic bias and random
variability. The previous three chapters described three types of systematic biases: selection bias, measure-
ment bias—both of which may arise in observational studies and in randomized experiments—and unmeasured
confounding—which is not expected in randomized experiments. So far we have disregarded the possibility of
bias due to random variability by restricting our discussion to huge study populations. In other words, we have
operated as if the only obstacles to identify the causal effect were confounding, selection, and measurement. It is
about time to get real: the size of study populations in etiologic research rarely precludes the possibility of bias
due to random variability. This chapter discusses random variability and how we deal with it.

10.1 Identification versus estimation

The first nine chapters of this book are concerned with the computation of
causal effects in study populations of near infinite size. For example, when
computing the causal effect of heart transplant on mortality in Chapter 2, we
only had a twenty-person study population but we regarded each individual
in our study as representing 1 billion identical individuals. By acting as if
we could obtain an unlimited number of individuals for our studies, we could
ignore random fluctuations and could focus our attention on systematic biases
due to confounding, selection, and measurement. Statisticians have a name for
problems in which we can assume the size of the study population is effectively
infinite: identification problems.

Thus far we have reduced causal inference to an identification problem. Our
only goal has been to identify (or, as we often said, to compute) the average
causal effect of treatment A on the outcome Y. The concept of identifiability
was first described in Section 3.1—and later discussed in Sections 7.2 and
8.4—where we also introduced some conditions generally required to identify
causal effects even if the size of the study population could be made arbitrarily
large. These so-called identifying conditions were exchangeability, positivity,
and consistency.

Our ignoring random variability may have been pedagogically convenient
to introduce systematic biases, but also extremely unrealistic. In real research
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projects, the study population is not effectively infinite and hence we cannot
ignore the possibility of random variability. To this end let us return to our
twenty-person study of heart transplant and mortality in which 7 of the 13
treated individuals died.

Suppose our study population of 20 can be conceptualized as being a ran-
dom sample from a super-population so large compared with the study popu-
lation that we can effectively regard it as infinite. Further, suppose our goal is
to make inferences about the super-population. For example, we may want
to make inferences about the super-population probability (or proportion)
Pr[Y = 1|4 = a]. We refer to the parameter of interest in the super-population,
the probability Pr[Y = 1|A = a] in this case, as the estimand. An estimator
is a rule that takes the data from any sample from the super-population and
produces a numerical value for the estimand. This numerical value for a par-
ticular sample is the estimate from that sample. The sample proportion of
individuals that develop the outcome among those receiving treatment level
a, Pr[Y = 1| A = al], is an estimator of the super-population probability
Pr[Y = 1|A = a]. The estimate from our sample is I/D;[Y =1|A=a]=7/13.
More specifically, we say that 7/13 is a point estimate. The value of the esti-
mate will depend on the particular 20 individuals randomly sampled from the
super-population.

As informally defined in Chapter 1, an estimator is consistent for a par-
ticular estimand if the estimates get (arbitrarily) closer to the parameter as
the sample size increases (see Technical Point 10.1 for the formal definition).
Thus the sample proportion f’;[Y = 1| A = a] consistently estimates the
super-population probability Pr[Y = 1|4 = aq], i.e., the larger the num-
ber n of individuals in our study population, the smaller the magnitude of
Pr[Y = 1|A = a] — Pr[Y = 1 | A = a] is expected to be. Previous chap-
ters were exclusively concerned with identification; from now on we will be
concerned with statistical estimation.

Even consistent estimators may result in point estimates that are far from
the super-population value. Large differences between the point estimate and
the super-population value of a proportion are much more likely to happen
when the size of the study population is small compared with that of the super-
population. Therefore it makes sense to have more confidence in estimates
that originate from larger study populations. In the absence of systematic
biases, statistical theory allows one to quantify this confidence in the form of a
confidence interval around the point estimate. The larger the size of the study
population, the narrower the confidence interval. A common way to construct
a 95% confidence interval for a point estimate is to use a 95% Wald confidence
interval centered at a point estimate. It is computed as follows.

First, estimate the standard error of the point estimate under the assump-
tion that our study population is a random sample from a much larger super-
population. Second, calculate the upper limit of the 95% Wald confidence
interval by adding 1.96 times the estimated standard error to the point esti-
mate, and the lower limit of the 95% confidence interval by subtracting 1.96
times the estimated standard error from the point estimate. For example, con-
sider our estimator Pr[Y =1 | A = a] = p of the super-population parameter
Pr[Y = 1|A = a] = p. Its standard error is 4/ @ (the standard error of a
binomial) and thus its estimated standard error is \/i’(ln_ﬁ) = \/(7/1‘?&6/13) =
0.138. Recall that the Wald 95% confidence interval for a parameter 6 based

on an estimator 8 is 6+ 1.96 x e (5) where Se (@\) is an estimate of the (exact
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A Wald confidence interval cen-
tered at p is only guaranteed to be
valid in large samples. For simplic-
ity, here we assume that our sample
size is sufficiently large for the va-
lidity of our Wald interval.

In contrast with a frequentist 95%
confidence interval, a Bayesian 95%
credible interval can be interpreted
as “there is a 95% probability that
the estimand is in the interval”.
However, for a Bayesian, probabil-
ity is defined not as a frequency
over hypothetical repetitions but as
degree-of-belief. In this book we
adopt the frequency definition of
probability. See Fine Point 11.2 for
more on Bayesian intervals.

There are many valid large-sample
confidence intervals other than the
Wald interval (Casella and Berger,
2002). One of these might be pre-
ferred over the Wald interval, which
can be badly anti-conservative in
small samples (Brown et al, 2001).

or large sample) standard error of 9 and 1.96 is the upper 97.5% quantile of
a standard normal distribution with mean 0 and variance 1. Therefore the
95% Wald confidence interval for our estimate is 0.27 to 0.81. The length and
centering of the 95% Wald confidence interval will vary from sample to sample.

A 95% confidence interval is calibrated if the estimand is contained in the
interval in 95% of random samples, conservative if the estimand is contained in
more than 95% of samples, and anticonservative otherwise. We will say that a
confidence interval is valid if, for any value of the true parameter, the interval
is either calibrated or conservative, i.e. it covers the true parameter at least
95% of the time. We would like to choose the valid interval whose width is
narrowest.

The validity of confidence intervals is defined in terms of the frequency of
coverage in repeated samples from the super-population, but we only see one
of those samples when we conduct a study. Why should we care about what
would have happened in other samples that we did not see? One important
answer is that the definition of confidence interval also implies the following.
Suppose we and all of our colleagues keep conducting research studies for the
rest of our lifetimes. In each new study, we construct a valid 95% confidence
interval for the parameter of interest. Then, at the end of our lives, we can look
back at all the studies that were conducted, and conclude that the parameters
of interest were trapped in—or covered by—the confidence interval in at least
95% of the studies. Unfortunately, we will have no way of identifying the (up
to) 5% of the studies in which the confidence interval failed to include the
super-population quantity.

Importantly, the 95% confidence interval from a single study does not im-
ply that there is a 95% probability that the estimand is in the interval. In
our example, we cannot conclude that the probability that the estimand lies
between the values 0.27 and 0.81 is 95%. The estimand is fixed, which implies
that either it is or it is not included in the particular interval (0.27, 0.81).
In this sense, the probability that the estimand is included in that interval is
either 0 or 1. A confidence interval only has a frequentist interpretation. Its
level (e.g., 95%) refers to the frequency with which the interval will trap the
unknown super-population quantity of interest over a collection of studies (or
in hypothetical repetitions of a particular study).

Confidence intervals are often classified as either small-sample or large-
sample confidence intervals. A small-sample valid (conservative or calibrated)
confidence interval is one that is valid at all sample sizes for which it is de-
fined. Small-sample calibrated confidence intervals are sometimes called ex-
act confidence intervals. A large-sample (equivalently, asymptotic) valid con-
fidence interval is one that is valid only in large samples. A large-sample
calibrated 95% confidence interval is one whose coverage becomes arbitrarily
close to 95% as the sample size increases. The Wald confidence interval for
Pr[Y = 1|A = a] = p mentioned above is a large-sample calibrated confidence
interval, but not a small-sample valid interval. (There do exist small-sample
valid confidence intervals for p, but they are not often used in practice.) When
the sample size is small, a valid large-sample confidence interval, such as the
Wald 95% confidence interval of our example above, may not be valid. In this
book, when we use the term 95% confidence interval, we mean a large-sample
valid confidence interval, like a Wald interval, unless stated otherwise. See also
Fine Point 10.1.

However, not all consistent estimators can be used to center a valid Wald
confidence interval, even in large samples. Most users of statistics will consider
an estimator unbiased if it can center a valid Wald interval and biased if it
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Fine Point 10.1

Honest confidence intervals. The smallest sample size at which a large-sample, valid 95% confidence interval covers
the true parameter at least 95% of the time may depend on the unknown value of the true parameter. We say a
large-sample valid 95% confidence interval is uniform or honest if there exists a sample size n at which the interval is
guaranteed to cover the true parameter value at least 95% of the time, whatever be the value of the true parameter. We
demand honest intervals because, in the absence of uniformity, at any finite sample size there may be data generating
distributions under which the coverage of the true parameter is much less than 95%. Unfortunately, for a large-sample,
honest confidence interval, the smallest such n is generally unknown and is difficult to determine even by simulation.
See Robins and Ritov (1997) for technical details.

In the remainder of the text, when we refer to valid confidence intervals, we will mean large-sample honest confidence
intervals. By definition, any small-sample valid confidence interval is uniform or honest for all n for which the interval
is defined.

cannot (see Technical Point 10.1 for details). For now, we will equate the term
bias with the inability to center valid Wald confidence intervals. Also, bear in
mind that confidence intervals only quantify uncertainty due to random error,
and thus the confidence we put on confidence intervals may be excessive in the
presence of systematic biases (see Fine Point 10.2 for details).

10.2 Estimation of causal effects

Suppose our heart transplant study was a marginally randomized experiment,
and that the 20 individuals were a random sample of all individuals in a nearly
infinite super-population of interest. Suppose further that all individuals in
the super-population were randomly assigned to either A =1 or A = 0, and
that all of them adhered to their assigned treatment. Exchangeability of the
treated and the untreated would hold in the super-population, i.e., Pr[Y* =
1] = Pr[Y = 1|A = a], and therefore the causal risk difference Pr[Y*=! = 1] —
Pr[Y2=% = 1] equals the associational risk difference Pr[Y = 1|4 = 1]-Pr[Y =
1|A = 0] in the super-population.

Because our study population is a random sample of the super-population,
the sample proportion of individuals that develop the outcome among those
with observed treatment value A = a, Pr[Y = 1 | A = a], is an unbiased
estimator of the super-population probability Pr[Y = 1|A = a]. Because of
exchangeability in the super-population, the sample proportion 1/3;[}/ =1|A=
a] is also an unbiased estimator of Pr[Y® = 1]. Thus, traditional statistical
“testing”of the causal null hypothesis Pr[Y*=! = 1] = Pr[Y*=% = 1] boils
down to comparing the sample proportions lg;[Y =1|A=1] = 7/13 and
Pr [Y =1]A=0] = 3/7. Standard statistical methods can also be used to
compute 95% confidence intervals for the causal risk difference and causal
risk ratio in the super-population, which are estimated by (7/13) — (3/7) and
(7/13)/(3/7), respectively. Slightly more involved, but standard, statistical
procedures are used in observational studies to obtain confidence intervals for
standardized, IP weighted, or stratified association measures.

There is an alternative way to think about sampling variability in random-
ized experiments. Suppose only individuals in the study population, not all
individuals in the super-population, are randomly assigned to either A = 1
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Technical Point 10.1

Bias and consistency in statistical inference. We have discussed systematic bias (due to unknown sources of
confounding, selection, or measurement error) and consistent estimators in earlier chapters. Here we discuss these and
other concepts of bias, and describe how they are related.

To provide a formal definition of consistent estimator for an estimand 6, suppose we observe n independent, identically
distributed (i.i.d.) copies of a vector-valued random variable whose distribution P lies in a set M of distributions (our
model). Then the estimator 0, is consistent for 6 = 6 (P) in model M if b, converges to 6 in probability for every
PeMie R

Prp [\Gn—H(PH >5} — 0 as n — oo for every e > 0, P € M.

The estimator @l is exactly unbiased in model M if, for every P € M, Ep {@n} = 0 (P). The exact bias under P is

the difference Ep [@\n} — 6 (P). We denote the estimator by @\n rather than by simply 0 to emphasize that the estimate

depends on the sample size . On the other hand, the parameter 6 (P) is a fixed, though unknown, quantity depending
on P € M. When P is the distribution generating the data in our study, we often suppress the P in the notation and
write E {@\n} = 0. For many parameters 6, such as the risk ratio Pr[Y = 1|4 = 1]/ Pr[Y = 1|4 = 0], exactly unbiased
estimators do not exist.

A systematically biased estimator is neither consistent nor exactly unbiased. Robins and Morgenstern (1987) argue
that most applied researchers (e.g., epidemiologists) will declare an estimator unbiased only if it can center a valid Wald
confidence interval. They show that under this definition, an estimator is only unbiased if it is uniformly asymptotic
normal and unbiased (UANU), as only UANU estimators can center valid standard Wald intervals for 6 (P) under
the model M. An estimator 6,, is UANU in model M if there exists sequences o, (P) such that the z-statistic

(@\n —0 (P)) /o (P) converges uniformly to a standard normal random variable in the following sense: for t € R,

;,gyprp[l/z(a ())/an() }—@(t)\—masn—mo

where @ (t) is the standard normal cumulative distribution function (Robins and Ritov,1997).
All inconsistent estimators and some consistent estimators (see Chapter 18 for examples) are biased under this
definition. In this book, when we say an estimator is unbiased (without further qualification) we mean that it is UANU.

or A = 0. Because of the presence of random sampling variability, we do
not expect that exchangeability will exactly hold in our sample. For example,
suppose that only the 20 individuals in our study were randomly assigned to
either heart transplant (A = 1) or medical treatment (A = 0). Suppose further
that each individual can be classified as good or bad prognosis at the time of
randomization. We say that the groups A = 0 and A = 1 are exchangeable
if they include exactly the same proportion of individuals with bad prognosis.
By chance, it is possible that 2 out of the 13 individuals assigned to A = 1
and 3 of the 7 individuals assigned to A = 0 had bad prognosis. However, if
we increased the size of our sample then there is a high probability that the
relative imbalance between the groups A =1 and A = 0 would decrease.
Under this conceptualization, there are two possible targets for inference.
First, investigators may be agnostic about the existence of a super-population
and restrict their inference to the sample that was actually randomized. This is
See Robins (1988) and Green- referred to as randomization-based inference, and requires taking into account
land (1991) for a discussion of some technicalities that are beyond the scope of this book. Second, investiga-
randomization-based inference. tors may still be interested in making inferences about the super-population
from which the study sample was randomly drawn. From an inference stand-
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Fine Point 10.2

Uncertainty from systematic biases. The width of the usual Wald-type confidence intervals is a function of the
standard error of the estimator and thus reflects only uncertainty due to random error. However, the possible presence
of systematic bias due to confounding, selection, or measurement is another important source of uncertainty. The larger
the study population, the smaller the random error is both absolutely and as a proportion of total uncertainty, and hence
the more the usual Wald confidence interval will understate the true uncertainty.

The stated 95% confidence in a 95% confidence interval becomes overconfidence as population size increases because
the interval excludes uncertainty due to systematic biases, which are not diminished by increasing the sample size. As
a consequence, some authors advocate referring to such intervals by a less confident name, calling them compatibility
intervals instead. The renaming recognizes that such intervals can only show us which effect sizes are highly compatible
with the data under our adjustment assumptions and methods (Amrhein et al. 2019; Greenland 2019). The compatibility
concept is weaker than the confidence concept, for it does not demand complete confidence that our adjustment removes
all systematic biases.

Regardless of the name of the intervals, the uncertainty due to systematic bias is usually a central part of the discussion
section of scientific articles. However, most discussions revolve around informal judgments about the potential direction
and magnitude of the systematic bias. Some authors argue that quantitative methods need to be used to produce
intervals around the effect estimate that integrate random and systematic sources of uncertainty. These methods are
referred to as quantitative bias analysis. See the book by Lash, Fox, and Fink (2009). Bayesian alternatives are discussed
by Greenland and Lash (2008), and Greenland (2009a, 2009b).

point, this latter case turns out to be mathematically equivalent to the con-
ceptualization of sampling variability described at the start of this section in
which the entire super-population was randomly assigned to treatment. That
is, randomization followed by random sampling is equivalent to random sam-
pling followed by randomization.

In many cases we are not interested in the first target. To see why, consider
a study that compares the effect of two first-line treatments on the mortality
of cancer patients. After the study ends, we may determine that it is better
to initiate one of the two treatments, but this information is now irrelevant
to the actual study participants. The purpose of the study was not to guide
the choice of treatment for patients in the study but rather for a group of
individuals similar to—but larger than—the studied sample. Heretofore we
have assumed that there is a larger group—the super-population—from which
the study participants were randomly sampled. We now turn our attention to
the concept of the super-population.

10.3 The myth of the super-population

As discussed in Chapter 1, there are two sources of randomness: sampling

variability and nondeterministic counterfactuals. Below we discuss both.
Consider our estimate Pr[Y = 1 | A = 1] = p = 7/13 of the super-

population risk Pr[Y = 1|A = a] = p. Nearly all investigators would report a

binomial confidence interval p£1.964/ @ =7/13+£1.964/ (7/132# for the

probability p. If asked why these intervals, they would say it is to incorporate
the uncertainty due to random variability. But these intervals are valid only
if p has a binomial sampling distribution. So we must ask when would that
happen. In fact there are two scenarios under which p has a binomial sampling
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The term i.i.d. used in Techni-
cal Point 10.1 means that our data
were a random sample of size n
from a super-population.

Robins (1988) discussed these two
scenarios in more detail.

distribution.

e Scenario 1. The study population is sampled at random from an es-
sentially infinite super-population, sometimes referred to as the source
or target population, and our estimand is the proportion p = Pr[Y =
1|A = 1] of treated individuals who developed the outcome in the super-
population. It is then mathematically true that, in repeated random
samples of size 13 from the treated individuals in the super-population,
the number of individuals who develop the outcome among the 13 is a
binomial random variable with success probability Pr[Y = 1|A = 1]. As
a result, the 95% Wald confidence interval calculated in the previous sec-
tion is asymptotically calibrated for Pr[Y = 1|A = 1]. This is the model
we have considered so far.

e Scenario 2. The study population is not sampled from a hypothetical
super-population. Rather (i) each individual ¢ among the 13 treated in-
dividuals has an individual nondeterministic (stochastic) counterfactual
probability p?=! (ii) the observed outcome Y; = Y2=! for subject i oc-
curs with probability p¢=! and (iii) p¢=! takes the same value, say p, for
each of the 13 treated individuals. Then the number of individuals who
develop the outcome among the 13 treated is a binomial random vari-
able with success probability p. As a result, the 95% confidence interval
calculated in the previous section is asymptotically calibrated for p.

Scenario 1 assumes a hypothetical super-population. Scenario 2 does not.
However, Scenario 2 is untenable because the probability p¢=! of developing
the outcome when treated will almost certainly vary among the 13 treated in-
dividuals due to between-individual differences in risk. For example we would
expect the probability of death p¢=! to have some dependence on an indi-
vidual’s genetic make-up. If the p¢=! are nonconstant then the estimand of
interest in the actual study population would generally be the average, say p, of
the 13 p¢=1. But in that case the number of treated who develop the outcome
is not a binomial random variable with success probability p, and the 95% con-
fidence interval for p calculated in the previous section is not asymptotically
calibrated but conservative.

Therefore, any investigator who reports a binomial confidence interval for
Pr[Y = 1]A = a], and who acknowledges that there exists between-individual
variation in risk, must be implicitly assuming Scenario 1: the study individuals
were sampled from a near-infinite super-population and that all inferences are
concerned with quantities from that super-population. Under Scenario 1, the
number with the outcome among the 13 treated is a binomial variable regard-
less of whether the underlying counterfactual is deterministic or stochastic.

An advantage of working under the hypothetical super-population scenario
is that nothing hinges on whether the world is deterministic or nondetermin-
istic. On the other hand, the super-population is generally a fiction; in most
studies individuals are not randomly sampled from any near-infinite popula-
tion. Why then has the myth of the super-population endured? One reason is
that it leads to simple statistical methods.

A second reason has to do with generalization. As we mentioned in the
previous section, investigators generally wish to generalize their findings about
treatment effects from the study population (e.g., the 20 individuals in our
heart transplant study) to some large target population (e.g., all immortals in
the Greek pantheon). The simplest way of doing so is to assume the study
population is a random sample from a large population of individuals who
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are potential recipients of treatment. Since this is a fiction, a 95% confi-
dence interval computed under Scenario 1 should be interpreted as covering
the super-population parameter had, often contrary to fact, the study individ-
uals been sampled randomly from a near infinite super-population. In other
words, confidence intervals obtained under Scenario 1 should be viewed as
what-if statements.

It follows from the above that an investigator might not want to entertain
Scenario 1 if the size of the pool of potential recipients is not much larger
than the size of the study population, or if the target population of potential
recipients is believed to differ from the study population to an extent that
cannot be accounted for by sampling variability. Here we will accept that
individuals were randomly sampled from a super-population, and explore the
consequences of random variability for causal inference in that context. We
first explore this question in a simple randomized experiment.

10.4 The conditionality “principle”

The estimated variance of24th9% un-

adjusted estimator is %520 +
42 78

il = ﬁ. The Wald
95% confidence interval is then
—0.15 +(5585) 196 =
(—0.26, —0.04).
Table 10.1
Y=1 Y=0

A=1 24 96

A=0 42 78
Table 10.2

L=1 Y=1 Y=0

A=1 4 76

A=0 2 38

L=0 Y= Y =0

A=1 20 20

A=0 40 40

Table 10.1 summarizes the data from a randomized trial to estimate the average
causal effect of treatment A (1: yes, 0: no) on the l-year risk of death Y (1:
yes, 0: no). The experiment included 240 individuals, 120 in each treatment
group. The associational risk difference is Pr[Y = 1|4 = 1] = Pr[Y = 1|4 =
0] = % — 14720 = —0.15. Suppose the experiment had been conducted in a
super-population of near-infinite size, the treated and the untreated would be
exchangeable, i.e., Y*1L A, and the associational risk difference would equal
the causal risk difference Pr [Y“zl = 1] —Pr [Y“:O = 1]. Suppose the study
investigators computed a 95% confidence interval (—0.26, —0.04) around the
point estimate —0.15 and published an article in which they concluded that
treatment was beneficial because it reduced the risk of death by 15 percentage
points.

However, the study population had only 240 individuals and is therefore
likely that, due to chance, the treated and the untreated are not perfectly
exchangeable. Random assignment of treatment does not guarantee exact ex-
changeability for the sample consisting of the 240 individuals in the trial; it only
guarantees that any departures from exchangeability are due to random vari-
ability rather than to a systematic bias. In fact, one can view the uncertainty
resulting from our ignorance of the chance correlation between unmeasured
baseline risk factors and the treatment A in the study sample as contributing
to the length 0.22 of the confidence interval.

A few months later the investigators learn that information on a third
variable, cigarette smoking L (1: yes, 0: no), had also been collected and decide
to take a look at it. The study data, stratified by L, is shown in Table 10.2.
Unexpectedly, the investigators find that the proportion of individuals receiving
treatment among smokers (80/120) is twice that among nonsmokers (40,/120),
which suggests that the treated and the untreated are not exchangeable and
thus that adjustment for smoking is necessary. When the investigators adjust
via stratification, the associational risk difference in smokers, Pr[Y = 1|4 =
1,L = 1] = Pr[Y = 1]A = 0,L = 1], is equal to 0. The associational risk
difference in nonsmokers, Pr[Y = 1|A =1,L = 0] —= Pr[Y = 1|4 =0,L = 0],
is also equal to 0. The adjusted analysis suggests treatment has no effect in
both smokers and nonsmokers, even though the marginal risk difference —0.15
suggested a net beneficial effect in the study population.
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Technical Point 10.2

A formal statement of the conditionality principle. The likelihood for the observed data has three factors: the
density of Y given A and L, the density of A given L, and the marginal density of L. Consider a simple example with
one dichotomous L, exchangeability Y 1L A|L, the stratum-specific risk difference sSRD =Pr (Y =1|L=1,A=1) —
Pr(Y =1|L =1, A = 0) known to be constant across strata of L, and in which the parameter of interest is the stratum-
specific causal risk difference. Then the likelihood of the data is

n

117 (YilLi, Ai; sRD, po) x f (Ail Lz ) x [ (Lss p)

i=1

where pg = (po1,Ppo2) with poy = Pr(Y =1|L =1,A=0), «, and p are nuisance parameters associated with the
conditional density of Y given A and L, the conditional density of A given L, and the marginal density of L, respectively.
See, for example, Casella and Berger (2002).

The data on A and L are said to be S-ancillary for the parameter of interest when, as in this case, the distribution
of the data conditional on these variables depends on the parameter of interest, but the joint density of A and L does
not share parameters with f (Y;|L;, A;; sRD,po). The conditionality principle states that one should always perform
inference on the parameter of interest conditional on any S-ancillary statistics. Thus one should condition on the S-
ancillary statistic {A;, L;;i = 1,..,n}. Analogously, if the risk ratio (rather than the risk difference) were known to be
constant across strata of L, {A;, L;;4 = 1,..,n} remains S-ancillary for the risk ratio.

An exact ancillary statistic is defined to be an S-ancillary statistic whose marginal distribution is known. In our
example, this would require that a and p be known.

The estimated variance of the ad- These new findings are disturbing to the investigators. Either someone did

justed estimator is described in  not assign the treatment at random (malfeasance) or randomization did not

Technical Point 10.5. The Wald result in approximate exchangeability (very very bad luck). A debate ensues

95% confidence interval is then among the investigators. Should they retract their article and correct the

(—0.076,0.076). results? They all agree that the answer to this question would be affirmative
if the problem were due to malfeasance. If that were the case, there would
be confounding by smoking and the effect estimate should be adjusted for
smoking. But they all agree that malfeasance is impossible given the study’s
quality assurance procedures. It is therefore clear that the association between
smoking and treatment is entirely due to bad luck. Should they still retract
their article and correct the results?

One investigator says that they should not retract the article. His argument
goes as follows: “Okay, randomization went wrong for smoking, but why should
we privilege the adjusted over the unadjusted estimator? It is likely that
imbalances on other unmeasured factors U cancelled out the effect of the chance
imbalance on L, so that the unadjusted estimator is still the closer to the true
value in the super-population.” A second investigator says that they should
retract the article and report the adjusted null result. Her argument goes as
follows: “We should adjust for L because the strong association between L and
A introduces confounding in our effect estimate. Within levels of L, we have
mini randomized trials and the confidence intervals around the corresponding
point estimates will reflect the uncertainty due to the possible U-A associations
conditional on L.”

To determine which investigator is correct, here are the facts of the matter.
Suppose, for simplicity, the true causal risk difference is constant across strata
of L, and suppose we could run the randomized experiment trillions of times.
We then select only (i.e., condition on) those runs in which smoking L and
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Technical Point 10.3

Approximate ancillarity. Suppose that the stratum-specific risk difference (sRD;) is known to vary over strata of L.
Under our usual identifiability assumptions, the causal risk difference in the population is identified by the standardized
risk difference
RDgq =Y [Pr(Y =1L =1,A=10)-Pr(Y =1L =1,A=0;0)] f (I;p)

1
which depends on the parameters v = {sRD;,po;;! = 0,1} and p (see Technical Point 10.2). In unconditionally
randomized experiments, RD,:q equals the associational RD, Pr(Y =1|A=1) — Pr (Y = 1|4 = 0), because AL L
in the super-population. Due to the dependence of RDg;q on p, {A4;,L;;i =1,..,n} is no longer exactly ancillary and
in fact no exact ancillary exists.

Consider the statistic S = ORaz — ORap, where ORar, = ORay () = prq=i=pad THa=gi=0 is the A-L

odds ratio in the super-population, and ﬁAL is OR 41, but with the the population proportions Pr (A = a|L = [; @)

replaced by the empirical sample proportions Pr (A=a|lL=1). Sis asymptotically normal with mean 0 conditional on
the L; and thus its distribution depends on c. Let 5 = S/5e(S), where 5e(S) is an estimate of the standard error of
S. The distribution of S converges to a standard normal distribution in large samples, so that S quantifies the A-L
association in the data on a standardized scale. For example, if S = 2, then S is two standard deviations above its
(asymptotic) expected value of 0.

When the true value of OR 41, is known, S is referred to as an approximate (or large sample) ancillary statistic. To see
why, consider a randomized experiment with OR 1, = 1. Then S, like an exact ancillary statistic, i) can be computed

from the data (i.e., S = (5}\%,4,; - 1) /5e(S)), i) S has an approximately known distribution, iii) the likelihood factors

into a term f (A|L; ) that governs the distribution of S and a term f (Y|L, A; v) f (L; p) that does not depend on a,
and iv) conditional on S, the adjusted estimate of RD;, is unbiased, while the unadjusted estimate of RDg;, is biased

(Technical Point 10.4 defines and compares adjusted and unadjusted estimators). Any other statistic that quantifies the
A-L association SXA=LL=1) _ 1, can be used in place of S.
Pr(4=1|L=0)

Now consider a continuity principle wherein inferences about an estimand should not change discontinuously in
response to an arbitrarily small known change in the data generating distribution (Buehler 1982). If one accepts both
the conditionality and continuity principles, then one should condition on an approximate ancillary statistic. For example,
when OR 41, = 1 is known, the continuity principle would be violated if, following the conditionality principle, we treated
the unadjusted estimate of RDg4 as biased when sRD; was known to be a constant, but treated it as unbiased when
the sRD; were almost constant. We will say that a researcher who always conditions on both exact and approximate

ancillaries follows the extended conditionality principle.

treatment A are as strongly positively associated as in the observed data. We
would find that, within each level of L, the fraction of these runs in which
any given pre-treatment risk factor U for Y was positively associated with
A essentially equals the number of runs in which it was negatively associated.
(This is true even if U and L are highly correlated in both the super-population
and in the study data.)
As a consequence, the adjusted estimate of the treatment effect is unbiased
but the unadjusted estimate is greatly biased when averaged over these runs.
The unconditional efficiency of the  Unconditionally—over all the runs of the experiment—both the unadjusted
adjusted estimator results from the  and adjusted estimates are unbiased but the variance of the adjusted estimate
adjusted estimator being the maxi-  is smaller than that of the unadjusted estimate. That is, the adjusted estimator
mum likelihood estimator (MLE) of  is both conditionally unbiased and unconditionally more efficient. Hence either
the risk difference when data on L  from the conditional or unconditional point of view, the Wald interval centered
are available. on the adjusted estimator is the better analysis and the article needs to be
retracted. The second investigator is correct.
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Technical Point 10.4

Comparison between adjusted and unadjusted estimators. The adjusted estimator of RDgq in Technical Point
10.3 is the parametric maximum likelihood estimator RDMLE which replaces the population proportions in the RD;:q
by their sample proportions. The unadjusted estimator of RDq is RDyy = Pr( =1A=1) - Pr( =1/A=0).

Unconditionally, both RDMLE and RDUN are asymptotically normal and unbiased for RD ;4 with asymptotic variances
aVar (RDMLE> and aVar (RDUN).

In the text we stated that ]/%bUN is both unconditionally inefficient and conditionally biased. We now explain that
both properties are logically equivalent. Robins and Morgenstern (1987) prove that RD ;g has the same asymptotic

distribution conditional on the approximate ancillary S as it does unconditionally, which implies aVar (RDMLE> =

_ R _ _ P 2
aVar (RDMLE|S>. They also show that aVar (RDMLE) equals aVar (RDUN) — [aCov (S,RDUN>] . Hence
EI\)UN is unconditionally inefficient if and only if aCov (g, EZ\DUN #0,ie., S and EZ\DUN are correlated uncondition-
ally. Further, the conditional asymptotic bias a E [fibyﬂg} — RDg;q is shown to equal aCov (g, EI\DUN) S. Hence,

EEUN is conditionally biased if and only if it is unconditionally inefficient.
It can be shown that aCov (g, Ebwv) =0 if and only if LLLY|A. Therefore, when data on a measured risk factor

for Y are available, ]/%bMLE is preferred over @UN. The estimator ]/%BUN —aCov <§, ]/%BUN) S corrects the bias

of RDyn, and thus has the same asymptotic distribution as RD ), given the approximate ancillary S.

The idea that one should condition on the observed L-A association is an
example of what is referred to in the statistical literature as the conditionality
principle. In statistics, the observed L-A association is said to be an ancillary
statistic for the causal risk difference. The conditionality principle states that
inference on a parameter should be performed conditional on ancillary statistics
(see Technical Points 10.2 and 10.3 for details).

In the above discussion about the findings of the randomized experiment,
some of the investigators intuitively followed the conditionality principle be-
cause they considered an estimator to be biased when it cannot center a valid
Wald confidence interval conditional on any ancillary statistics. For such re-
searchers, our previous definition of bias was not sufficiently restrictive. They
would say that an estimator is unbiased if and only if it can center a valid
Wald interval conditional on ancillary statistics. Technical Point 10.5 argues
that most researchers implicitly follow the conditionality principle.

When confronted with the frequentist argument that “Adjustment for L
is unnecessary because unconditionally—over all the runs of the experiment—
the unadjusted estimate is unbiased,” investigators that intuitively apply the
conditionality principle would aptly respond “Why should the various L-A
associations in other hypothetical studies affect what I do in my study? In my
study L acts as a confounder and adjustment is needed to eliminate bias.” This
is a convincing argument for both randomized experiments and observational
studies as long as, like in the randomized experiment of our example, the
number of measured confounders is not large. However, when the number of
measured confounders is large, strictly following the conditionality principle is
no longer a wise strategy.
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Technical Point 10.5

Most researchers intuitively follow the extended conditionality principle. Consider again the randomized trial data
in Table 10.2. Assuming without loss of generality that the sRD is constant over the strata of a dichotomous L, the

estimated variance of the MLE of sRD is ‘70‘71/ (‘A/o + ‘71) where ‘7l is the estimated variance of EZ\DZ.

~ -~ 4 76 2 38 = 4 76 2 38
Two possible choices for V; are V0 = 5080 4 1010 — 1 78 x 1073 = and V""" = 5250 4 i040 — 1 58 x 10~ that

differ only in that Alobs divides by the observed number of individuals in stratum L =1 with A =1 and A =0 (80 and
40, respectively) while V**Pdivides by the expected number of subjects (60) given that A1l L. Mathematically, V;°*%is

the variance estimator based on the observed information and V" is the estimator based on the expected information.

In our experience, nearly all researchers would choose Al"bs over ‘A/fzpas the appropriate variance estimator. Results
of Efron and Hinkley (1978) and Robins and Morgenstern (1987) imply that such researchers are implicitly conditioning
on an approximate ancillary S and thus, whether aware of this fact or not, are following the extended conditionality
principle. Specifically, these authors proved that that the variance of RD;, and thus of the MLE, conditioned on an
approximate ancillary S differs from the unconditional variance by order n=3/2. (As noted in Technical Point 10.4,
the conditional and unconditional asymptotic variance of an MLE are equal, as equality of asymptotic variances implies
equality only up to order n=1.) Further, they showed that the variance estimator based on the observed information
differs from the conditional variance by less than order n=3/2, while an estimator based on the expected information

obs

differs from the unconditional variance by less than n=3/2. Thus, a preference for V,°** over V™ implies a preference
for conditional over unconditional inference.

10.5 The curse of dimensionality

The derivations in previous sections above are based on an asymptotic theory
that assumed the number of strata of L was small compared with the sample
size. In this section, we study the cases in which the number of strata of a
vector L can be very large, even much larger than the sample size.

Suppose the investigators had measured 100 pre-treatment binary variables
rather than only one, then the pre-treatment variable L formed by combining
the 100 variables L = (Lq, ..., L1go) has 219 strata. When, as in this case,
there are many possible combinations of values of the pre-treatment variables,
we say that the data is of high dimensionality. For simplicity, suppose that
there is no additive effect modification by L, i.e., the super-population risk
difference Pr[Y = 1|A=1,L =] — Pr[Y = 1|A = 0, L =[] is constant across
the 2190 strata. In particular, suppose that the constant stratum-specific risk
difference is 0.

The investigators debate again whether to retract the article and report
their estimate of the stratified risk difference. They have by now agreed that
they should follow the conditionality principle because the unadjusted risk
difference —0.15 is conditionally biased. However, they notice that, when there
are 2190 strata, a 95% confidence interval for the risk difference based on the
adjusted estimator is much wider than that based on the unadjusted estimator.
This is exactly the opposite of what was found when L had only two strata.
In fact, the 95% confidence interval based on the adjusted estimator may be
so wide as to be completely uninformative.

To see why, note that, because 2'%° is much larger than the number of
individuals (240), there will at most be only a few strata of L that will contain
both a treated and an untreated individual. Suppose only one of 2% strata
contains a single treated individual and a single untreated individual, and no
other stratum contains both a treated and untreated individual. Then the
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Technical Point 10.6

Can the curse of dimensionality be reversed? In high-dimensional settings with many strata of L, informative
conditional inference for the common risk difference given the exact ancillary statistic {A;, L;;i = 1,..n} is not possible
regardless of the estimator used. This is not true for unconditional inference in marginally randomized experiments. For
example, the unconditional statistical behavior of the unadjusted estimator RDy y is unaffected by the dimension of
L. In particular, it remains unbiased with the width of the associated Wald 95% confidence interval proportional to
1/n1/2. Because RDyn relies on prior information not used by the MLE, it is an unbiased estimator of the common
risk difference only if it is known that A1LL in the super-population.

However, even unconditionally, the confidence intervals associated with the MLE, i.e., the adjusted estimator, remain
uninformative. This raises the question of whether data on L can be used to construct an estimator that is also
unconditionally unbiased but that is more efficient that the unadjusted estimator. In Chapter 18 we show that this is
sometimes possible.

95% confidence interval for the common risk difference based on the adjusted
estimator is (—1,1) , and therefore completely uninformative, because in the
single stratum with both a treated and an untreated individual, the empirical
risk difference could be —1, 0, or 1 depending on the value of Y for each indi-
vidual. In contrast, the 95% confidence interval for the common risk difference
based on the unadjusted estimator remains (—0.26, —0.04) as above because
its width is unaffected by the fact that more covariates were measured. These
results reflect the fact that the adjusted estimator is only guaranteed to be
more efficient than the unadjusted estimator when the ratio of number of indi-
viduals to the number of unknown parameters is large (a frequently used rule
of thumb is a minimum ratio of 10, though the minimum ratio depends on the
characteristics of the data).

What should the investigators do? By trying to do the right thing—
following the conditionality principle—in the simple setting with one dichoto-
mous variable, they put themselves in a corner for the high-dimensional set-
ting. This is the curse of dimensionality: conditional on all 100 covariates
the marginal estimator is still biased, but now the conditional estimator is

Robins and Ritov (1997) provide a  uninformative. This shows that, just because conditionality is compelling in

technical description of the curse of  simple examples, it should not be raised to a principle since it cannot be car-

dimensionality. ried through for high-dimensional models. Though we have discussed this issue
in the context of a randomized experiment, our discussion applies equally to
observational studies. See Technical Point 10.6.

Finding a solution to the curse of dimensionality is a difficult problem and
an active area of research. In Chapter 18 we review this research and offer some
practical guidance. Chapters 11 through 17 provide necessary background
information on the use of models for causal inference.
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Technical Point 10.7

Implications of random variability for causal discovery. In Fine Point 6.3 we explained that, under faithfulness, we
could sometimes learn the causal structure if we had an infinite amount of data. After the concepts introduced in this
chapter, we are now ready to consider the implications for causal discovery of only having a finite sample.

Suppose we have data on 3 variables Z, A, Y and we know that their time sequence is Z first, A second, and Y last.
Our data analysis finds that the empirical odds ratio of Y and Z equal to 1 at every level of A. All other odds ratios,
marginal and conditional, are far from 1. In Fine Point 6.3 we showed that, if Z 1LY |A in the super-population (which
would require an infinite sample size) then, under faithfulness, the only possible causal diagram is Z — A — Y with
perhaps a common cause U of Z and A in addition to (or in place of) the arrow from Z to A. It follows that the risk
difference E[Y|A = 1] — E[Y|A = 0] is the average causal effect of A on Y. But, in practice, evidence of conditional
or unconditional independence must be based on a finite sample size.

Robins et al. (2003) showed that, even if one is willing to assume faithfulness, inferences based on faithfulness are
non-uniform, i.e., no matter how big the sample size n, even if the empirical odds ratio of Y and Z were equal to 1
at every level of A, there exist faithful distributions with the following properties: a) due to sampling variability, the
true odds ratio of Y and Z at each level of A, although not equal to 1, is so close to 1 that empirical conditional
odds ratios of 1 are unsurprising, and yet b) the average causal effect of A on Y is zero. As a consequence, no honest
95% frequentist confidence interval for the average causal effect of A on Y can ever exclude the value 0 even when
the empirical risk difference estimate of E[Y|A = 1] — E[Y|A = 0] is quite large (say, 0.2) and is many (say 30) times
greater than its standard error.

Even so, advocates of causal discovery may cogently argue that, given the empirical data above, a Bayesian (with
priors not depending on sample size) who believes in faithfulness will generally have a (highest posterior density) 95%
credible interval for the average causal effect of A on Y that is nearly centered on the empirical risk difference, with
width not much greater than the standard error of the empirical risk difference. Thus, this credible interval easily
excludes zero whenever graphs with Z and Y d-separated by A are given a non-negligible prior probability.

The striking difference between the honest frequentist confidence intervals and these credible intervals is a consequence
of the fact that Bayesian inference for causal effects can be very sensitive to choice of prior in the causal discovery
setting. For example, many epidemiologists, including the authors, would argue that, in an observational study, the
prior probability given to any causal diagram that lacks a common cause of A and Y (such as the graph Z - A — Y)
should be essentially zero. To believe otherwise, A and Y must have had no common cause from the big bang till now.
A Bayesian who shares our prior belief may have (depending on other aspects of the prior) a 95% credible interval much
wider and with a center much closer to 0 than the credible interval described above.

In summary, in finite samples and even under faithfulness, data alone cannot distinguish the causal diagram Z — A —
Y under which Z1LY'|A in the super-population from another causal diagram under which Z is almost independent of
Y given A in the super-population. Therefore the validity of causal discovery from observational data relies heavily on
a priori subject-matter knowledge about the plausibility of various causal diagrams.
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Chapter 11
WHY MODEL?

Do not worry. No more chapter introductions around the effect of your looking up on other people’s looking up.
We squeezed that example well beyond what seemed possible. In Part II of this book, most examples involve real
data. The data sets can be downloaded from the book’s web site.

Part 1T was mostly conceptual. Calculations were kept to a minimum, and could be carried out by hand. In
contrast, the material described in Part II requires the use of computers to fit regression models, such as linear
and logistic models. Because this book cannot provide a detailed introduction to regression techniques, we assume
that readers have a basic understanding and working knowledge of these commonly used models. Our web site
provides links to computer code in R, SAS, Stata, and Python to replicate the analyses described in the text. The
CODE margin notes specify the portion of the code that is relevant to the analysis described in the text.

This chapter describes the differences between the nonparametric estimators used in Part I and the parametric
(model-based) estimators used in Part II. It also reviews the concept of smoothing and, briefly, the bias-variance
trade-off involved in any modeling decision. The chapter motivates the need for models in data analysis, regardless
of whether the analytic goal is causal inference or, say, prediction. We will take a break from causal considerations
until the next chapter. Please bear in mind that the statistical literature on modeling is vast; this chapter can
only highlight some of the key issues.

11.1 Data cannot speak for themselves

Consider a study population of 16 individuals infected with the human im-
munodeficiency virus (HIV). Unlike in Part I of this book, we will not view
these individuals as representatives of 1 billion individuals identical to them.
Rather, these are just 16 individuals randomly sampled from a large, possibly
hypothetical super-population: the target population.

At the start of the study each individual receives a certain level of a treat-
ment A (antiretroviral therapy), which is maintained during the study. At the
end of the study, a continuous outcome Y (CD4 cell count, in cells/mm3) is
measured in all individuals. We wish to consistently estimate the mean of YV
among individuals with treatment level A = a in the population from which the
16 individuals were randomly sampled. That is, the estimand is the unknown
population parameter E[Y|A = qa].

As defined in Chapter 10, an estimator E[Y|A = a] of E[Y|A = a] is some
function of the data that is used to estimate the unknown population parame-

See Chapter 10 for a rigorous defi-  ter. Informally, a consistent estimator E[Y|A = a] meets the requirement that

nition of a consistent estimator. “the larger the sample size, the closer the estimate to the population value
E[Y|A = a].” Two examples of possible estimators E[Y|A = a] are (i) the
sample average of Y among those receiving A = a, and (ii) the value of the
first observation in the dataset that happens to have the value A = a. The
sample average of Y among those receiving A = a is a consistent estimator of
the population mean; the value of the first observation with A = a is not. In
practice we require all estimators to be consistent, and therefore we use the
sample average to estimate the population mean.
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Why model?

Suppose treatment A is a dichotomous variable with two possible values: no
treatment (A = 0) and treatment (A = 1). Half of the individuals were treated
(A =1). Figure 11.1 is a scatter plot that displays each of the 16 individuals
as a dot. The height of the dot indicates the value of the individual’s outcome
Y. The 8 treated individuals are placed along the column A = 1, and the 8
untreated along the column A = 0. As defined in Chapter 10, an estimate of
the mean of Y among individuals with level A = a in the population is the
numerical result of applying the estimator—in our case, the sample average—to
a particular data set.

Our estimate of the population mean in the treated is the sample aver-
age 146.25 for those with A = 1, and our estimate of the population mean
in the untreated is the sample average 67.50 in those with A = 0. Under ex-
changeability of the treated and the untreated, the difference 146.25 — 67.50
would be interpreted as an estimate of the average causal effect of treatment
A on the outcome Y in the target population. However, this chapter is not
about making causal inferences. Our current goal is simply to motivate the
need for models when trying to estimate population quantities like the mean
E[Y|A = a], irrespective of whether the estimates do or do not have a causal
interpretation.

Now suppose treatment A is a polytomous variable that can take 4 possible
values: no treatment (A = 1), low-dose treatment (A = 2), medium-dose treat-
ment (A = 3), and high-dose treatment (A = 4). A quarter of the individuals
received each treatment level. Figure 11.2 displays the outcome value for the
16 individuals in the study population. To estimate the population means in
the 4 groups defined by treatment level, we compute the corresponding sample
averages. The estimates are 70.0, 80.0, 117.5, and 195.0 for A = 1, A = 2,
A =3, and A = 4, respectively.

Figures 11.1 and 11.2 depict examples of discrete (categorical) variables
with 2 and 4 categories, respectively. Because the number of study individuals
is fixed at 16, the number of individuals per category decreases as the number
of categories increases. The sample average in each category is still an exactly
unbiased estimator of the corresponding population mean, but the probability
that the sample average is close to the corresponding population mean de-
creases as the number of individuals in each category decreases. The length of
the 95% confidence intervals (see Chapter 10) for the category-specific means
will be greater for the data in Figure 11.2 than for the data in Figure 11.1.

Finally, suppose that A represents the dose of treatment in mg/day, and
that it takes integer values from 0 to 100 mg. Figure 11.3 displays the outcome
value for each of the 16 individuals. Because the number of possible values of
treatment is much greater than the number of individuals in the study, there
are many values of A that no individual received. For example, there are no
individuals with treatment dose A = 90 in the study population.

This creates a problem: how can we estimate the mean of the outcome Y
among individuals with treatment level A = 90 in the target population? The
estimator we used for the data in Figures 11.1 and 11.2—the treatment-specific
sample average—is undefined for treatment levels for which there are zero in-
dividuals in Figure 11.3. If treatment A were a truly continuous variable, then
the sample average would be undefined for nearly all treatment levels. (A con-
tinuous variable A can be viewed as a categorical variable with an uncountably
infinite number of categories.)

The above description shows that we cannot always let the data “speak
for themselves” to obtain a meaningful estimate. Rather, we often need to
supplement the data with a model, as we describe in the next section.
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Under the assumption that the vari-
ance of the residuals does not de-
pend on A (homoscedasticity), the
Wald 95% confidence intervals are
(—21.2,70.3) for 6y, (1.28,2.99)
for 6y, and (172.1,261.6) for
E[Y|A = 90].

We want to estimate the mean of ¥ among individuals with treatment level
A =90, ie, E[Y|A = 90], from the data in Figure 11.3. Suppose we expect the
mean of Y among individuals with treatment level A = 90 to lie between the
mean among individuals with A = 80 and the mean among individuals with
A = 100. In fact, suppose we knew that the treatment-specific population
mean of Y is a linear function of the value of treatment A throughout the
range of A. More precisely, we know that the mean of Y, E[Y'| 4], increases (or
decreases) from some value 6, for A = 0 by 6; units per unit of A. Or, more
compactly,

E[Y|A] = 6 + 61 A

This equation is a restriction on the shape of conditional mean function E[Y|A].
This particular restriction is referred to as a linear mean model, and the quan-
tities Op and 6; are referred to as the parameters of the model. Models that
describe the conditional mean function in terms of a finite number of param-
eters are referred to as parametric conditional mean models. In our example,
the parameters 6y and 6; define a straight line that crosses (intercepts) the
vertical axis at 6y and that has a slope #;. That is, the model specifies that
all conditional mean functions are straight lines, though their intercepts and
slopes may vary.

We are now ready to combine the data in Figure 11.3 with our parametric
mean model to estimate E[Y|A = a] for all values a from 0 to 100. The first
step is to obtain estimates 0o and 0; of the parameters 6y and 6. The second
step is to use these estimates to estimate the mean of Y for any value A = a.
For example, to estimate the mean of Y among individuals with treatment
level A = 90, we use the expression E[Y|A = 90] = 6y + 906;. The estimate
E[Y|A] for each individual is referred to as the predicted value.

An exactly unbiased estimator of 6y and 6; can be obtained by the method
of ordinary least squares. A nontechnical motivation of the method follows.
Consider all possible candidate straight lines for Figure 11.3, each of them
with a different combination of values of intercept 8y and slope 6;. For each
candidate line, one can calculate the vertical distance from each dot to the line
(the residual), square each of those 16 residuals, and then sum the 16 squared
residuals. The line for which the sum is the smallest is the “least squares” line,
and the parameter values éo and 6, of this “least squares” line are the “least
squares” estimates. The values éo and 6, can be easily computed using linear
algebra, as described in any statistics textbook.

In our example, the parameter estimates are 6o = 24.55 and 0, = 2.14,
which define the straight line shown in Figure 11.4. The predicted mean of
Y among individuals with treatment level A = 90 is therefore E[Y|A = 90] =
24.55 4+ 90 x 2.14 = 216.9. Because ordinary least squares estimation uses all
data points to find the best line, the mean of Y in the group A = a, i.e.,
E[Y|A = a], is estimated by borrowing information from individuals who have
values of treatment A not equal to a.

So what is a model? A model is defined by an a priori restriction on the
joint distribution of the data. Our linear conditional mean model says that the
conditional mean function E[Y'|A] is a straight line, which restricts its shape.
For example, the model restricts the mean of Y for A = 90 to be between the
mean of Y for A = 80 and the mean of Y for A = 100. This restriction is
encoded by the parameters 6y and 6;. A parametric conditional mean model
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is, through its a priori restrictions, adding information to compensate for the
lack of sufficient information in the data.

Parametric estimators—those based on a parametric conditional mean model—
allow us to estimate quantities that cannot be estimated otherwise, e.g., the
mean of Y among individuals in the target population with treatment level
A =90 when no such individuals exist in the study population. But this is not
a free lunch. When using a parametric model, the inferences are correct only
if the restrictions encoded in the model are correct, i.e. if the model is cor-
rectly specified. Thus model-based causal inference—to which a large fraction
of the remainder of this book is devoted—relies on the condition of (approx-
imately) no model misspecification. Because parametric models are rarely, if
ever, perfectly specified, a certain degree of model misspecification is almost al-
ways expected. This can be at least partially rectified by using nonparametric
estimators, which we describe in the next section.

11.3 Nonparametric estimators of the conditional mean

Let us return to the data in Figure 11.1. Treatment A is dichotomous and we
want to consistently estimate the mean of Y in the treated E[Y|A = 1] and in
the untreated E[Y'|A = 0]. Suppose we have become so enamored with models
that we decide to use one to estimate these two quantities. Again we proposed
a linear model

E[V|A] = 6+ 6, A

where E[Y‘AZO] :(90+O>< 91 :(90 and E[YIAZ 1} :(90+1 X 91 290+91.
We use the least squares method to obtain estimates of the parameters 6y and
CODE: Program 11.2 Ql. These estimates are /0:0 = 67.5 and él = 78.75. We therefore estimate
E[Y|A = 0] = 67.5 and E[Y|A = 1] = 146.25. Note that our model-based
estimates of the mean of Y are identical to the sample averages we calculated
In this book we define "model” in Section 11.1. This is not a coincidence but an expected finding.
as an a priori mathematical re- Let us take a second look at the model E[Y|A] = 6y + 61 A with a dichoto-
striction on the possible states of mous treatment A. If we rewrite the model as E[Y|A = 1] = E[Y|A = 0] + 64,
nature (Robins, Greenland 1986). we see that the model simply states that the mean in the treated E[Y|A = 1]
Part | was entitled “Causal infer-  is equal to the mean in the untreated E[Y|A = 0] plus a quantity 6;, where 6,
ence without models” because it may be negative, positive or zero. But this statement is of course always true!
only described saturated models. The model imposes no restrictions whatsoever on the values of E[Y|A = 1]
and E[Y|A = 0]. Therefore E[Y|A = a] = 6y + 01 A with a dichotomous treat-
ment A is not a model because it lets the data speak for themselves, just like
the sample average does. “Models” which do not impose restrictions on the
distribution of the data are saturated models. Because they formally look like
models even if they do not fit our definition of model, saturated models are
ordinarily referred to as models too.
Generally, the model is saturated whenever the number of parameters in a
conditional mean model is equal to the number of unknown conditional means
in the population. For example, the linear model E[Y|A] = 6y + 61 A has two
parameters and, when A is dichotomous, there exist two unknown conditional
means: the means E[Y|A = 1] and E[Y|A = 0]. Since the values of the two
A saturated model has the same parameters are not restricted by the model, neither are the values of the means.
number of unknowns on both sides  As a contrast, consider the data in Figure 11.3 where A can take values from 0
of the equal sign. to 100. The linear model E[Y'|A] = 0y + 61 A has two parameters but estimates

101 quantities, i.e., E[Y]A = 0],E[Y]A = 1], ...,E[Y|A = 100]. The only hope
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Fisher consistency. Our definition of a nonparametric estimator in the main text coincides with what is known in
statistics as a Fisher consistent estimator (Fisher 1922). That is, an estimator of a population quantity that, when
calculated using the entire population rather than a sample, yields the true value of the population parameter. By
definition, a Fisher consistent estimator lacks any model restrictions but, as discussed in the text, a Fisher consistent
estimate may not exist for many population quantities. Technically, Fisher consistent estimators, when they exist, are

the nonparametric maximum likelihood estimators of population quantities under a saturated model.
In the statistical literature, the term nonparametric estimator is sometimes used to refer to estimators that are not
Fisher consistent but that impose very weak restrictions, such as kernel regression models. See Technical Point 11.1 for

details.

Identifiability assumptions are the
assumptions that we have to make
to compute the parameter even if
we had an infinite amount of data.
Modeling assumptions are the ad-
ditional assumptions that we have
to make to estimate the parameter
because we do not have an infinite
amount of data. Formally, identi-
fiability assumptions make the pa-
rameter a unique function of the
joint distribution of the observed
data.

11.4 Smoothing

Caution: Often the term “linear”
is used with two different mean-
ings. A model is linear when it is
expressed as a linear combination
of parameters and functions of the
variables, even if the latter are non-
linear functions (e.g., higher powers
or logarithms) of the covariates.

for unbiasedly estimating 101 quantities with these two parameters is to be
fortunate to have all 101 means E[Y|A = a] lie along a straight line. When a
model has only a few parameters but it is used to estimate many population
quantities, we say that the model is parsimonious.

Here we define nonparametric estimators of the conditional mean function
as those that produce estimates from the data without any a priori restrictions
on the conditional mean function (see Fine Point 11.1 for a more rigorous def-
inition). An example of a nonparametric estimator of the population mean
E[Y|A = a] for a dichotomous treatment is its empirical version, the sample
average or, equivalently, the saturated model described in this section. When
A is discrete with 100 levels and no individual in the sample has A = 90, no
nonparametric estimator of E[Y]A = 90] exists. All methods for causal infer-
ence that we described in Part I of this book—standardization, IP weighting,
stratification, matching—were based on nonparametric estimators of popula-
tion quantities under a saturated model because they did not impose any a
priori restrictions on the value of the effect estimates. In contrast, most meth-
ods for causal inference described in Part II of this book rely on estimators
that are parametric estimators of some part of the distribution of the data.
Parametric estimation is one approach used to borrow information when, as is
often the case, data are unable to speak for themselves.

Consider again the data in Figure 11.3 and the linear model E[Y|A] = 6 +61 A.
The parameter 6, is the difference in mean outcome per unit of treatment dose
A. Because 6; is a single number, the model specifies that the difference in
mean outcome Y per unit of treatment A must be constant throughout the
entire range of A, i.e., the model requires the conditional mean outcome to
follow a straight line as a function of treatment dose A. Figure 11.4 shows the
best-fitting straight line.

But one can imagine situations in which the difference in mean outcome is
larger for a one-unit change at low doses of treatment, and smaller for a one-
unit change at high doses. This would be the case if, once the treatment dose
reaches certain level, higher doses have an increasingly small effect. Under this
scenario, the model E[Y'|A] = 6y + 61 A is incorrect. However, linear models
can be made more flexible.
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Under the homoscedasticity as-
sumption, the Wald 95% confi-
dence interval for E[Y|A = 90] is
(142.8,251.5).
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We used a model for continuous
outcomes as an example. The same
reasoning applies to models for di-
chotomous outcomes such as lo-
gistic models (see Technical Point
11.1)
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Why model?

For example, suppose we fit the model E[Y|A] = 6y + 0; A + 6, A%, where
A? = A x A is A-squared, to the data in Figure 11.3. This is still referred
to as a linear model because the conditional mean is expressed as a linear
combination, i.e., as the sum of the products of each covariate (A and A2)
with its associated coefficient (the parameters #; and 63) plus an intercept
(6p). However, whenever 05 is not zero, (6y, 01, 62) now define a curve—a
parabola—rather than a straight line. We refer to 6, as the parameter for the
linear term A, and to 65 as the parameter for the quadratic term AZ2.

The curve under the 3-parameter linear model E[Y|A] = 6 + 61 A + 05 A?
can be found via ordinary least squares estimation applied to the data in
Figure 11.3. The estimated curve is shown in Figure 11.5. The parameter
estimates are 00 = —7.41, 01 = 4.11, and 92 = —0.02. The predicted mean
of Y among individuals w1th treatment level A = 90 is obtained from the
expression E[Y|A = 90] = 6 + 900 + 90 x 908, = 197.1.

We could keep adding parameters for a cubic term (f3A4%), a quartic term
(6,A%)... until we reach a 15th-degree term (615A%). At that point the number
of parameters in our model equals the number of data points (individuals). The
shape of the curve would change as the number of parameters increases. In
general, the more parameters in the model, the more inflection points will
appear.

That is, the curve generally becomes more “wiggly,” or less smooth, as the
number of parameters increase. A linear model with 2 parameters—a straight
line—is the smoothest model. A linear model with as many parameters as data
points is the least smooth model because it has as many possible inflection
points as data points. In fact, such model interpolates the data, i.e., each data
point in the sample lies on the estimated conditional mean function.

Often modeling can be viewed as a procedure to transform noisy data into
more or less smooth curves. This smoothing occurs because the model borrows
information from many data points to predict the outcome value at a particular
combination of values of the covariates. The smoothing results from E[Y|A =
a] being estimated by borrowing information from individuals with A not equal
to a. All parametric estimators incorporate some degree of smoothing.

The degree of smoothing depends on how much information is borrowed
across individuals. The 2-parameter model E[Y|A] = 6y 4+ 61 A estimates
E[Y|A = 90] by borrowing information from all individuals in the study popu-
lation to find the least squares straight line. A model with as many parameters
as individuals does not borrow any information to estimate E[Y| A] at the values
of A that occur in the data, though it borrows information (by interpolation)
for values of A that do not occur in the data.

Intermediate degrees of smoothing can be achieved by using an intermediate
number of parameters or, more generally, by restricting the number of individ-
uals that contribute to the estimation. For example, to estimate E[Y|A = 90]
we could decide to fit a 2-parameter model E[Y|A] = 6y + 01 A restricted to
individuals with treatment doses between 80 and 100. That is, we would only
borrow information from individuals in a 10-unit window of A = 90. The wider
the window around A = 90, the more smoothing would be achieved.

In our simplistic examples above, all models included a single covariate
(with either a single parameter for A or two parameters for A and A?) so that
the curves can be represented on a two-dimensional book page. In realistic
applications, models often include many different covariates so that the curves
are really hyperdimensional surfaces. Regardless of the dimensionality of the
problem, the concept of smoothing remains invariant: the fewer parameters in
the model, the smoother the prediction (response) surface will be.
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Model dimensionality and the relation between frequentist and Bayesian intervals. In frequentist statistical
inference, probability is defined as frequency. In Bayesian inference, probability is defined as degree-of-belief—a concept
very different from probability as frequency (de Finetti 1972). Chapter 10 described the confidence intervals used
in frequentist statistical inference. Bayesian statistical inference uses credible intervals, which have a more natural
interpretation: A Bayesian 95% credible interval means that, given the observed data, “there is a 95% probability that
the estimand is in the interval”. However, in part because of the requirement to specify the investigators' degree of
belief, Bayesian inference is less commonly used than frequentist inference.

Interestingly, in simple, low-dimensional parametric models with large sample sizes, 95% Bayesian credible intervals
are also 95% frequentist confidence intervals, whereas in high-dimensional or nonparametric models, a Bayesian 95%
credible interval may not be a 95% confidence interval as it may trap the estimand much less than 95% of the time.
The underlying reason for these results is that Bayesian inference requires the specification of a prior distribution for
all unknown parameters. In low-dimensional parametric models the information in the data swamps that contained in
reasonable priors. As a result, inference is relatively insensitive to the particular prior distribution selected. However,
this is no longer the case in high-dimensional models. Therefore if the true parameter values that generated the data
are unlikely under the chosen prior distribution, the center of Bayes credible interval will be pulled away from the true
parameters and towards the parameter values given the greatest probability under the prior.

11.5 The bias-variance trade-off

In previous sections we have used the 16 individuals in Figure 11.3 to estimate
the mean outcome Y among people receiving a treatment dose of A = 90 in
the target population, E[Y|A = 90]. Since nobody in the study population
received A = 90, we could not let the data speak for themselves. So we
combined the data with a linear model. The estimate E[Y|A = 90] varied with
the model. Under the 2-parameter model E[Y|A] = 6y + 01 A, the estimate
was 216.9 (95% confidence interval: 172.1, 261.6). Under the 3-parameter
model E[Y|A] = 0y + 01 A + 0,42, the estimate was 197.1 (95% confidence
interval: 142.8, 251.5). We used two different parametric models that yielded
two different estimates. Which one is better? Is 216.9 or 197.1 closer to the
mean in the target population?

If the relation is truly curvilinear, then the estimate from the 2-parameter
model will be biased because this model assumes a straight line. On the other
hand, if the relation is truly a straight line, then the estimates from both models
will be valid. This is so because the 3-parameter model E[Y|A] = 6y + 01 A +
0, A2 is correctly specified whether the relation follows a straight line (in which
case 0 = 0) or a parabolic curve (in which case 62 # 0). One safe strategy
would be to use the 3-parameter model E[Y |A] = 6y + 01 A + 02 A% rather than
the 2-parameter model E[Y|A] = 6 + 6, A. Because the 3-parameter model is
correctly specified under both a straight line and a parabolic curve, it is less
likely to be biased. In general, the larger the number of parameters in the
model, the fewer restrictions the model imposes; the less smooth the model,
the more protection afforded against bias from model misspecification.

Although less smooth models may yield a less biased estimate, they also
result in a larger variance, i.e., wider 95% confidence intervals around the
estimate. For example, the estimated 95% confidence interval around E[Y|A =
90] was much wider when we used the 3-parameter model than when we used
the 2-parameter model. However, when the estimate E[Y|A = 90] based on the
2-parameter model is biased, the standard (nominal) 95% confidence interval
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Fine Point 11.2 discusses the impli-
cations of model dimensionality for
frequentist and Bayesian intervals.

Why model?

is not calibrated, i.e., it does not cover the true parameter E[Y|A = 90] 95%
of the time.

This bias-variance trade-off is at the heart of many data analyses. Investi-
gators using models need to decide whether some protection against bias—by,
say, adding more parameters to the model—is worth the cost in terms of vari-
ance. Though some formal procedures exist to aid these decisions, in practice
many investigators decide which model to use based on criteria like tradition,
interpretability of the parameters, and software availability. In this book we
will usually assume that our parametric models are correctly specified. This
is an unrealistic assumption, but it allows us to focus on the problems that
are specific to causal analyses. Model misspecification is, after all, a problem
that can arise in any sort of data analysis, regardless of whether the estimates
are endowed with a causal interpretation. In practice, careful investigators
will always question the validity of their models and will conduct alternative
analysis under different model specifications that are compatible with existing
expert knowledge. Their goal is to assess the sensitivity of their estimates to
model specification.

We are now ready to describe the use of models for causal inference.
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A taxonomy of commonly used models. The main text describes linear conditional mean models of the form
P

EY|X] = 60X = Y 6,X; where X is a vector of covariates X, X1,...X, with Xy = 1 for all n individuals. These
i=0

models are a subset of larger class of conditional mean models (McCullagh and Nelder, 1989; McCulloch, Searle, and

P
Neuhaus, 2008) which have two components: a linear functional form or predictor > 6;X; and a link function g {-}
i=0

such that g {E[Y|X]} = Z 0; X;.

The linear conditional mean models described in the main text uses the identity link function. Conditional mean models
for outcomes with strictly positive values (e.g., counts, the numerator of |nC|dence rates) often use the log link function

to ensure that all predicted values will be greater than zero, i.e., log {E[Y|X]} = Z 0;X; so E[Y|X] = exp (Z 0, X; )
Conditional mean models for dichotomous outcomes (i.e., those that only take values 0 and 1) often use a logit link

i.e., log {71 E[E’?}‘fl(x } 2)9 X, so that E[Y|X] = expit (2% GiXi). This link ensures that all predicted values will be
greater than 0 and less than 1. Conditional mean models ’Ehat use the logit function, referred to as logistic regression
models, are widely used in this book. For these links (referred to as canonical links) we can estimate 6 by maximum
likelihood under a normal working model for the identity link, a Poisson working model for the log link, and a logistic
regression model for the logit link. These estimates are consistent for 6 as long as the conditional mean model for
E[Y|X] is correct. Generalized estimating equation (GEE) models, often used to deal with repeated measures, are a
further example of a conditional mean model (Liang and Zeger, 1986).

Conditional mean models only specify a parametric form for E[Y'|X] but do not otherwise restrict the distribution of
Y| X or the marginal distribution of X. Therefore, when X or Y are continuous, a parametric conditional mean model
is a semiparametric model for the joint distribution of the data (X,Y’) because parts of the distribution are modeled
parametrically whereas others are left unrestricted. The model is semiparametric because the set of all unrestricted
components of the joint distribution cannot be represented by a finite number of parameters.

Conditional mean models themselves can be generalized by relaxing the assumption that E[Y|X] takes a parametric
form. For example, a kernel regression model does not impose a specific functional form on E[Y| X] but rather estimates

E[Y|X = z] for any = by Z wp (2 — X;)Y:/ Z wp, (x — X;) where wy, (2) is a positive function, known as a kernel

function, that attains its maxnmum value at z = O and decreases to 0 as |z| gets large at a rate that depends on the
parameter h subscripting w. As another example, generalized addltlve models (GAMs) replace the linear combination

Z 0;X; of a conditional mean model by a sum of smooth functions Z fi(X;). The model can be estimated using a
i=0 i=0
backfitting algorithm with f;(-) estimated at iteration k by, e.g., kernel regression (Hastie and Tibshirani 1990).

In the text we discuss smoothing with parametric models which specify an a priori functional form for E[Y|X = z],
such as a parabola. In estimating E[Y|X = z], the model may borrow information from values of X that are far from
x. In contrast, kernel regression models do not specify an a priori functional form and borrow information only from
values of X near to = when estimating E [Y|X = z]. A kernel regression model is an example of a “non-parametric”
regression model. This use of the term “nonparametric” differs from our previous usage. Our nonparametric estimators
of E[Y|X = z] only used those individuals for whom X equalled x exactly; no information was borrowed even from
close neighbors. Here “nonparametric” estimators of E [Y'|X = z] use individuals with values of X near to 2. How near
is controlled by a smoothing parameter referred to as the bandwidth h.
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Chapter 12
IP WEIGHTING AND MARGINAL STRUCTURAL MODELS

Part II is organized around the causal question “what is the average causal effect of smoking cessation on body
weight gain?” In this chapter we describe how to use IP weighting to estimate this effect from observational data.
Though IP weighting was introduced in Chapter 2, we only described it as a nonparametric method. We now
describe the use of models together with IP weighting which, under additional assumptions, will allow us to tackle
high-dimensional problems with many covariates and nondichotomous treatments.

To estimate the effect of smoking cessation on weight gain we will use real data from the NHEFS, an acronym
that stands for (ready for a long name?) National Health and Nutrition Examination Survey Data I Epidemi-
ologic Follow-up Study. The NHEFS was jointly initiated by the National Center for Health Statistics and the
National Institute on Aging in collaboration with other agencies of the United States Public Health Service. A
detailed description of the NHEFS, together with publicly available data sets and documentation, can be found at
wwwn.cdc.gov/nchs/nhanes/nhefs/. For this and future chapters, we will use a subset of the NHEFS data that
is available from this book’s web site. We encourage readers to improve upon and refine our analyses.

12.1 The causal question

Our goal is to estimate the average causal effect of smoking cessation (the
treatment) A on weight gain (the outcome) Y. To do so, we will use data
We restricted the analysis to indi- from 1566 cigarette smokers aged 25-74 years who, as part of the NHEFS, had
viduals with known sex, age, race, a baseline visit and a follow-up visit about 10 years later. Individuals were
weight, height, education, alcohol classified as treated A = 1 if they reported having quit smoking before the
use and intensity of smoking at follow-up visit, and as untreated A = 0 otherwise. Each individual’s weight
the baseline (1971-75) and follow- gain Y was measured (in kg) as the body weight at the follow-up visit minus
up (1982) visits, and who answered  the body weight at the baseline visit. Most people gained weight, but quitters
the medical history questionnaire at  gained more weight on average. The average weight gain was E[Y|A = 1] = 4.5
baseline. See Fine Point 12.1. kg in the quitters, and E[Y]A = 0] = 2.0 kg in the non-quitters. The difference
E[Y|A = 1] — E[Y]A = 0] was therefore estimated to be 2.5, with a 95%

confidence interval from 1.7 to 3.4.
We define E[Y%=1] as the mean weight gain that would have been observed
Table 12.1 if all individuals in the population had quit smoking before the follow-up visit,
and E[Y 7] as the mean weight gain that would have been observed if all

Mean baseline A

characteristics 1 0 individuals in the population had not quit smoking. We define the average
Age, years 160 428 causal effect on the additive scale as E[Y*=!] — E[Y%70], i.e., the difference
Men. % 546 46.6 in mean weight that would have been observed if everybody had been treated
White, % 01.1 85.4 compared with untreated. This is the causal effect that we will be primarily
University, % 154 99 concerned with in this and the next chapters.

Weight, kg 724 703 The associational difference E[Y|A = 1] — E[Y'|A = 0], which we estimated

Cigarettes/day 186 212 in the first paragraph of this section, is generally different from the causal
Years smoking 2.0 241 difference E[Y*=!] — E[Y?=%). The former will not generally have a causal
Little exercise, % 40.7 37.9 interpretation if quitters and non-quitters differ with respect to characteristics
Inactive life, % 112 89 that affect weight gain. For example, quitters were on average 4 years older
than non-quitters (quitters were 44% more likely to be above age 50 than non
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Fine Point 12.1

Setting a bad example. Our smoking cessation example is convenient: it does not require deep subject-matter
knowledge and the data are publicly available. One price we have to pay for this convenience is potential selection bias.

We classified individuals as treated A = 1 if they reported (i) being smokers at baseline in 1971-75, and (ii) having
quit smoking in the 1982 survey. Condition (ii) implies that the individuals included in our study did not die and were
not otherwise lost to follow-up between baseline and 1982 (otherwise they would not have been able to respond to the
survey). That is, we selected individuals into our study conditional on an event—responding the 1982 survey—that
occurred after the start of the treatment—smoking cessation. If treatment affects the probability of selection into the
study, we might have selection bias as described in Chapter 8. (Because different individuals quit smoking at different
times, A is actually a time-varying treatment, which we will ignore throughout Part Il. Time-varying treatments are
discussed in Part IIl.)

A randomized experiment of smoking cessation would not have this problem. Each individual would be assigned to
either smoking cessation or no smoking cessation at baseline, so that their treatment group would be known even if the
individual did not make it to the 1982 visit. In Section 12.6 we describe how to deal with potential selection bias due
to censoring or missing data for the outcome—something that may occur in both observational studies and randomized
experiments—but the situation described in this Fine Point is different: the missing data concerns the treatment itself.
This selection bias can be handled through sensitivity analysis, as was done by Herndn et al. (2008, Appendix 3).

The choice of this example allows us to describe, in our own analysis, a ubiquitous problem in published analyses of
observational data that emulate a target trial: a misalignment of treatment assignment and eligibility at the start of
follow-up (Hernan et al. 2016). Though we decided to ignore this issue in order to keep our analysis simple, didactic
convenience would not be a good excuse to avoid dealing with this bias in real life.

quitters), and older people gained less weight than younger people, regardless
Fine Point 7.3 defined surrogate of whether they did or did not quit smoking. We say that age is a (surrogate)

confounders. confounder of the effect of A on Y and our analysis needs to adjust for age. The
unadjusted estimate 2.5 might underestimate the true causal effect E[Y*=!] —
E[Yye=0].

CODE: Program 12.1 computes the As shown in Table 12.1, quitters and non-quitters also differed in their dis-

descriptive statistics shown in this  tribution of other variables such as sex, race, education, baseline weight, and

section intensity of smoking. If these variables are confounders, then they also need

to be adjusted for in the analysis. In Chapter 18 we discuss strategies for con-
founder selection. Here we assume that the following 9 variables, all measured
at baseline, are sufficient to adjust for confounding: sex (0: male, 1: female),
age (in years), race (0: white, 1: other), education (5 categories), intensity
and duration of smoking (number of cigarettes per day and years of smoking),
physical activity in daily life (3 categories), recreational exercise (3 categories),
and weight (in kg). That is, L represents a vector of 9 measured covariates.
In the next section we use IP weighting to adjust for these covariates.

12.2 Estimating IP weights via modeling

IP weighting creates a pseudo-population in which the arrow from the covari-
ates L to the treatment A is removed. More precisely, the pseudo-population
has the following two properties: A and L are statistically independent and
the mean E,;[Y|A = a] in the pseudo-population equals the standardized mean
> EY|A=a,L=1]Pr[L =1 in the actual population. These properties are
true even if conditional exchangeability Y 1L A|L does not hold in the ac-
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The conditional probability of treat-
ment Pr[A =1|L] is known as
the propensity score. More about
propensity scores in Chapter 15.

The curse of dimensionality was in-
troduced in Chapter 10.

CODE: Program 12.2

The estimated IP weights W4
ranged from 1.05 to 16.7, and their
mean was 2.00.

E[Y|A] = 6y + 0, A is a saturated
model because it has 2 parameters,
0y and 01, to estimate two quanti-
ties, E[Y]A = 1] and E[Y]|A = 0].
In this model, ; = E[Y|A = 1] —
E[Y]|A =0].

tual population (see Technical Point 2.3). Now, if conditional exchangeability
Y1 A|L holds in the actual population, then these properties imply that (i)
the mean of Y is the same in both populations, (ii) unconditional exchange-
ability (i.e., no confounding) holds in the pseudo-population, (iii) the counter-
factual mean E[Y?] in the actual population is equal to E,s[Y|A = a] in the
pseudo-population, and (iv) association is causation in the pseudo-population.
Please reread Chapter 2 if you need a refresher on IP weighting.

Informally, the pseudo-population is created by weighting each individual
by the inverse (reciprocal) of the conditional probability of receiving the treat-
ment level that she indeed received. The individual-specific IP weights for
treatment A are defined as W4 = 1/f(A|L). For our dichotomous treat-
ment A, the denominator f (A|L) of the IP weight is the probability of quit-
ting conditional on the measured confounders, Pr[A = 1|L], for the quitters,
and the probability of not quitting conditional on the measured confounders,
Pr[A = 0|L], for the non-quitters. We only need to estimate Pr[A = 1|L] be-
cause Pr[A =0|L] =1—-Pr[A=1|L].

In Section 2.4 we estimated the quantity Pr[A = 1|L] nonparametrically:
we simply counted how many people were treated (A = 1) in each stratum of
L, and then divided this count by the number of individuals in the stratum.
All the information required for this calculation was taken from a causally in-
terpreted structured tree graph with 4 branches (2 for L times 2 for A). But
nonparametric estimation of Pr[A = 1|L] is out of the question when, as in
our example, we have high-dimensional data with many confounders, some of
them with many levels. Even if we were willing to recode all 9 confounders
except age to a maximum of 6 categories each, our tree would still have over 2
million branches. And many more millions if we use the actual range of values
of duration and intensity of smoking, and weight. We cannot obtain meaning-
ful nonparametric stratum-specific estimates when there are 1566 individuals
distributed across millions of strata. We need to resort to modeling.

To obtain parametric estimates of Pr[A = 1|L] in each of the millions of
strata defined by L, we fit a logistic regression model for the probability of
quitting smoking with all 9 confounders included as covariates. We used linear
and quadratic terms for the (quasi-)continuous covariates age, weight, inten-
sity and duration of smoking, and we included no product terms between the
covariates. That is, our model restricts the possible values of Pr[A = 1|L] such
that, on the logit scale, the conditional relation between the continuous covari-
ates and the risk of quitting can be represented by a parabolic curve, and each
covariate’s contribution to the (logit of the) risk is independent of that of the
other covariates. Under these parametric restrictions, we were able to obtain
an estimate Pr[A = 1|L] for each combination of L values, and therefore for
each of the 1566 individuals in the study population.

The next step is computing the difference Eps YA =1] - Eps [Y]A = 0]
in the pseudo-population created by the estimated IP weights. If there is
no confounding for the effect of A in the pseudo-population and the model
for Pr[A = 1|L] is correct, association is causation and an unbiased estimator
of the associational difference E,s[Y]A = 1] — E,5[Y|A = 0] in the pseudo-
population is also an unbiased estimator of the causal difference E[Y*=!] —
E[Y*=%] in the actual population.

Our approach to estimate Eps[Y|A = 1] — E,5[Y|A = 0] in the pseudo-
population was to fit the (saturated) linear mean model E[Y|A4] = 6y + 61 A
by weighted least squares, with individuals weighted by their estimated IP

weights 1W: 1/f’; [A = 1|L] for the quitters, and 1/ (1 —Pr [A= 1|L]) for the
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Technical Point 12.1

Horvitz-Thompson estimators. In Technical Point 3.1, we defined the “apparent” IP weighted mean for treatment

I(A=a)Y
level a, E {f(Aﬂ/)

IP weighted mean is consistently estimated by the original Horvitz-Thompson (1952) estimator E [

} which is equal to the counterfactual mean E[Y*] under positivity and exchangeability. This

I(A=a) Y] :
——————| with
A FUAIL)

E the sample average operator and f (A|L) assumed to be known. In this chapter, however, we estimated E[Y“] via
the IP weighted least squares estimate 0y + #1a, which for binary A is a modified Horvitz-Thompson estimator often

~ {I (A=a) Y}
referred to as Hajek estimator L SAD) ] (Hajek 1971).
E |:I (A = a):|
f(A[L)
I(A=a)Y
“Lram)
The Hajek estimator is an (asymptotically) unbiased estimator of W which, under positivity, is equal
Bl
(=0 (=0 { f(A[L) }
I = a Y I =qQ
to E|—————| because E|————=| = 1. In practice, the Hajek estimator is preferred because, unlike the
[ f(A[L) } [ f(AIL) }

Horvitz-Thompson estimator, it is guaranteed to lie between 0 and 1 for dichotomous Y, even when f (A|L) is unknown
and replaced by the predicted value f (A|L) obtained from the fit of a misspecified model.

I(A=a)Y
b lAL)
On the other hand, if positivity does not hold, then the ratio T(A=a) equals
Bl
f(A|L)

> E[Y|[A=a,L=1,L €Q(a)] Pr[L =1L € Q(a)] and, if exchangeability holds, it equals E[Y*|L € Q(a)],

1

where Q(a) = {l;Pr(A=a|L=1) >0} is the set of values [ for which A = a may be observed with positive
probability. Therefore, as discussed in Technical Point 3.1, the difference between Hajek estimators with a = 1 versus
a = 0 does not have a causal interpretation in the absence of positivity. Under non-positivity, the ratio of the limit of
the Horvitz-Thompson estimator to that of the Hajek estimator is no longer 1 but rather Pr[Q(a)], as the denominator
of the Hajek estimator converges to Pr[Q(a)] rather to 1.

non-quitters. The parameter estimate #; was 3.4. That is, we estimated that
quitting smoking increases wei