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Abstract: While countries with higher levels of human resources for health typically 
have better population health, the evidence that increases in the level of human resources 
for health leads to improvements in population health is limited.  We provide estimates of 
short-run and long-term effects of physician density on infant mortality.  We use a 
dynamic regression model that allows an estimation of both short- and long-run effects of 
physician density on infant mortality.  We also used instrumental variables analysis to 
identify the causal effect of physician density on health.  We estimate that increasing the 
number of physicians by one per 1,000 population decreases the infant mortality rate by 
15% within five years and by 45% in the long-run.  We find all countries are moving 
towards their own steady state at around 3% a year and are only half way there after 15 
years.  We conclude that the long-run effects of human resources for health are 
substantially larger than previously estimated.  Our results suggest that health sector 
inputs can play a role in reducing infant mortality.  However, meeting the Millennium 
Development Goal of reducing child mortality rate by two thirds from 1990 to 2015 
would have required much earlier action.   
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Introduction 
 

Building and strengthening capacity in human resources for health has been 

recognized as critical to alleviating health crises in less developed countries, besides 

contributing to the sustainable development of health systems in all countries (Chen et 

al., 2004).  Multiple studies demonstrate that countries with higher levels of human 

resources for health typically have better population health (Flegg, 1982, Robinson and 

Wharrad, 2000, Anand and Baernighausen, 2004, Speybroeck et al., 2006, Or et al., 2005, 

Aakvik and Holmas, 2006, Jamison et al., 2004).  The density of human resources for 

health, including the supply of physicians, nurses, and other health professionals, has 

been shown to be positively correlated with percentage of deliveries assisted by skilled 

birth attendants and the proportion of children fully immunized against measles (Anand 

and Barnighausen, 2007, Speybroeck et al., 2006) and negatively correlated with 

maternal, infant, and under-5 mortality (Anand and Baernighausen, 2004).  In a recent 

cross-sectional analysis of 83 countries, Anand and Baernighausen (2004) report that of 

the different components associated with human resources for health, physician supply 

was significant in explaining country variations in maternal, infant, and under-5 

mortality. 

While prior studies have established that countries with higher levels of physician 

density typically have better population health, the evidence that increases in the level of 

physician density lead to improvements in population health is limited.  Most of the 

previous studies examining the effect of physician density are cross-sectional in design 

(Anand and Baernighausen, 2004, Flegg, 1982, Robinson and Wharrad, 2000, 

Speybroeck et al., 2006), and are thus incapable of attributing improvements in 
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population health directly to increases in physician density. There are two problems with 

the cross-sectional approach. One is that the level of physicians may be correlated with 

country characteristics, such as climate, that affect health outcomes.  The second is that 

studies assume that the effect of physician density on health is immediate and thereby 

may underestimate the full long-run impact of physician density on population health.  

There are compelling reasons to anticipate a delay in the population health 

response when we increase the number of physicians.  For instance, interventions that 

improve the health of young women have effects throughout their reproductive years that 

may also improve the health of their children.  Physicians can also act as catalysts in 

motivating change in a patient’s lifestyle, which most noticeably affects morbidity and 

mortality in the long run (Andersen and Blair, 1997, Bull and Jamrozik, 1998, Galuska et 

al., 1999).  Physicians have a pivotal role in the implementation of new technologies, 

whether the in the form of new vaccines, drugs and medical procedures, which are, in 

turn, a major source of health improvements (Cutler et al., 2006).  Besides having an 

impact on health in the short-run, increases in physician density are also likely to 

contribute to faster adoption of these technological innovations in the longer run 

(McClellan and Kessler, 1999, Booth-Clibborn et al., 2000, Packer et al., 2006). 

Utilizing longitudinal panel data from 99 countries over the years 1960-2000, we 

investigate whether increases in physician density lead to reductions in infant mortality 

rates, and provide estimates of both the short- and long-term effects of increased 

physician density. 
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Data 
We constructed a longitudinal panel data set with intervals of five years1 from 1960 to 

2000 from three different data sources including the World Bank’s World Development 

Indicator, Penn World Table, and Barro-Lee’s educational attainment dataset (World 

Bank, 2006, Heston et al., 2006, Barro and Lee, 2001). The infant mortality rate (IMR), 

defined as the number of deaths in children under one year of age per 1000 live births, 

and obtained from the World Development Indicators (World Bank, 2006), is the 

outcome of interest.  There is, however, a concern with the quality of the infant mortality 

rate data (Hill and Pebley, 1989, Hill, 1999, Hill et al., 2007).  In developed countries, the 

most common sources of data on infant mortality rates are vital registrations, while in 

developing countries the best data come from World Fertility Surveys in the early part of 

the time period and Demographic and Health Surveys in the later part. However, survey 

data for particular years are frequently missing, and IMR data are created by interpolation 

or extrapolation over time and even across countries (Hill and Pebley, 1989, Bos et al., 

1992, Hill, 1999, Hill et al., 2007).  Due to doubts about data quality, we performed an 

inspection of the infant mortality data,  and removed the data deemed unreliable (United 

Nations, 1992, United Nations, 2006).  Although pure measurement error in the 

dependent variable should not induce biases; it is possible that the extrapolation 

procedure used in producing the World Bank data induce systematic biases.  

We also used under 5 mortality and life expectancy as dependent variables. 

However, since Life expectancy at birth estimates are derived from IMR and q5 estimates 

from surveys or censuses with model life tables, and Under 5 mortality rate is highly 

                                                 
1 We prefer using IMR every fifth year starting in 1960 to averaging the five-yearly data as in United 
Nation data base, since averaging introduces serial correlation. Nevertheless, our results are robust to using 
five-year averages.   
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correlated with infant mortality (Bos et al., 1992). Our comparison of the data on child 

mortality from UNICEF's report with our data on infant mortality showed that they are 

highly correlated, both across countries (0.964 in 2000) as well as for changes over time 

(the correlation of the percentage changes from 1960 to 2000 is 0.913). Given this high 

correlation, it is not surprising that the regression results are substantially similar. (The 

results can be provided upon request).  

 The main reason for choosing IMR results over life expectancy at birth is a pure 

measurement issue. Data on adult mortality rates are often even less reliable (Hill, 2003, 

Bos et al., 1992) which is why we prefer to work with infant mortality as our health 

outcome measure.  Life expectancy figures are generally derived from model life tables 

rather than observed directly from death registrations. The life expectancy estimates 

reported in are simply updated using an infant (or child) mortality figure applied to the 

model life table. 

Our dataset is a panel of 99 countries at five-year intervals from 1960 to 2000. 

While the data for infant mortality are available at annual frequencies in the World Bank 

databases, the education and physician data are available only at five-year intervals. We 

use data from countries where we have at least three observations out of nine potential in 

this period.  We have data on outcome variable and explanatory variables for 602 

observations out of a possible 891, giving an unbalanced panel where each country has 

between three and nine observations.  If the potential observations are missing in some 

systematic way, this may bias our results.  We discuss the pattern of the missing data and 

the sensitivity of our results to the sample size in the appendix.    
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We use data on physician density, defined as the number of physicians per 1,000 

population obtained from the World Development Indicators (World Bank, 2006). We 

have restricted this analysis to physician supply, since longitudinal data on other human 

resources for health is lacking.  Furthermore, physician density has been shown to be 

strongest predictor of health outcomes among the various components of human 

resources for health (Anand and Baernighausen, 2004).  

Ideally, we would prefer to add data on nurses and midwives, and health 

infrastructure variables, such as number of the beds. However, our dataset would be 

restricted to some of the OECD countries and mainly from the 1980s onward. Therefore, 

paucity of data on other health system resources, especially human resources for health, 

makes us use physicians as a proxy measure of the other health system inputs. For other 

factors out of the health system that can affect health, we could not use time-invariant 

variables, such as the country coastal area, whether it is landlocked, or located in tropical, 

etc. because our final model would remove them through first differencing.  For the Time 

variant variables like average temperature, altitude and rainfall, just like other studies we 

did not find any significance in neither the static nor the dynamic models. Other variables 

which were related to development level such as length of paved roads, railways, and 

capacity for electricity generation were the cause of multicollinearity with GDP. The data 

of percentage of population who had access to water and sanitation could also be useful. 

But the available data reduce the sample size to 63 countries over 20 year period.  We 

also tried to include the Gini coefficient as a measure of inequality of income distribution 

or inequality of wealth distribution. However, the data available in the World Bank data 

base for the Gini were sparse. We collected all the articles pertaining to Gini 
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measurement over the period of study (1960-2000). However, because of inconsistency 

due to the variation in data collection (for example, total population vs. employed adult 

population) or in method (Total consumption vs. gross income), we were not able to 

make a usable data set. 

We now turn to the functional form of the relationship we estimate. It is common 

practice to use the log of IMR, as opposed to the level of IMR (Anand and 

Baernighausen, 2004, Robinson and Wharrad, 2000, Flegg, 1982, Jamison et al., 2004) as 

the variable to be explained.  The level of the IMR is bounded below by zero and many 

countries are near this bound, and can, in consequence, show only very small 

improvements in the level of IMR. Rather than model the outcome variable as bounded, 

we take the log of IMR as our dependent variable. Using the log of IMR means we can 

interpret the effects of our explanatory variables in terms of the percentage change they 

generate in the IMR.     

While prior studies (Anand and Baernighausen, 2004, Robinson and Wharrad, 

2000, Flegg, 1982, Jamison et al., 2004) use the log of physician density as an 

explanatory variable, we undertook an analysis of which functional form gives the best fit 

to the data and found that the level of physician density has better explanatory power than 

the log of physician density and even outperforms a model that includes both the log of 

physician density and its square. The fit of the different functional forms was evaluated 

by using non-nested hypotheses tests (Davidson, 1993, Mizon and Richard, 1986). The 

details of this analysis are reported in the appendix.  

We also use income levels, measured by the log of per capita Gross Domestic 

Product (GDP) at year 2000 purchasing power parity (PPP) adjusted dollars from the 

7 
 



Penn World Tables (PWT 6.2) (Heston et al., 2006) and the average years of schooling in 

the total population aged 15 years and above, (Barro and Lee, 2001) as covariates in this 

analysis.  Since we account for country fixed effects in our analysis, we have controlled 

for any confounding variables that are fixed in a country over time. 

In any analysis of observational rather than experimental data confounders are a 

fundamental problem which is difficult to overcome.  Our panel data approach is more 

robust than cross-sectional studies in that we control for country-specific factors that are 

fixed over time.  However, this leaves open the issue of time-varying confounders. We do 

control for education, income, and a worldwide time trend. While this takes account of 

some of the time-varying confounders, there are clearly other potential confounders not 

included in the model.  

One major potential confounder is technical progress in health care that can 

improve health outcomes even with a steady level of health inputs; this has been a major 

source of long-term advancement in health.  We control for worldwide technical progress 

by using time dummies, but there may be country-specific technical progress in health as 

well (see Jamison et al 2004).  Our dynamic model allows for diffusion of health 

technologies from advanced to less advanced countries, so that countries converge 

towards a common technological frontier.  However, since we cannot claim to have 

eliminated all confounders, our results must be interpreted with caution.     

Statistical Analysis 
Cross-sectional specification: we first estimated a cross-sectional regression model, 

similar to those utilized in prior studies given as:  
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i i iLIMR PHY X eiα β= + +  (1)  

 

where log infant mortality rate (LIMRi) in country i at one time-period (we use the year 

2000) is a function of physician density in the country (PHYi), the effect of which is 

given by α ; and a vector of covariates Xi, the effect of which is given by β ; and an error 

term ( )ie 2. 

Longitudinal specification: Utilizing the longitudinal panel data, we specified the 

following model:  

 

ittititit eXPHYLIMR +++= τβα  (2)  

where LIMR in country i  at time  is a linear function of physician density (t itPHYα ) and 

covariates ( itXβ ) in that period.  Additionally, we also model a time-specific effect ( tτ ) 

that estimates the global level of health technology available at time t; and allow for an 

error term ( ).  Model (2) is similar to model (1), except that we run the ordinary least 

squares estimator on the entire sample over time as well as across countries.  An alternate 

and more robust specification for longitudinal panel data is:  

ite

 

ititititit eXPHYLIMR ++++= ητβα  (3).  

 

                                                 
2 Assumed to be random for each observation but independently drawn from a common 
distribution.  
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The main improvement from model (2) to (3) is the specification of a time-invariant 

country-specific fixed effect ( iη ) that reflects unobserved country variables that affect 

infant mortality but do not change over time. 

All these specifications suffer from reliance on the assumption that the effect of 

physician density on health outcomes is instantaneous.  If the physician density increases, 

the current IMR will reflect the short-run effect but the long-run effects will not yet have 

come into operation.  We therefore expect these approaches to underestimate the long-run 

effects of physician density.  Estimation of long-run effects requires a dynamic structure 

where the full effect of changes in physician density may only come about with a lag. 

Long-run dynamic specification: To allow for the possibility of long-run effects of 

physician density on infant mortality, we propose the following specification:  

 

0 1 , 1 0 1 , 1 , 1it it i t it i t i t t i itLIMR PHY PHY X X LIMR eα α β β λ τ η− − −= + + + + + + +  (4).   

 

Model (4) posits that the log of infant mortality rate  depends not only on the 

current level of physician density  and other covariates

itLIMR

itPHY itX , but also on the lagged 

physician density and other covariates measured in the previous period five years before, 

.   We also include the lag of the log of IMR, , 1 , 1,i t i tPHY X− − , 1i tLIMR − as an explanatory 

variable. This measures the persistence in the IMR; in most cases, IMR responds to 

health sector inputs, but is slow to move from its previous levels.    

In this framework, 0α is the immediate short-run impact of an increase in 

physician density on the log of IMR.  In addition to this short-run effect, there is also a 

long-run effect.  After a five year lag, physician density will start to have an effect.  
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While the lag in this framework is only five years, the response of the infant mortality 

rate to the model unleashes a process of dynamic adjustment to a new steady state that 

can take a long time.  In the long run, an increase in physician density will raise the log of 

infant mortality rate by 0 1

1
α α

λ
+
−

. 

Model (4) has the advantage of including specification (3) as a special case.  If 

λ =0, 1 0α =  and 1 0β = , the lagged effects disappear, short-run and long-run effects are 

the same, and we have exactly specification (3).  However, in all cases other than this 

extreme one, we have both the short-run impact of changes on health inputs, and a new 

level of inputs that gradually converge towards the new long-run steady state.   

A major issue in this kind of study is identifying a causal effect as opposed to a 

merely an association between physician density and health.  There are two issues of 

concern.  First, there is the threat that both good health and high density of physicians are 

associated with some other country-level factor, such as “good government,” that is not 

included in the model.  With variables omitted from the model, a statistical relationship 

between health and physician density may be merely an incidental association.  Using 

panel data and allowing for country fixed effects can alleviate this concern.  The second 

possibility is that countries with good health could have higher demand for health care 

professionals, which subsequently results in higher number of physician per capita. In 

this case, a statistical relationship between health and physician density does not establish 

causality between physician density and better health (a case of reverse causation).  This 

study uses the instrumental variables estimation method to address both of these issues 

(Wooldridge, 2002).  
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We estimate model (4) using the Generalized Method of Moment (GMM) 

estimator which corrects for (a) the potential endogeneity3 of contemporaneous changes 

in the independent variables, (b) unobserved heterogeneity at the country level (the 

country fixed effects), and (c) the endogeneity of lagged level of IMR in the dynamic 

specification.   It should be noted that conventional estimators, such as ordinary least 

squares or generalized least squares, will be biased and inconsistent in this framework 

(Wooldridge, 2002, Cameron, 2005, Blundell et al., 2000).  

To address these problems, the GMM estimator uses the suitably lagged levels of 

the variables as instruments, after the equation has been first-differenced to eliminate 

country-specific effects.4  However, when the marginal processes are close to random 

walk process, the lagged levels of the series are weakly correlated with the subsequent 

first differences, and as a result the instruments available for the first-differenced 

equations are weak (Blundell and Bond, 1998).  Arellano and Bover (1995) describe that 

if the original equations in levels were added to the system, additional moment conditions 

could be used to increase efficiency.  In these equations, predetermined and endogenous 

variables in levels are instrumented with suitable lags of their own first differences.  

Strictly exogenous regressors enter the instrument matrix in the conventional 

instrumental variables fashion: in first differences, with one column per instrument.  In 

this estimation, we relax the assumption of exogeneity on all the variables and treat them 

all as endogenous.  The only exogenous variable to enter the instrumental matrix is time.  

We use this approach to estimate model (4).  

                                                 
3 In econometrics endogeneity in a regression model refers to the correlation of the independent variable 
with the error term. 
4 The within transformation is not useful in this context, since it introduces the shocks from all time periods 
into the transformed error term.  
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It is clear that the GMM framework deals consistently and efficiently with the 

estimation problems such as endogeneity and unobservable country-specific 

heterogeneity. This consistency, however, critically hinges upon the identifying 

assumption that the lagged values of IMR and the other explanatory variables are valid 

instruments in the regression. A crucial necessary condition in this respect is the lack of 

serial correlation in the errors, .  To address these concerns, a battery of specification 

tests complements the estimation results.  In particular, we performed a Sargan test of 

overidentifying restrictions (Cameron, 2005).  This test is based on the sample analog of 

the moment conditions exploited in the estimation process, and evaluates the overall 

validity of the set of instruments.5 The validity of lagged levels dated t-2 as instruments 

in the first-differenced equations is rejected by the Sargan and Hansent tests of 

overidentifying restriction (for Hansent test results not reported)(Sargan, 1958, Hansen, 

1982).  This is consistent with the presence of measurement errors. Instruments dated t-3 

and earlier are not rejected, therefore, used as instrument.   

The Sargan or Hansen tests are prone to weakness, therefore should be interpreted 

cautiously. Sargan test is not robust, but not weakened by many instruments, while 

Hansen test is robust, but can be weakened by many instruments. The test actually grows 

weaker the more moment conditions there are. That is the error in this test is proportional 

to the number of instrumental variables, so if the asymptotic approximations are to be 

used, this number must be small. While these two tests are the most commonly used 

methods to detect serial correlation of the error term in a dynamic model based on panel 

                                                 
5 In robust one-step GMM, non-sphericity in the errors is suspected, therefore the Sargan statistic is 
inconsistent. In that case, a theoretically superior overidentication test for the one-step estimator is that 
based on the Hansen statistic from a two-step estimate. We performed the two-steps GMM in order to 
obtain a consistent Hansen statistic. 
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data, their application is limited to uncorrelated disturbances under the null. 

Therefore, if there are reasons to expect autoregressive errors in a panel regression 

model, or if one suspect that the dynamics of the model have been incorrectly specified, 

there is a strong possibility of autocorrelation being present in the residuals. Hence, it is 

natural that we may consider a test of uncorrelated errors as a null against an AR(1) error 

as an alternative. If the disturbance has an AR(1) structure, the usual instruments of 

lagged values of the dependent variables in the differenced equations are no longer valid. 

Furthermore, our estimator that uses lags as instruments under the assumption of white 

noise errors loses its consistency if in fact the disturbances are autocorrelated. Thus, 

Sargan and Hansen tests would be no longer applicable because they use inconsistently 

estimated residuals based on even optimal two-step estimation which also use invalid 

instruments. In order to remedy this problem, we used a t-test developed by Jung. The t-

test utilizes consistently estimated residuals based on IV estimation which uses the lags 

of exogenous variable as instruments for the lagged dependent variables (Jung, 2005). 

The assumption of strict exogeneity of an explanatory variable is rather strong. However, 

it is safer to assume this than to restrict the serial correlation structure of the errors where 

it is suspected that the error has an autoregressive structure. For all GMM regressions, 

our tests of overidentifying restrictions indicate that we cannot reject the hypothesis that 

our identification assumptions are valid.  

We report the results of two tests of the null hypothesis of no serial correlation in 

the errors in levels.  One test is based on the difference between the Sargan test statistics 

described above and another one obtained after dropping all the moment conditions that 

would be invalid if the errors in levels were first-order serially correlated (see Arellano 
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and Bond, 1991).  This test is labeled AR (1) in Table 4, which cannot reject the null 

hypothesis of no serial correlation in the errors in levels. The second is a test of the 

hypothesis that the errors in the differenced equation are not second order serially 

correlated.  This test is labeled AR (2) in Table 4. The AR (2) is normally distributed, 

while the Sargan and the difference-Sargan statistics are chi-square distributed under the 

null hypothesis.  The AR (2) test, reported at the bottom of the column, indicates that 

there is no further serial correlation and the overidentifying restriction is not rejected. 

Results 
Table 1 reports the global average of the different variables for each time period.  IMR 

more than halved between 1960 and 2000, while physician density almost quadrupled 

during the same period.  Table 2 reports the mean, standard deviation, minimum and 

maximum of each variable over the whole sample period. Table 3 presents the results for 

the static models (1), (2), and (3)6.  Estimates for model (1), for the 2000 cross-section, 

suggest a strong inverse relationship between physician density and the log of IMR.  

Adding one physician per 1000 persons appears to reduce IMR by almost 24%.  

Estimates for model (2) based on longitudinal data also show a strong inverse association 

between physician density and the log of IMR, and are consistent with a 21% reduction in 

IMR for every physician added per 1000 population.  Finally, including country fixed 

effects (Model (3)) strengthens the association suggesting that adding one physician for 

every 1000 population is consistent with a reduction in infant mortality by about 30%, 

which is opposite to what one expects to see when the country fixed-effect is added. 

Generally, when country fixed-effect is added to the equation, the coefficient of interest 

                                                 
6 All the estimations are robust and clustered at the country level. 
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tends toward zero. However, in this case one possible explanation could be that the rate 

of the expansion of physician workforce is much slower than other health system inputs, 

due to the long and expensive training process; we see that adding the fixed effect shows 

stronger effects. This result implies that the association between IMR and physician 

density found in cross-section is robust and not the result of confounding variables that 

are country-specific and fixed over time.   

Table 4 reports the results estimating dynamic model (4), where one lag for both 

dependent and independent variables is included.  Theoretically, we expected the lag 

effects; however, we needed to first rule out the unit root. In order to do that we used 

augmented Dickey-Fuller test which assumes that all series are non-stationary under the 

null hypothesis against the alternative that at least one series in the panel is stationary.  

The unit root was rejected at 0.001 level of statistical significance. To determine the 

number of lags, we used the Akaike's information criterion (AIC). As one can see in the 

table the lag of the independent variables are individually statistically insignificant. 

Nonetheless, the F test indicates that they are jointly statistically significant. Therefore, 

dropping them might cause omitted variable bias. We find significant contemporaneous 

effects of physician density: an increase of one physician per 1000 population reduces 

IMR by about 14% immediately.  However, we also find significant long-run effects.  

While the lagged values of our explanatory variables are not individually statistically 

significant, the lagged value of the log of IMR is highly significant.7  This difference 

indicates that the static models are mis-specified.  The large coefficient on the lag of IMR 

means that IMR is slow to adjust to changes in health inputs and tends to persist close to 

                                                 
7 An F-test for joint significance of the lagged and the contemporary coefficients shows that they are highly 
significant. 
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its previous level.   In addition, we find significant effects of income on the IMR but do 

not find statistically significant effects for education. 

Table 5 shows the estimated long run effects of changes in our explanatory 

variables on IMR.  The long-run effect of physician density is three times as large as the 

short-run effect; an increase of one physician per 1000 population reduces IMR by about 

45% in the long run.  Given the mean IMR in this time period is 63, a 45% reduction in 

IMR means 2.8 deaths averted per 1000 live births. Since the sample mean is about one 

physician per 1000 population, to achieve this level of reduction, on average, a doubling 

of the physician density around the world is required.   

The speed of convergence to the long-run steady state is around 17% over a five-

year period (the speed of convergence is 1-λ ), or about 3% convergence per year.  There 

is a quick reduction of IMR of around 14% and after about 15 years, every country is 

about half way to the long run steady state reduction of 45%.   

Interpretation 
One of the United Nations Millennium Development Goals (MDGs) is to reduce 

IMR by 2015.  Health system inputs are among the factors that may influence the 

achievement of the MDGs. One of these inputs is healthcare workers.  As far as infant 

mortality is concerned, healthcare workers are required to provide the medication, 

prenatal care as well as pediatric services.  Adequate number of committed motivated 

health workforce with required public health and clinical competencies is a prerequisite 

for achieving MDG.   

Using longitudinal data from 1960 to 2000 for 99 countries, we report substantial 

long-term effects of physician density on reductions in IMR.  Our static models, using 
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specifications (1), (2), or (3), largely concur with the previous results in terms of their 

effect size (after adjusting for the fact that we use the level of physician density, while 

previous studies usually use the log of physician density). However, the dynamic model 

specification (4) produces a much larger long-run effect, though this effect is slow in 

coming.  This long run effect may be three times as large as the contemporaneous effect 

usually estimated.  

The Millennium Development Goal is to reduce child mortality by two-thirds, 

from 93 children of every 1,000 dying before age five in 1990 to 31 of every 1,000 in 

2015.  These deaths occur mainly in the developing world.  Sub-Saharan Africa has the 

highest rates. While many developed and developing countries are on their track towards 

their goal, as one can see in Table 6, some of the Sub-Saharan countries are way off their 

target, partly because of the AIDS epidemics. This projection is based on the trend in 

1960-2000. In some of these countries the downward trend of IMR that started in the 

1960s reversed in the 1990s. However, with more access to antiretroviral treatment and 

prevention of mother-to-child HIV transmission (PMTCT) services, hopefully the 

outcome would be better than what we projected. 

Several caveats should be taken into account when interpreting the results.  The 

first is measurement error in the data and the extent of missing data in our sample.  

Second, we only considered one aspect of human resources for health (physician density).  

While previous studies found physician density to be amongst the most important 

components of human resources for health, we do not wish to imply that other 

components such as supply of nurses, or hospital beds, are unimportant.  Considering 

additional dimensions of human resources for health in international longitudinal data, 
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however, would require information that is not presently available.  Lastly, additional 

time-varying confounders within countries have the potential to bias these results.  

There are areas for further research which will have to be addressed. Having 

physicians as a proxy for health system resources, even for human resources for health, 

limits the external validity of the results. Had we been able to run a more detailed 

analysis aided by accurate data of the nursing workforce, results would have allowed for 

more precision concerning the impact of human resources on infant mortality.  Another 

limitation was the lack of ability to account for the distribution of the physicians. There 

are large variations in the physician distribution; in some countries access to physicians 

are limited to the urban area. We are also assuming that physicians in all the countries 

providing similar practices, which is due to the paucity of data on quality of training for 

medical professionals. Country-level information on how  physician are practicing within 

the health care system of that particular country may be informative in identifying best 

medical practices for health care structure, licensure/registration, scope of practice, 

education and continuous education, and collaboration with other health care 

professionals, and the use of traditional care providers. New models are needed to assess 

care, and treatment and their impact on patients and their communities, all of which are 

largely influenced by culture and setting. 

 
In conclusion, we find that the increase in physician density is an important 

determinant of infant mortality, particularly in the long-run.  However, note should be 

taken that paucity of data on other health system resources, especially human resources 

for health, makes us use physicians as a proxy measure of the other health system inputs. 

Therefore, we should caution on the interpretation of the results, since physician density 
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is reflective of a more general commitment of resources to health care which is not 

accounted for here. 

Prior studies, with their focus on contemporaneous effects, may have 

underestimated the full impact of physician supply on reducing IMR.  Over time, 

investment in programs that increase the number of health care professionals can play an 

important role in helping to achieve the Millennium Development Goal of reducing infant 

mortality by two thirds in 2015 relative to 1990.  However, our results suggest that the 

efforts to achieve this goal should have been more substantial early in the period, in order 

to reap the long-term benefits of early investment.  It may be much more difficult to 

achieve the goal by increasing health sector inputs at this point in time, since we can 

expect to see only the short-term effects of increases in current health sector inputs before 

2015.   
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Table 1 Sample Means 1960-2000 

 Infant Mortality Rate Physicians per 1000 population GDP per capita Years of Schooling 

1960 105 0.39 3821 3.6 

1965 89 0.54 4781 3.7 

1970 87 0.49 5253 4.0 

1975 76 0.61 6248 4.2 

1980 71 0.68 6342 4.5 

1985 58 0.94 7148 5.1 

1990 52 1.10 7986 5.5 

1995 46 1.17 8779 5.9 

2000 40 1.38 10339 6.3 

Average 1960-2000 63 0.91 7370 5.0 
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Table 2 Descriptive  Statistics for the Whole Sample 
Variable Mean Std. Dev. Min Max 
IMR 63 50 3 204 
Physician density 0.91 0.97 0.01 4.3 
GDP 7370 7544 314 34365 
Total years of education 5.04 2.86 0.17 12.05 
Log IMR 4.14 1.08 1.1 5.32 
Log GDP 8.9 1.12 5.75 10.45 
Data from 602 observations used in the model 
Log IMR: log of infant mortality rate, defined as the number of deaths of children under one year of age per 
1000 live births in the same year. Physician density: number of physicians in 1000 population. GDP: the 
gross domestic product per capita at 2000 real purchasing power (PPP) adjusted dollars from the Penn World 
Tables 6.2 (PWT6.2) of Heston and Summers (2002). Years of schooling is the average years of schooling in 
the total population, aged 15 years and above, from the Barro-Lee educational attainment dataset. 
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Table 3 Regression Results for the Static Models  
  Cross-section 2000 Panel (1960-2000) 
  1 2  3 

Estimator OLS OLS Fixed-effect 
Dependent Var. Log IMR Log IMR Log IMR 
Physician density -0.239*** -0.212*** -0.302*** 
  (0.08) (0.03) (0.03) 
Log GDP per capita -0.522*** -0.39*** -0.261*** 
  (0.09) (0.07) (0.03) 
Total years of education -0.0963*** -0.137*** -0.013 
  (0.03) (0.02) (0.02) 
Constant 8.549*** 8.009*** 6.594*** 
  (0.63) (0.46) (0.27) 
R2 0.888 0.881 0.976 
# countries 92 99 99 
# observation 92 602 602 
 
Cluster robust standard errors in parentheses 
* significant at 10%; ** significant at 5%; *** significant at 1% 
Column one is the cross-section estimation of data in year 2000; columns 2 and 3 are the estimation of 
the panel 1960-2000 without and with fixed-effects respectively.  
Time dummies included in the panel data models (not reported). 
Fixed effects are included in the model in column 3 (not reported).  
For the description of the variables see note to Table 2. 
All models estimated with ordinary least squares (OLS). 
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Table 4  Regression Results for the Dynamic Model  
 
Dependent Variable   Log IMR 
   

 
 
 

 Explanatory Variables Parameter GMM Estimate 
Lag Log IMR λ  0.8 ** 30*
   (  0.057)
Physician density 0α  -0 * .145**
   (0.05) 
Lag Physician density 1α  0  .0688
   (0.053) 
Log of GDP 0β  -0.338** 
   (0.16) 
Lag log of GDP 1β  0.216 
   (0.162) 
Years of Schooling 0γ  -0.011 
   (0.02) 
Lag Years of Schooling 1γ  0.008 
   (0.017) 
Constant  1.632*** 
  (0.61) 

Number of observations  480 
Number of countries  99 
AR(1) (z-statistic) Pr > z =  0.014 -2.47 
AR(2) (z-statistic) Pr > z =  0.048 -1.98 
Sargan test (χ2) Pr > chi2 =  0.000 135.54 
Sargan difference test ⎯ 0.44 
Robust standard errors in parentheses 
* significant at 10%; ** significant at 5%; *** significant at 1% 
Estimates are GMM (system estimator) with two-step estimates and heteroskedasticity-
consistent standard errors and test statistics. 
AR(1) and AR(2) are tests for first-order and second-order serial correlation, asymptotically 
N(0,1).  
Time dummies are included (not reported). 
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 Table 5:  The Long-run Effects from the a Dynamic Model Specification  
 
 
  Long Run Effect 
 Explanatory Variables Parameter Calculation Estimate 
Long-run  Physician density (α0 + α1)/ (1 - λ1) -0.446** 
   (0.077) 
Long-run  log of GDP (β0 + β1)/(1 - λ1) -0.714** 
   (0.097) 
Long-run Years of Schooling (γ0 + γ1)/(1 - λ1) -0.016 

   (0.031) 
Robust standard errors in parentheses 
* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 6:  Changes in IMR in Selected Sub-Saharan countries 

country 
IMR 
1990 

IMR 
2000 

Projection 
IMR   2015 

MDG  
IMR 
2015 

% change 
1990-2000 
Observed 

% change 
2000-
2015 

Needed 

Physician 
Density in 
100,000 
pop.  In 

2000 
Botswana 45 74 68 15 64 -80 29 
Zimbabwe 53 73 64 17 38 -76 16 
Swaziland 78 98 85 26 26 -74 18 
Kenya 64 77 67 21 20 -73 14 
Rwanda 103 118 99 34 15 -71 5 
South Africa 45 50 58 15 11 -70 77 
Lesotho 75 75 64 25 1 -67 5 
Zambia 101 102 87 33 1 -67 12 
Congo, Dem. Rep. 129 129 109 43 0 -67 7 
Sierra Leone 175 167 140 58 -5 -65 7 
Uganda 93 85 72 31 -9 -64 8 
Togo 88 80 68 29 -9 -64 7 
Ghana 75 68 58 25 -9 -64 9 
Senegal 90 80 68 30 -11 -63 6 
Sudan 74 65 57 24 -12 -62 16 
Guinea-Bissau 153 132 113 50 -14 -62 18 
Tanzania 102 88 74 34 -14 -62 5 
Benin 111 95 80 37 -14 -61 6 
Niger 191 159 132 63 -17 -60 2 
Malawi 146 117 98 48 -20 -59 3 
Mozambique 158 122 102 52 -23 -57 2 
Countries ordered according to the percentage of change between 1990 and 2000 
Projections are calculated from the regression estimates using the IMR 2000 
Negative number denotes reduction 
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Appendix: 
This appendix gives more details on three issues mentioned in the paper: missing data, 
the functional form, and the estimation of the dynamic model.  

 

(a) Missing Data  
Given that about one third of our data is missing, there is concern that the data is not 
missing at random but is purposeful in some way, which would cause a bias in our 
estimates.  Table A1 reports the pattern of missing data by region.  We have a slightly 
higher proportion of missing data in the Middle East and slightly lower proportion of 
missing data in Europe and the Americas. Africa, the poorest region in our sample, has 
about an average proportion of missing data. An examination of the data showed it is not 
the level of development that was driving missing data, but rather being a formerly 
Eastern bloc country. These transition countries frequently lack data for the early years of 
our sample.    

Missing observations is not a problem for the consistency, or unbiasedness, of the 
estimator if the missingness is at random or if being missing depends on the value of an 
explanatory variable. The Arellano & Bond estimator (GMM) is an unbiased estimator, 
even with an unbalanced panel as in this case (Judson and Owen, 1999). 

However, missing data will be a problem if being missing depends on the value of 
the outcome variable, the infant mortality rate.  Table A2 shows the number of 
observations and missing data for each variable in our entire potential data set.  While 
every variable has missing data, the years of schooling variable has the most missing data 
points (about half are missing) and effectively limits our usable sample.  For our whole 
potential sample, there are missing data on the infant mortality rate about 25% of the 
time. However, if the sample is limited to one with three explanatory variables, there are 
missing data for infant mortality only 6% of the time. This means the lack of data on 
infant mortality is the major cause of missing observations in our sample.  

While the missing data has not been driven by the level of infant mortality and is 
unlikely to introduce bias to our results, we could potentially improve the efficiency of 
our estimates (i.e. reduce the standard errors) by imputing values of the missing data and 
including the imputed data in our analysis.  However, this would add an extra level of 
complication to an already complex methodology.  

One way of enlarging the sample size is to drop years of schooling from the 
model, which was found to be insignificant anyway (see table 4).  We examined how 
sensitive the results are to changing the sample in this way, and concluded that it does not 
significantly change the effect of physicians per capita (see Table A3). 
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Table A1 

Region Countries Observations Missing Data Points % Data Missing
World 99 602 289 32.4 
Africa 30 184 86 31.8 
Asia and Oceania 17 100 53 34.6 
Central and South America 22 142 56 28.3 
Middle East  20 110 70 38.8 
Europe and North America 14 93 33 26.2 

 
 
Table A2 
Variable Observations Missing Data Points % Data Missing 
    
GDP per capita 1345 549 29.0 
Years of Schooling 921 973 51.4 
Physicians per Capita 1342 552 29.1 
Infant Mortality Rate 1427 467 24.7 
Conditional on observing GDP per capita, Years of Schooling and Physicians per Capita 
Infant Mortality Rate 746 46 5.8 
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(b) Functional Form 
Figure 2 plots the log of physicians per 1000 population against the log of IMR and plots 

the level of physicians per 1000 population against the log of IMR in 1960. The graphs 

suggest that the log of IMR varies linearly with the level of physician density but non-

linearly with the log of physician density.  We tested three models for the function form, 

using the level of physician density, the log of physician density and finally, both the log 

of physician density and its square (to allow for a non-linear effect), as explanatory 

variables.  We estimate the static panel data model with fixed effects with these three 

different specifications for how physician density affects the log of IMR, keeping the 

other specifications fixed.  

The three models are: 

M1 : ititititit eXPHYLIMR ++++= ητβα  
M2 : log( )it it it t i itLIMR PHY X eα β τ η= + + + +  
M3 : 2log( ) '[log( )]it it it it t i itLIMR PHY PHY X eα α β τ= + + + +η +  
 
We then conducted non-nested hypothesis tests to select between these models. 
The tests used include Davidson-MacKinnon test (J test), Cox’s and Pesaran’s for non-
nested models (Greene, 2003) : 
 
Test 1. Null Hypothesis M1 is correct. Alternative is model M2. 
t(741)     -2.84510 p-val       0.056              accept 
 
Test 2. Null Hypothesis M2 is correct. Alternative is model M1. 
t(741)     10.80994  p-val       0.00000         reject 
 
Test 3. Null Hypothesis M1 is correct. Alternative is model M3. 
 t(741)      0.95698   p-val       0.33889        accept 
 
Test 4. Null Hypothesis M3 is correct. Alternative is model M1. 
 t(740)      4.99587  p-val       0.00000          reject 
 
In each case, we accept the level specification for physician density and reject the 
specifications using the log of physician density at the 5% significance level. 
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