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Abstract

This study evaluates the economic consequences of a malaria erad-
ication campaign in the southwestern Ugandan district of Kigezi. The
project was a joint venture between the WHO and Uganda’s Ministry
of Health, designed to test for the first time the feasibility of malaria
eradication in a sub-Saharan African country. During the years of
1959 and 1960, eradication efforts employing DDT spraying and mass
distribution of anti-malarials were implemented, beginning in north-
ern Kigezi. Follow-up studies reported a drop in overall parasite rates
from 22.7 to 0.5% in hyperendemic areas and from 12.5 to 0% in
mesoendemic areas. We use this campaign as a plausibly exogenous
health shock to explore changes in human-capital formation and in-
come. We employ a difference-in-difference methodology to show that
eradication produced differential improvements in Kigezi compare to
the rest of Uganda in years of schooling, literacy, and primary school
completion. In addition, we find suggestive evidence that eradication
increased income levels. Keywords: human capital, malaria, economic
development and health
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1 Introduction

The damage that malaria inflicts on population health is severe and well
established. With an estimated 350 to 500 million cases per year and nearly
900,000 deaths, malaria represents a major threat for 3.3 billion people in
109 nations. Sub-Saharan Africa (SSA) carries the bulk of the global malaria
burden, with 71% of cases and 86% of global deaths [26]. It is estimated
that anywhere from 30 to 50% of outpatient visits and hospital admissions
in much of SSA are a result of malaria illness, with severe cases leading to
complications including anemia, seizures, delirium, coma, and death. Malaria
also significantly aggravates the condition of HIV-positive individuals and
increases HIV transmission.

In addition to severe health consequences, nations with high malaria in-
cidence also exhibit low levels of economic development. The present study
intends to explore whether the association between malaria and poverty is
causal. We exploit a plausibly exogenous eradication campaign in Uganda’s
southwestern Kigezi region to investigate the impact of malaria reduction
on educational attainment and economic status. The eradication campaign
began in 1959 with collaboration between the World Health Organization
(WHO) and Uganda’s Ministry of Health to bring the WHO’s Global Malaria
Eradication Campaign, launched in 1955, to SSA. That campaign eventually
eliminated malaria from Europe, North America, the Caribbean, and parts
of Asia and South-Central America. However, the effort was abandoned in
1969 due to the challenges of eradication in SSA, caused in part by increasing
mosquito resistance to dichloro-diphenyl-trichloroethane (DDT) and increas-
ing parasite resistance to chloroquine treatment.

Understanding the impact of malaria on development in SSA represents
an increasingly important question, given renewed calls to fund eradication
efforts; particularly since a 2007 Bill and Melinda Gates Foundation con-
ference at which the Gateses boldly called for global malaria eradication.
Their statement was seconded by Margaret Chan, the Director General of
the WHO). This clarion call has been credited with reinvigorating the malaria
scientific community and shifting attention from malaria control towards the
long-term goal of eradication. No similar effort to shift from control to erad-
ication has occurred since the original WHO campaign in 1955.

Malaria affects human capital and income in multiple ways. First, infec-
tion during pregnancy causes anemia and reduced in utero nutrition, leading
to reduced neurocognitive function and decreasing a child’s likelihood of at-
tending or advancing through school. Second, infection during childhood
causes cognitive impairment as well and can reduce educational outcomes
or labor productivity. Third, malaria in the community or household can
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reduce overall investment and income available for schooling. The present
research shows that malaria eradication efforts focused on SSA can indeed
raise human capital and income. In addition, these effects override the pop-
ulation pressure that some argue has reduced the economic impact of public
health interventions in other contexts [1]. This paper continues as follows:
section 1 describes the literature on malaria in more detail, section 2 pro-
vides background on the eradication region and campaign, section 3 describes
our methodology, section 4 outlines our results, section 5 provides additional
discussion of these results compared to other work, and section 6 concludes.

malaria that followed, the use of nonmalarious areas for comparison, and
the differential incidence of eradication benefits across cohorts) combine to
form the research design of the present study. p. 9 or so

to conduct the analysis, which is therefore an intention-to-treat design.”
p. 11

1.1 Effect of malaria on population health and devel-
opmental outcomes

Malaria reduction or elimination obviously increases a child’s ability to at-
tend school and learn once there. In addition to the immediate effects of
malaria on health, there is evidence that malaria exposure during infancy
and childhood can have detrimental effects on long-term cognitive develop-
ment. A 2006 systematic review of 18 studies concluded that Plasmodium
falciparum malaria in childhood affects short- and long-term neurocognitive
performance, including attention, memory, visio-spacial skills, and language
functioning [21]. These effects are present and most pronounced for cerebral
malaria [9],[20] the most severe form, but also obtain for less-severe infec-
tions. Another possible route from malaria to cognitive development is ane-
mia, since repeated malaria exposure during childhood can lead to childhood
rates of underweight and anemia [35]. There is strong evidence that iron-
deficiency anemia during gestation and early lactation can adversely impact
cognitive development and delay the development of the central nervous sys-
tem [4]. These adverse outcomes are are often irreversible, depending on the
child’s developmental stage during iron deficiency. Moreover, evidence indi-
cates that anemia reduces a child’s ability to respond to environmental cues
[12], while anemic infants test lower in cognitive, motor, and social-emotional
development compared to comparison group infants [23]. Moreover, random-
ized evaluations have previously shown the impact that malaria has in hte
short-term on school-attendance and cognitive ability [15], [11].
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1.2 Effect of malaria on income and human capital at-
tainment

Aside from the population health impact of malaria reduction, there is a large
body of work that looks at the effects of malaria reduction on income and
human capital attainment. In addition, three recent studies have examined
this issue in quasi-experimental settings using the WHO’s eradication efforts
during 1950s [16], [7], [24] and this study uses a similar identification strat-
egy. Cutler et al., 2010 examines a nationwide malaria eradication program
that occurred in India in the 1950s. The authors exploit pre-intervention
geographic variation in malaria prevalence to estimate the impact of India’s
eradication program on educational outcomes. They find that the eradica-
tion campaign produced modest increases in household per capita income for
men aged 20-60 and that the effects are larger for men than women. They use
a sample of ages 15-75 and find no statistically significant effect of malaria
eradication in India on human capital outcomes (literacy and primary school
completion) [16]. Another study, Bleakley, 2010, combines malaria mortality
rates with an ecology index to estimate malaria prevalence during the 1920s
in the United States, and the 1950s in Brazil, Colombia, and Mexico [7]. It
finds that, relative to non-malarious areas, cohorts born after the eradica-
tion programs had higher income and literacy rates than those born prior to
eradication.

Bleakley 2010 also notes that the effect of malaria eradication in nations
with widespread child labor is ambiguous because health improvements will
increase returns to both work and schooling. In addition, since malaria re-
duces mortality and morbidity, the impact on schooling can be ambiguous
because although morbidity will tend to raise schooling / reduce school ab-
sences, decreased mortality may move these variables in the opposite direc-
tion as reduced mortality differentially benefits children with weaker health
and cognitive abilities. Finally, Lucas, 2010 explores female educational
attainment following the WHO Global Malaria Eradication Campaign in
Paraguay and Sri Lanka. These findings suggest that a ten percentage point
decrease in enlarged spleen rate (a measure of long-standing malaria) led to
an increase of between 0.39 and 0.93 years of schooling, with a corresponding
increase in a female’s probability of literacy of between 2.5 to 7.8 percentage
points [24].

A related recent paper uses exogenous variation in early-life rainfall to
estimate the impact of health shocks on long-term health, education, and
socioeconomic status for Indonesian birth cohorts 1953-1974 [25]. For girls,
they find early-life positive health shocks in the form of rainfall 20% above
average leads to reduced likelihood of self-reported poor health, 0.57 cm
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greater height, 0.22 more completed grades, and higher income.
Where malaria exposure data are not readily available, researchers have

reconstructed estimates of exposure and linked these to health and productiv-
ity outcomes. For instance, one study combines Union Army health records
with socioeconomic data from the general population to estimate the im-
pact of malaria exposure on health status and wealth accumulation [19]. It
finds significant impacts on both health and physical capital accumulation;
for example, Union Army veterans enlisting from malaria-endemic US coun-
ties were up to 0.87 inches shorter than those from malaria-free counties.
Moreover, exposure to malaria in the US South during the early part of the
twentieth century reduced mean years of schooling by 0.26 years, which rep-
resented 15% of the difference in years of schooling between the South and
the rest of the US at the time [3].

1.3 Effect of health on economic growth

Much evidence already suggests that long-term exposure to malaria can lower
educational attainment, depress literacy rates, and damage long-term health.
However, do these impacts collectively translate into worse economic growth
and development? There are several pathways through which health, as a
broad category, may affect growth. For example, healthy workers work more
hours and more productive hours than their sick counterparts. Health im-
provements may also increase returns to human capital and encourage savings
for retirement, although recent models have suggested that improvements in
health may actually deter savings. In combination, a more productive work-
force and higher savings rates can attract investment, which further enhances
economic growth.

But empirically, there is some debate as to whether population health
leads to economic growth, and the size of this effect. For example, research
uses a set of exogenous growth determinant instruments to explain variation
in infant and child mortality [32]. While they conclude that income-per-
capita growth produces health improvements, they reject the notion that
causality runs from health to income. More recently, Acemoglu and Johnson,
2007 have argued that large declines in disease-specific mortality associated
with the epidemiological transition after 1940 raised life expectancy with very
little impact on growth in income per capita [1].1

In response, Bleakley, 2006 has argued that Acemoglu and Johnson fail
to account for the economic impacts of morbidity because their analysis does

1See Bloom, Canning, and Fink for a dissenting view on the impact of health improve-
ments on growth [8]
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not distinguish the effect of mortality and morbidity improvements on pop-
ulation health. Bleakley, for example, points to the impact of malaria and
hookworm eradication (Kremer and other Bleakley, which affected morbidity
more than mortality, and subsequently improved human capital attainment.
Still other studies have suggested that population health contributes to eco-
nomic growth and development. Using country-level regressions, Gallup and
Sachs, 2001 show that nations with endemic malaria exhibit over 1% lower
growth per year compared to non-endemic nations for the years 1965 to 1990
[18]. They also note that nations with successful malaria eradication pro-
grams enjoyed substantially higher growth rates in the five years following
malaria eradication. McCarthy, Wolf, and Wu look specifically at SSA and
estimate that, given the prevalence of malaria in the region, the disease re-
duces GDP growth per annum by 0.55% [27].

The question of malaria eradication addresses two major themes in the
economic development literature today: First, what are the costs of malaria
illness on health, education, and labor productivity, and how would these
costs translate into benefits if the malaria vector were eliminated? Second,
how will improvements in population health, achieved through eradication,
affect economic growth and development? Answers to these questions are
essential to drive the allocative efficiency argument for malaria eradication.
That is, what are the relative benefits to eradication versus long-term control?

This study uses a natural experiment to identify and quantify the long-
run impact of a short-term malaria eradication program on human capital
attainment. It is the first study of its kind to examine the long-term economic
effects of malaria eradication in an African context, and contributes to an
area where there is growing demand for evidence on the economic benefits
of malaria control versus eradication. In the context of today’s struggle
against malaria, almost exclusively taking place in sub-Saharan Africa, these
findings are of even greater importance. Because we focus on a region where
the deadliest malaria parasite, Plasmodium falciparum, predominates, the
findings contribute to our understanding of whether an intervention that
averts many deaths can still improve human capital attainment and lead to
economic growth.
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2 Background: The malaria eradication ex-

periment in Kigezi District, Uganda

2.1 The setting

During the eradication period, the Kigezi region of southwestern Uganda had
a population of 493,000 according to the 1959 census [37] in 1,969 square
miles. The state was bound by two game parks, one in the north and one in
the south. Altitude increases toward the south. The initial malaria spray-
ing operations occurred in northern Kigezi with a population of 59,000 in
500 square miles. The southern Kigezi region therefore had about 434,000
people in an area of 1,500 square miles, representing a density of almost
290 persons per square mile. This high density helps explain the population
pressure to move north and why the Ugandan government was interested in
malaria eradication to ease this population movement. Zuleta, 1961 notes
a large increase in the population of northern Kigezi after the first DDT
spraying campaign: in May-June 1959 the population was 40,562 but by
second spraying in December 1959-March 1960 it had increased to 59,605.
However, the authors claim that “the great increase observed was probably
due to the better health conditions brought about by the introduction of
DDT” and not migration. In addition, pre-operational parasite surveys from
April-May 1960 showed that in hyperendemic areas (those below 3,700 feet),
82% of cases were falciparum and 17% were malariae, while none were vivax.
In the mesoendemic areas (between 3,700 and 4,500 feet) the numbers were
91% falciparum and 9% malariae. This confirms that the malaria found in
Uganda, as in most of SSA, is much more deadly than the malaria found
in south Asia and Latin America where the other studies done on the im-
pact of malaria eradication were located. Malaria with the P. vivax strain
is mostly a chronic disease, while P. falciparum is acute and causes morbid-
ity and mortality. For this reason we would expect the malaria eradication
campaign to move educational attainment in two directions. The decrease
in morbidity from malaria would tend to improve human capital attainment,
while the reduced mortality would tend to, ceteris paribus, reduce human
capital, since those surviving are those who are least likely to survive - a
variable correlated with low overall educational attainment.
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2.2 The malaria eradication project in Kigezi District,
Uganda

The malaria eradication experiment took place between 1959 and 1961 in
Kigezi District of southwestern Uganda. After a Ugandan government at-
tempt to resettle the Bakiga (Bachiga) people in northern Kigezi (then
Rukungiri District) failed due to high malaria prevalence, the Ugandan Min-
istry of Health teamed up with the WHO to pilot an eradication experiment
in Kigezi. The experiment aimed not only to lower malaria prevalence in the
area, but also to simultaneously test the feasibility of malaria eradication
in SSA, which had previously been excluded from the 1955 Global Malaria
Eradication Campaign due to intense transmission and lack of infrastructure.
The eradication campaign consisted of DDT spraying in human and animal
dwellings twice yearly in mesoendemic areas and three times a year in hy-
perendemic areas. In contrast to the Global Malaria Eradication Campaign,
mass distribution of anti-malarials was carried out alongside the DDT spray-
ing in all areas of Kigezi District in order to completely interrupt transmission
and eliminate the disease-causing parasite from the area. (Records indicate
malaria eradication efforts were extended to Masaka District in 1961, how-
ever this district is not considered in the present analysis due to insufficient
data regarding the specifics of that eradication effort.) Records indicate that
the project extended from January 1959 until November 1961. DDT spraying
and drug administration occurred in northern Kigezi four times throughout
the life of the project; in May, September, and December 1959, and May
1960. Southern and central Kigezi received five rounds of spraying and drug
administration, namely in March, April, May, September, and October of
1960.

In order to track baseline malaria prevalence and to monitor success of
the operation, spleen and parasite surveys were carried out monthly before
and after spraying, and fever surveys were carried out monthly at visits to
dispensaries. Survey results were used to assign malaria endemicity to Kigezi,
in accordance with the classification scheme recommended by the WHO Ex-
pert Committee on Malaria (4th session 1950). Available data suggest that
hyperendemic conditions existed from the shores of Lake Edward, at an al-
titude of 2,995 feet, up to 3,700 feet. Above this altitude, conditions were
classified as mesoendemic. A map of malaria prevalence in Uganda (Figure
1) and Kigezi District (Figure 2) at the time of the experiment illustrates
pre-eradication malaria prevalence.

Results after the first year of the experiment reported a drop in overall
parasite rates from 22.7 to 0.5% in hyperendemic areas and from 12.5 to
0% in mesoendemic areas. In areas of hyperendemicity, rates of enlarged
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spleen decreased from 68.5% of the population surveyed to 14.4%, while in
mesoendemic areas they went from 20.7 to 3.6%. The drastic drop in malaria
prevalence seen in Kigezi is a positive health shock which we exploit as part
of the identification strategy in the present analysis. Indeed, we argue that
although the campaign occurred because of a desire to increase migration
to the area, it was directed by the WHO and associated primarily with the
fact that the WHO had just implemented campaigns in peripheral malaria
regions and wanted to pilot a program to determine whether DDT-spraying
could work in SSA. Therefore, we claim that the campaign was exogenous
to other factors that would have increased educational attainment and can
use the eradication campaign to identify the impact of this health shock on
human capital and income.

3 Methodology

3.1 Main Specification

We use Ugandan Census Data from 1991 [29] and our intervention area is
therefore defined based on district definitions at the time of the census. By
1991, Kigezi District had been divided into two separate districts, Rukungiri
in the north and Kabale in the south. These two districts make up the inter-
vention area in the present study. Furthermore, we define “pre-intervention”
in this study as the years prior to 1960, and “post-intervention” as the years
1960 and after. The 1991 census is a weighted 10% sample of the Ugandan
population.

We employ a difference-in-difference (DD) methodology to compare hu-
man capital attainment before and after the eradication program for Kigezi
compared to the rest of Uganda. This approach compares the difference in
outcome changes over time for individuals in the treatment group (Kigezi) to
those in the control group (the rest of Uganda), while at the same time con-
trolling for time-invariant social or environmental characteristics that may
be correlated with both treatment status and outcome. In other words, we
estimate the differential change in educational outcomes in Kigezi before and
after the eradication treatment compared to the change in outcomes before
and after treatment in the rest of Uganda.

Our main specification is estimated in the following form, for individual
i, in birth cohort c, and district d:

Yicd = β0 + β1Kd + β2Pc + β3Kd ∗ Pc + β4
~X + δd + µc + εicd (1)

In this equation, Kd represents a binary variable for birth in Kigezi dis-
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trict, Pc represents a binary variable for birth post-eradication (born in 1960
or after), and Kd ∗ Pc represents the interaction term of being born both
in Kigezi and after the eradication campaign. Equation (1) also includes
district-level fixed effects δd and birth-cohort fixed effects µc, to control for
linear trends by district and year. Finally, (1) controls for individual-level
characteristics in matrix X, such as gender, urbanity, religion, marital sta-
tus, and ethnicity. Unlike other similar studies (eg: Cutler, et al, 2010) the
Uganda Census 1991 contains information on current district and district of
birth. We employ the latter throughout this analysis, thereby eliminating
concerns that migration drives our results.

Our coefficient of interest is β3 and interpreted as the mean change in
educational outcomes for being born in Kigezi post-eradication versus pre-
eradication compared to the change in educational outcomes for being born
in the rest of Uganda post- versus pre-eradication, controlling for individual
covariates. In addition to using years of schooling as our baseline outcome
variable, we also estimate (1) using binary variables primary school com-
pletion and literacy with probit regression to check the robustness of our
human capital results. We interpret these results carefully, accounting for
the interaction coefficients impact on schooling given that we are using non-
linear models [2], [31]. Baseline regressions are run with standard errors
adjusted for heteroskedasticity using the Huber-White method, clustered at
the district level, and weighted by individual using the IPUMS 10% sample
of the 1991 Uganda Census.

As with any DD analysis, our essential identification assumption is that
the rest of Uganda represents an appropriate control group for the Kigezi
malaria campaign and that these two areas would have had the same educa-
tional trajectory absent the treatment in Kigezi. If so, β3 represents the true
impact of the eradication campaign on human capital attainment. Table 1
shows dependent and independent variables of interest and compares their
average before and after the eradication program in 1960 for both Kigezi and
rest of Uganda over the years 1931 to 1971. We see that among birth cohorts
born before 1960, those born in Kigezi have 0.75 fewer years of education
than the rest of Uganda and for birth cohorts post-eradication, those born in
Kigezi have a 0.8 fewer years of schooling than the rest of Uganda. We also
observe the same pattern for literacy and primary school completion - either
no change or a larger gap in these dependent variables after the eradication
than before, demonstrating that we cannot find a positive program effect us-
ing this non-parametric comparison. For the other independent variables, we
see that Kigezi is less Muslim, more Anglican, and has a higher percentage of
married individuals than the rest of Uganda. Figures 3 and 4 show changes in
our dependent variables for Kigezi versus the rest of Uganda by birth cohorts
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from 1941 to 1971. These figures show that although educational changes
are dominated by variation in educational outcomes caused by age-heaping
(to be discussed below), Kigezi and the rest of Uganda follow broadly similar
trends and therefore the rest of Uganda can be called an appropriate control
group for Kigezi in this DD estimation.

3.2 Age Heaping

As is common in data from developing nations, the Uganda Census 1991
suffers from severe age heaping. Individuals round their age to the nearest
number ending in 0 or 5 since they are often unsure of their birth year. This
occurs differentially for the poorest and lowest educated individuals, resulting
in artificially large numbers of individuals reporting ages ending in 0 and 5
and artificially low average educational outcomes for these ages. For example,
the 1991 census contains 4,164 individuals reporting their age as 30 while
1,078 and 1,296 reporting their age as 31 and 29 respectively. We graphically
illustrate this age heaping clearly in figure 3 for years of education and in
figure 4 for literacy and primary school completion for birth-cohorts born
between 1941 and 1971. Figures 3 and 4 show that educational attainment
is trending upward over time, but that a discontinuity is not immediately
visible around the intervention period, given the large variations due to age
heaping by birth-cohort.

Instead of visual inspection, age heaping means we must perform a para-
metric test to visually represent the differential impact in educational out-
comes for the Kigezi region after the eradication campaign compared to the
rest of Uganda. To solve the age-heaping problem, we follow Cutler, et al,
2010 and plot cohort-specific relationships between Kigezi (and the treatment
districts of Rukungiri and Kabale separately) and our educational outcomes.
We estimate these cohort-specific relationships using the following equation:

Yicd = β0 +
∑

c

βc(µc ∗Kd) + β4X + µc + εicd (2)

In equation (2), the coefficient βc provides us with the cohort-specific
relationship between being born in the treatment area and years of schooling.
Because we also include birth-cohort fixed effects (µc), we can interpret βc

as the differential impact of being born in Kigezi on educational outcomes
compared to the rest of Uganda, controlling for X - the same individual
covariates as (2). However, to minimize age heaping, subscript c indexes birth
cohort and now refers not to specific birth years, but 5-year age categories
centered on ages ending in 0 and 5 (years ending in 1 and 6). Equation (2) is
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run with heteroskedasticity-consistent Huber-White standard errors, person
weights, and household clustering as with (1).

If the malaria eradication campaign in Kigezi discontinuously increased
educational outcomes, we should observe its impact in a break from the pre-
vious trend seen for coefficients βc. This approach also sheds light on the im-
pact of eradication for partially exposed cohorts 1954-1958. If children aged
2-5 during treatment also experience positive educational gains, then we ex-
pect this trend break to occur for this birth cohort. We also run specification
(2) separately for each district - Rukungiri and Kabale - to explore which
specific district produced the largest increase in educational attainment. We
would expect a larger increase in educational outcomes for Rukungiri given
its higher level of pre-eradication malaria prevalence. Equation (2) is run
with years of education as the dependent variable.

3.3 Placebo district-year robustness tests

Bertrand et al. 2004 [6] argue that since many applications of DD estimation
use panel data and rely on serially correlated outcomes, they often suffer from
inconsistent standard errors. In particular, they use a sample of women’s
wages from the Current Population Survey 1979 to 1999 and (in the spirit of
[10]) designate a random year and set of states as those affected by a new law.
They estimate DD regressions using these ‘placebo laws’ without correcting
for correlated standard errors and find that the null of no effect is rejected
over 50% of the time.

To test the level of type I error in Uganda’s 1991 census, we follow [6] and
randomly generate placebo district-year pairs and then re-estimate equation
(1). Since our main specification of (1) includes the years 1951-1971 (ages 20
to 40), we pull a year randomly from birth cohorts 1956-1966 (ages 25-35)
with equal probability to ensure that we retain at least 5 years of data on
either side of each placebo intervention (but excluding 1960 the eradication
campaign year). We then randomly select one of 33 Ugandan districts with
equal probability (including foreign born individuals as a separate district and
excluding the two intervention districts). Define the set of interaction terms
from these placebo tests as β3,p. In theory, our null hypothesis states that this
set of placebo interactions β3,p, from equation (1) should produce normally
distributed t-statistics, an expected value of zero, and, by chance, reject the
null hypothesis of no positive educational effect in approximately 5% of the
placebo regressions. However, this null hypothesis corresponds to data that
is independently-distributed without serial correlation. Based the resutls in
[6], we would expect the actual rejection of the null hypothesis to be much
higher. Instead of using this null hypothesis, we follow [14] and interpret the
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set of interaction terms from our placebo regressions β3,p’s as the empirical
distribution of interaction terms from our placebo tests. If we define G(β3,p)
to be the empirical CDF of these placebo regressions, then the test statistic
1 − G(β3) provides us with a p-value for the null hypothesis that β3 = 0.
Intuitively, we would expect that if the eradication experiment had a large
impact on educational outcomes, the actual β3 estimate we find in Kigezi
should be in the upper-tail of the β3,p distribution. This nonparametric test
that β3 = 0 allows us to refrain from making additional assumptions about
error structure in the distribution of G(β3,p) and therefore, does not suffer
from the t-test over-rejection problem noted above.

3.4 Ignoring time-series information robustness tests

Another way that [6] overcome serial correlation is to completely ignore the
data’s serially correlated time-series structure. To implement this method, we
first regress the individual-level covariates from (1) on educational outcome.
Then, we collect the residuals from this regression and average the data before
and after the Kigezi, 1960 malaria eradication campaign and re-estimate the
rest of the variables in(1). Using this method, [6] produce DD estimates
in which the null hypothesis of no effect is rejected in approximately 5% of
cases. The specific equation estimated at the individual level is:

Yicd = β0 + β ~X + εicd (3)

where ~X includes gender, urban status, religion, marital status, and eth-
nicity. The residuals from (3) are then averaged for each district in Uganda
both pre- and post-eradication campaign to produce Ycd, the district-level
variation in educational outcomes not explained by differences in individual
co-variates. Finally, we regress the rest of the dependent variables from (1)
on Ycd using the following specification:

Ycd = β0 + β1Kd + β2Pc + β3Kd ∗ Pc + +β4δdεcd (4)

where these variables have the same meanings as in (1). Equation (3) is
run with person weights, robust standard errors, and clustered at the district
level, while equation (4) is run with robust standard errors. Since there are
a total of 35 districts in Uganda, equation (4) contains 70 observations and
since the data is collapsed to the district and pre- versus post-eradication
level, we exclude birth-cohort fixed effects, but retain district fixed effects.
This procedure is run for years of schooling, primary-school completion, and
literacy as dependent variables and the deviance residuals for non-linear mod-
els are used to average errors in (3) for the latter two equations.
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3.5 Additional analyses: Partial exposure and birth-
cohort windows

To investigate the educational impact of partial exposure to eradication on
educational outcomes, we adjust our exposure variable, changing it from a
binary variable for birth-cohorts born in 1960 or after. Instead, we employ a
parameterization with the number of childhood years exposed to the eradica-
tion campaign, called EXPicd that is zero for cohorts born in 1955 or before
and that increases linearly for those born in the five years previous to 1960
(following [7]). Cohorts born in 1960 or after have the maximum of five years
exposure. Five years is chosen because evidence suggests that malaria’s most
important cognitive and health impact occurs in early childhood. Alterna-
tively, we define EXPicd using a 10-year exposure window with a value of
one given to cohorts born in 1951 and linear increases in EXPicd for each
birth-cohort until 1960, where those born in 1960 and after are given a value
of ten in our exposure variable EXPicd. Equation (1) is then re-estimated
except with binary variable EXPicd and Kd ∗EXPicd as the interaction term
of interest instead of Pc and Kd ∗ Pc.

We perform an additional sensitivity analysis by varying the birth-cohort
window used to estimate our effect to see whether the effect is robust to
changes in the window away from 1951 to 1971. To vary the birth-cohort
window, we re-estimate equation (1) and vary the birth-cohort windows used
to 1931-1971, 1941-1971, 1951-1971, and 1956-1966. It is expected that the
estimated β3 will increase as we narrow the window if eradication produced
the positive educational effect observed. This is, if we are identifying an
effect that occurred because of the eradication, the effect should increase as
we narrow the window, while adding additional data to the regression should
bias the β3 coefficient downward through attenuation.

3.6 Creating a socio-economic status (SES) variable

Uganda’s 1991 census does not ask income questions directly. However, it
does provide comprehensive information on household assets such as type of
cooking fuel, water supply, and toilet used, in addition to electricity, kitchen,
and dwelling ownership. Principal components analysis is employed to pro-
duce a measure of household income using these variables and loading on the
first component (following [17]). Because of clustering among the types of
assets owned, our SES variable can be split into three categories with 36%
of the total sample in the lowest asset category, 13% in the middle category,
and 51% in the highest category. We also use SES as a dependent variable for
our main specification, equation (1), and report the results below. However,
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because of the lack of precision with which we are measuring income, we em-
ploy an ordinal probit model instead of an OLS specification to measure the
differential impact of post-eradication Kigezi on SES. The model still adjusts
for heteroskedasticity with robust (Huber-White) standard errors, clusters at
the household level, and uses person-weights.

4 Results

4.1 Effect of Eradication Experiment on Educational
Attainment and SES

Table 2 shows our main specification, estimating equation (1), for dependent
variables: years of education, literacy, primary school completion, and socio-
economic status. We find that the eradication campaign had a positive and
significant effect on educational outcomes for all three dependent variables
and a positive, but not significant at the 95% level effect on socio-economic
status. Specifically, we find a β3 coefficient in the first column of 0.286,
indicating that the differential increase in years of education for being born
in Kigezi after the eradication campaign compared to the rest of Uganda
amounts to more than one-fourth of a school year. Given that total years of
schooling in Kigezi for birth cohorts 1951-1971 averages 3.59, this represents
an 8% increase in educational gains that we argue can be attributed to this
rapid malaria reduction campaign. Moreover, using the standard Mincerian
result that one additional year of education corresponds to a 10% increase in
yearly income over the course of one’s life [28], this β3 estimate implies that
eradication produced a 2.9% average increase in yearly earnings for those
born in Kigezi.

In column 2, we see that being born in Kigezi after the eradication is
associated with a statistically significant β3 coefficient of 0.158 with primary
school completion as the dependent variable and, in column 3, a statistically
significant β3 coefficient of 0.065 with literacy as the dependent variable. In
column 4, we find a non-significant β3 coefficient of 0.031 using an ordinal
probit model and socio-economic status as the dependent variable (p-value of
0.18). To interpret the magnitude of these effects in quantities of interest, we
first acknowledge the difficulty in evaluating interaction terms in nonlinear
models [2], [31] and implement the CLARIFY program to understand these
β3’s as probability changes using Monte Carlo simulations [36], [22]. We use
the program to simulate parameters from each estimation of equation (1) to
explore the change in probability of literacy and primary-school completion
(setting covariates to their reference categories) for a single, rural, Catholic
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male in birth-cohort 1959, from the Baganda tribe if that individual were
born in Kigezi after 1960. As table 7 shows, our β3 coefficient estimate for
literacy from equation (1) implies an increase in the probability an individ-
ual is literate of 0.0044 [0.0038, 0.0049], all other covariates held constant
at their reference level. Given overall literacy rates of 54% in Kigezi for
birth cohorts 1951-1971, this implies being born in Kigezi post-eradication
is associated with a 0.81% [0.7%, 0.9%] increase in literacy. The gains in
literacy are, therefore, statistically significant and positive, but not economi-
cally important. In contrast, we find that equation (1) implies an increase in
the probability of an individual completing primary school of 0.063 [0.0578,
0.0674], ceteris paribus. Given that only 12% of individuals completed pri-
mary school in Kigezi for birth cohorts 1951-1971, this represents an increase
of 52.5% [48.2% , 56.2%] in rates of primary school completion that can be
differentially attributed to birth cohorts born in Kigezi after the eradication
campaign. The CLARIFY simulations are run using the same variables as
equation (1), but standard errors are not clustered at the district level, nor are
they adjusted for heteroskedasticity using the Huber-White method, mean-
ing that the confidence intervals on these effects are smaller than they would
be with these additional corrections made in equation (1). The large differ-
ence in probability changes between literacy and primary-school completion
can partly be explained by the fact that the latter is a threshold measure
corresponding to 5 years of education. Since years of schooling move from
an average of 2.44 to 3.9 in Kigezi pre- to post-eradication campaign, a rel-
atively larger percentage of the educational distribution completes primary
schooling in Kigezi than the rest of the Uganda. Nevertheless, the increase
in percentage of primary-school completion implied by our β3 estimate rep-
resents a large change.

In addition, we estimate (1) for each district within Kigezi separately,
excluding the other Kigezi district, with the prior that the area with higher
malaria prevalence (Rukungiri) should produce the larger educational gains
compared to the lower malaria district (Kabale). Indeed, table 3 shows that
individuals born post-eradication in Rukunigiri attained 0.48 years of school-
ing more than individuals born post-eradication in the rest of Uganda (ex-
cluding Kabale), while individuals born post-eradication in Kabale received
0.22 more years of schooling than their counterparts in the rest of Uganda.
Both of these results are statistically significant at the 0.1% level and coin-
cide with our priors concerning where we should find the largest educational
impact if that educational change were due to malaria reduction.

When we run equation (1) separately for males and females, we find sta-
tistically significant β3 coefficient of 0.49 for males and statistically insignifi-
cant coefficient of 0.12 for females (results not shown). This is not surprising
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given that returns to education in this environment for males would surely be
larger for males than females. Nevertheless, it does differ from other results
on the impact of malaria reduction on female educational outcomes [24]. For
context, mean years of schooling for birth-cohorts aged 20 to 40 in Kigezi
is 4.75 and 2.54 for males and females respectively. Therefore, these results
indicate that the being born in Kigezi post-eradication was associated with
an increase in years of schooling of over 10% for males and 4.7% for females,
although not significant.

4.2 Age Heaping Results

Figure 5 plots the βc coefficients for all 5-year birth cohorts from 1929-1933
to 1969-1973 (ages 18-62) using equation (2). Since these birth cohorts are
centered on ages where age heaping is most severe, this analysis intends to
reduce the likelihood that our initial positive estimates were driven by chance
inclusion of a given birth-cohort on one side of the eradication window.

Figure 5 does not indicate that the Kigezi region was poised for human
capital take-off pre-eradication. Indeed, if anything, the differential trend in
years of schooling for pre-eradication Kigezi (dark blue, middle line) was de-
clining, indicating that birth-cohorts in Kigezi were losing educational ground
compared to the rest of Uganda before eradication. However, starting with
birth cohort 1959-1963 we see an increase in Kigezi’s educational outcomes
compared to the rest of Uganda during the exact time we would expect, cor-
responding to the malaria reduction. This strengthens our intuition that the
results we see in the main specification are robust to age-heaping and the
specific definition of eradication year. We see some evidence for the effect of
partial exposure as the birth-cohorts 1959-1963 show increased educational
outcomes compared to the previous cohort 1954-1958, but we do not see ev-
idence of a partial exposure schooling impact for children age 2 to 6 during
the eradication. Moreover, we find that the average increase in βc from 1954-
1973 for Rukungiri is 0.16 years of schooling and 0.12 for Kabale. Again,
this coincides with our expectations given that Rukunigiri contained more
malarious areas pre-eradication.

We also run the main specification equation (1) except use 5-year birth
cohort categories instead of 1-year categories to reduce age-heaping. These
regressions are run for ages 18 to 42, instead of ages 20 to 40. Table 4
shows results for the four dependent variables as in table 2. The interaction
coefficients of interest βc3, for columns 1-3 decline only slightly. This sug-
gests that partial exposure, at the least, does not produce a large decline in
our observed main human capital effect. Column 4 shows that the interac-
tion coefficient on SES increases by more than 50% in table 3 and becomes
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significant at the 10% level (p-value of .068). It is possible that since our
asset-index is measured less precisely than the educational variables, that
5-year birth-cohort categories reduce attenuation bias more for SES than the
educational variables. However, this table provides additional evidence that
the eradication increases educational outcomes and suggestive evidence on
an increase in our asset-based proxy for socio-economic status.

4.3 Placebo Robustness Tests

Figure 6 illustrates the results of the placebo test by plotting the empirical
distribution of G(β3,p) with years of schooling as the dependent variable in
all regressions. The vertical lines in figure 6 represent the treatment effect
β3’s reported in column 1 of table 2 for Kigezi overall and columns 1 and 2
in table 3 for Rukunigiri and Kabale respectively. We see that the equivalent
p-value from this empirical distribution for the actual β3 is 1−G(β3) = 0.156
for Kigezi overall. In addition, using the β3 results from equation (1) run by
district in table 3, we find that the β3,R for Rukungiri of 0.477 corresponds to
a p-value in this empirical CDF of 1−G(β3,R) = 0.08 and the β3.K for Kabale
of 0.215 corresponds to a p-value of 1−G(β3,K) = 0.21. This test does show
that our actual β3 = 0.286 and especially β3,R = 0.477 lie in the upper tail
of the distribution of placebo tests. Moreover, out of the 500 placebo tests
performed, all the placebo tests with β3,p > β3 come from 6 districts, while
all the placebo tests with β3,p > β3,K come from 3 districts.

The fact that only a few districts account for all the coefficients in which
β3,p > β3) indicates that other, unknown interventions likely produced these
large effects. If, in contrast, the β3,p’s > β3) were randomly distributed within
Ugandan districts, then we would worry more that our estimates of β3 and
β3,R were produced by chance. For example, British parliamentary papers
from the years 1957 up through Ugandan independence in 1962 report on
a large education and school building program which took place in Uganda
throughout the 1950s. Although, this program was nationwide and its effects
should therefore be filtered out through the use of district and cohort fixed
effects, it may have produced differential educational gains on other districts.
Since, as figure 5 shows, Kigezi if anything experienced a differential decline in
educational attainment over the 1950s, we cannot claim that this educational
intervention produced the results we find around 1960.

The mean of the 500 placebo tests in the G(β3,p) empirical distribution
is -0.11 such that we reject the null hypothesis that the distribution of β3,p

has a mean value of 0. We also reject the null that β3,p is normally dis-
tributed using a Shapiro-Wilks test for normality. Although our district and
birth-cohort fixed effects do not control for all short-term differential trends
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in educational attainment throughout Uganda, this analysis shows that the
effect we attribute to eradication falls within the upper tail of human-capital
responses in Uganda around this time period.

4.4 Ignoring time-series information robustness tests

A simple and extreme method to control for serially correlated data with
DD analysis is to assume full correlation over birth-cohorts and completely
ignore the time-series information, treating the data as having only pre-
and post-eradication cohorts. Table 5 shows results from equation (4) for
dependent variables: years of schooling, primary school completion, and lit-
eracy. Columns 1 and 2 indicate that the differential increase in educational
attainment for Kigezi post-eradication is robust to eliminating time-series
information as the β3 coefficients on years of schooling and primary-school
completion are significant at the 0.1% level. Indeed, we find an increase in
mean years of schooling in column 1 of 0.404, significantly larger than our
result in table 2 even though n = 70 and k, the number of independent
variables, estimated is 34 for equation (4). Although, β3 on literacy is not
significant at the 5% level, we find a t-statistic of 1.9 and a p-value of 0.66
(table 5, column 3). These results again strengthen our intuition that the
positive educational effect found in table 2 is not an artifact of the serial cor-
relation that Bertrand, et al 2004 identify as a serious threat to hypothesis
testing with DD methodology.

In addition, we perform the same placebo test as above using the placebo
district-year pairs and equations (3) and (4). Implementing 500 placebo
tests, we find a p-value for our β3 with no times series information of 1 −
G(β3) = 0.126 (empirical CDF not shown). Again, of the 500 random placebo
tests, those where β3,p > β3 can be attributed to three districts, suggesting
that these large coefficients are picking up other positive educational health
shocks, not randomness.

4.5 Partial exposure and birth-cohort windows results

Employing Bleakley’s approach to estimate the impact of partial exposure
to malaria reduction, we find that the estimated coefficient on β3 is signifi-
cantly reduced when we use partial exposure 5-years before eradication. Our
β3 estimate declines to a (still significant) 0.05 years-of-schooling increase
for those born in Kigezi post- (or partially exposed to) eradication. When
we extend the partial exposure period to ten years prior to the eradication
campaign, we find our β3 estimate is still significant at the 10% level (p-value
of .06) but halves to 0.025 years of education (results not shown). Using this
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test, we find little evidence that partial exposure to eradication differentially
improves educational outcomes, suggesting that the channel through which
malaria reduction improves educational attainment comes from in utero and
infant effects on cognitive development.

Table 6 shows that as the birth-cohort window narrows for specification
(1), we do not find significant β3 terms for larger birth cohort windows over
years 1931-1971 nor 1941-1971. In addition, when we narrow the birth co-
hort window to five years around the malaria reduction campaign, estimating
equation (1) over years 1956-1966, we obtain virtually the same β3 coefficient.
When we narrow the birth-cohort window even more to 1958-1962, we still
find a significant β3, but diminished educational effect. We find an educa-
tional effect during the expected time periods (as the birth-cohort window
narrows) and not when we expect not to find one, again suggesting that the
human-capital impact we find is indeed due to the eradication campaign.

5 Discussion

5.1 Summary

The preceding analysis evaluates the educational and economic impact of a
malaria eradication campaign in southwestern Uganda. We find that individ-
uals born in Kigezi post-eradication experienced an increase in schooling of
nearly 0.3 years compared to the rest of Uganda and controlling for a variety
of individual-level characteristics along with birth-cohort and district fixed
effects. This corresponds to an increase of 8% [2.7%, 13.1%]. Previous re-
search indicates that this increase in educational attainment should translate
into an approximately 3% increase in income per year for these individuals.
This increase in educational outcomes is consistent for two other binary mea-
sures of education: literacy and primary education. We find a much larger
effect on increases in the probability of completing primary school compared
to literacy. The bulk of these educational increases occur for males instead
of females and in the more malarious district of Rukunigiri. In addition, we
employ an asset-based household wealth index as a proxy for income and find
suggestive results that income also increased differentially in Kigezi for post-
eradication birth cohorts. When we control for age-heaping the impact of
eradication on SES doubles and becomes statistically significant at the 10%
level. These estimated effects are robust to a host of additional analyses. We
control for age heaping by running our main specification with 5-year birth
cohorts and find evidence that Kigezi’s educational trajectory was downward
sloping pre-eradication and upward sloping post-eradication. We also per-
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form placebo DD analyses and find that a 0.286 differential increase in years
of schooling falls roughly in the top 15% of the empirical placebo-effect dis-
tribution. Moreover, we ignore time-series information in the data to find an
even larger positive educational affect for Kigezi post-eradication. The coef-
ficient estimated from this specification falls in the top 10% of the empirical
placebo-effect distribution.

5.2 Results in Context

To our knowledge, this paper provides the only results on the long-term
human capital and economic impact of malaria eradication in Africa south
of the Sahara.2 Eradication differs in this region not only because climatic
factors make vector control more difficult, but because the type of malaria
present produces severe mortality along with morbidity. Indeed, as men-
tioned above, the P. falciparum malaria strain dominates in SSA, whereas
P. vivax reigned in southern Europe, Latin America and south Asia pre-
eradication. This means that over 80% of global malaria deaths occur in
SSA and it is the region where all control and eradication efforts are now
focused. Although three recent studies (Cutler, 2010, Lucas, 2010, Bleak-
ley 2010) employ comparable methodologies to that described here, none
directly estimate the impact on educational and income outcomes of malaria
eradication in the region where the vast majority of malaria-control efforts
remain to be done. Their results are primarily driven by reduced morbidity
allowing improved educational and income outcomes. However, the preced-
ing analysis shows that even when malaria causes a large mortality burden,
its eradication still produces positive outcomes. This is important because
we would expect those lives that are saved by eradication to represent ei-
ther more sickly individuals or those in lower socio-economic circumstances -
both of which are less likely to attain high levels of schooling. For this reason,
although the mortality effect could attenuate the measured educational im-
pact of eradication, it does not completely swamp the overall positive effects
observed.

The data in the present study is advantageous relative to other similar
studies because we use place of birth instead of current residence (Bleak-
ley, 2010 and Lucas, 2010 use place of birth). We also have well-estimated
pre-eradication information on spleen inflammation and malaria infection
incidence for use as proxies of endemicity instead of malaria indices used
in Bleakley, 2010. Moreover, we estimate educational and income changes
overall, and males and females separately. However, this study also has disad-

2Ashraf, N.,et al 2010 [30] and Burlando, A. 2009 explore similar questions [13].
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vantages relative to the others, namely that we are investigating the impact
of an eradication campaign for one region of the country (roughly 10% of
the population), not its entirety. In addition, this study along with Lucas,
2010 and Cutler, 2010 employ only one cross-section to measure eradication
impact, while Bleakley, 2010 uses pooled cross sections from multiple census
years. A Uganda census from 2002 is available, however, and future work
could analyze this dataset as well. Finally, another disadvantage of this study
is that the consumption and income information in the other studies allows
more precise estimates of the economic impact of malaria control.

Our results contrast with those of Cutler, et al who finds no statistically
significant impact of eradication on educational outcomes for men and mixed
evidence for women. Our results using a household-level asset index as a
proxy for income are not directly comparable to Cutler, et al’s results on
increases in household per capita consumption for prime age men. However,
both papers find positive income improvements post-eradication. To compare
these results with the others, we noted above that parasite rates dropped from
22.7 to 0.5% in hyperendemic areas and that this was associated with a 54
percentage point decrease in spleen rate. This means a 10% drop in malaria
incidence is associated with a 24% drop in spleen rate. For mesoendemic
areas, the eradication campaign reduced malaria incidence from 12.5 to 0%,
which produced a decline in spleen rate of 17.1 percentage points. This means
a 10% drop in malaria incidence produced a decline in spleen rate of 13.7%.
The former estimate is similar to Cutler’s estimate of 28.8, but the latter is
not. Using the more conservative estimate of a reduction of 22.2 percentage
points in malaria incidence, we divide our main coefficient estimate on years
of schooling by 2.22 and find that a 10% decrease in malaria incidence is
associated with an increase in educational attainment of 0.14 years or 3.6%
in years of education for ages 20 to 40 in Kigezi. These estimates change to
increases of 4.5% and 2.1% for males and females respectively when we run
the main specification regression separately by gender. These results compare
favorably to those found by the other three papers. One possible reason for
finding these large and robust results that swamp mortality attenuation is
that the rate of enlarged spleen was larger in Kigezi (a low malaria area
in Uganda) than nations in the other studies. For example, we find a pre-
eradication spleen rate of 54% while the most malarious area of Sri Lanka
had a spleen rate of less than 40% immediately preceding eradication. (See
table 8 for a side-by-side qualitative comparison of results).

A vast literature exists to summarize estimates on rates of returns to ed-
ucation (ROREs) throughout the world [33], [34]. Generally, these reviews
suggest that the highest returns to education occur during primary school
and in developing nations, especially Africa. In the most recent review [34],
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the social RORE in Africa during primary school is found to be 25.4% and
the private RORE in Africa during primary school 37.6%. These rates repre-
sent the highest ROREs of any region. If true, our estimate of 0.286 years of
educational increase for malaria reduction would translate into a 7% and 10%
social and private annual earnings returns respectively. Nevertheless, other
work argues that the data in SSA to estimate ROREs is poor quality, un-
representative (covering only 18 of 46 SSA nations), and suffers from sample
selection within nations using only formal sector employees [5]. Even taking
the standard Mincerian estimate of a 10% RORE as an approximate aver-
age to adjudicate this debate, we find that our results imply an almost 3%
increase in yearly income for birth cohorts born in Kigezi post-eradication.
Since we find consistent increases in education, this indicates that ROREs
were larger than child wages during the post-eradication period studied (such
that individuals stayed in school longer as opposed to entered the labor mar-
ket earlier with their improved productivity from malaria reduction) and that
malaria eradication represents a high cost-benefit investment for nations in
SSA.

Moreover, this paper also takes seriously the potential serial auto-correlation
in this panel data series and provides multiple attempts to solve this problem.
We find that our results are mostly robust to many specifications designed
to address this correlation problem.

5.3 Threats to Identification

In line with other natural experiments that use a DD methodology to infer
an intervention’s impact, our identification strategy rests on the assumption
that the trajectory of educational attainment in Kigezi, in comparison with
the rest of Uganda, would have followed a similar long-term trend, in the
absence of the eradication project. Given that these are observational data,
this assumption cannot be fully verified. However, attempts to identify other
social programs that could have caused the increase in educational attain-
ment seen in Kigezi provide no convincing evidence that a social program,
other than the malaria eradication experiment, affected Kigezi differently
from other districts in Uganda (British House of Commons Reports, 1957-
1962).

However, threats to attributing to causality in this case do exist. The age-
heaping or auto-correlation in our data could be causing the effect we see.
Through extensive robustness checks we also intend to avoid the possibility
that the effect we find is caused either by chance or serial correlation in the
data. By controlling for age-heaping, performing placebo district-year tests
both for the main specification and the averaged data, and ignoring time-
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series information (equations (1)-(4) respectively), we show that our effect
remains consistent throughout.

In addition, from 1951 to 1971 Uganda faced significant historical changes
that may have produced differential educational and economic trends by
region. For example, independence from the British government occurred
in 1962, setting off a decade of low-level turmoil with the rule of Milton
Obote that climaxed with the rise of Idi Amin in 1971, the explusion of
80,000 Asian Ugandans in September 1972, and an almost total collapse
of the economy. In addition, the HIV epidemic hit Uganda in the mid-
1980s. Although, we cannot control for all of these changes explicitly, other
than using district fixed effects, we note that by constraining our sample to
before the rule of Amin, we reduce the impact of these changes. In addition,
patronage by the ruling party represents an important potential confound
to the results described above. Nevertheless, neither Obote, from northern
Uganda, nor Amin, born in central Uganda provided patronage to the Kigezi
region. Finally, we note that the malaria intervention itself was implemented
based on exogenous technological factors with the widespread use of DDT
and the WHO’s worldwide malaria eradication efforts. This reduces the
likelihood that the results we observe were driven by factors present in the
Kigezi region before eradication or endogenous to the decision to implement
this malaria reduction program.

6 Conclusion

Using an eradication experiment that began in Kigezi District, Uganda in
1959, this analysis demonstrates the long-term effects on human capital and
income that malaria eradication can produce in SSA. The experiment uti-
lized DDT spraying and mass distribution of anti-malarials to reduce malaria
transmission in a malaria-endemic area. The program successfully eradicated
malaria from the region within one year. Overall, Kigezi District experienced
significant gains in educational attainment compared with other districts of
Uganda that were not exposed to the eradication efforts. Moreover, areas of
primarily hyperendemic malaria prior to the intervention experienced greater
increases in educational attainment, which is consistent with eradication pro-
ducing the estimated schooling effect.

If these results are not due to chance, they provide strong evidence that
malaria eradication significantly benefits human development and human
capital in the long term. While most funding commitments in recent years
have focused on a strategy of access to medicine and malaria control, there
are perhaps larger gains to be made through malaria reduction and eradica-
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tion efforts. The 8% overall increase in schooling indicates that eradication
represents a cost-effective option in the fight to reduce deaths from malaria
and promote economic growth in SSA. In general, previous papers on the
economic and educational impact of malaria eradication indicate positive ef-
fects, but an impact not large enough to drive economic growth. Although
we do not purport to disentangle partial and general equilibrium effects, we
find a somewhat more optimistic story. We hypothesize this effect is due to
higher malaria prevalence and heavier burden of malaria in our eradication
area. These results show that fighting malaria on its own will not pull African
nations of out poverty. However, they also indicate that malaria eradication
campaigns are far from hopeless in sub-Saharan Africa and, indeed, that
we should continue to implement them given the positive long-term impact
found in Uganda.
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Figure 1: Pre-eradication Malaria Prevalence in Uganda 

 
 

 

 

 

 

 

 



Figure 2: Pre-eradication Malaria Prevalence in Kigezi District, Southwestern Uganda. 

 
 



Figure 3: Mean years of schooling by age-cohort for Kigezi and the rest of Uganda, 1941-1971 
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Figure 4: Literacy and Primary School Completion (%) by age cohort in Kigezi and the rest of Uganda 

(ROU), 1941-1971 
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Figure 5: β3 Interaction Coefficient for Kigezi, Rukungiri, and Kabale by 5-year birth cohort, 1929-1973 

(ages 18-62). 

 
 

Note: Figure 5 plots the β3 coefficients by 5-year birth cohort using estimated from equation (2) for 

Kigezi, Rukunigiri, and Kabale. These coefficients are centered on years with individuals aged 0 or 5 to 

minimize the impact of age-heaping on the regression results.  
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Figure 6: Distribution of placebo estimates (β3,p) 

 

  
 

Note: Figure 6 plots the empirical distribution of placebo coefficients, G(β3,p), with years of schooling as 

the dependent variable. This distribution represents the results from 500 placebo estimations of 

specification (1) where a random district and year pair is randomly drawn from ages 25-35 (excluding 

age 31) and all districts in Uganda (excluding the treatment districts) and assumed to represent a 

placebo treatment . The vertical lines from right to left represent the treatment effect estimate for 

Kabale (β3 estimate in column 1 of table 2), Kigezi (β3 estimate in column 1 of table 3), and Rukungiri (β3 

estimate in column 2 of table 3). The empirical p-values (produced using 1 - G(β3), 1- G(β3,R), and 1- 

G(β3,,K) ) for Kigezi, Kabale, and Rukungiri are 0.156, 0.201, and 0.082 respectively.  
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Table 1: Comparison of Kigezi intervention area and the rest of Uganda 

 

 Rest of Uganda Kigezi 

  Pre- Post- Pre- Post- 

% of data 42.07% 48.14% 4.89% 4.91% 

      

Years of Education 3.19 4.71 2.44 3.90 

Primary School Completed 12.40% 19.92% 7.52% 14.03% 

Literacy 46.68% 65.08% 40.01% 58.06% 

      

Age 43.58 25.00 43.07 25.22 

Catholic 49.13% 46.51% 43.86% 41.68% 
Anglican 36.26% 37.63% 51.36% 53.95% 

Muslim 8.46% 10.99% 2.05% 2.24% 

Married 74.03% 68.44% 80.59% 69.38% 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Estimates of equation (1) for dependent variables:  years of education, primary school 

completion, literacy, and asset-based income category. 

 

Dep Var: 
Yrs of 

Schooling   
Primary 
School   Literacy   SES   

  b/se   b/se   b/se   b/se   

                  

Post-Treat. 0.13 * 0.004   0.057 * -0.005   

  0.051   0.024   0.023   0.019   

Kigezi -0.364   0.054   0.276 *** -0.09   

  0.229   0.064   0.07   0.047   

Post * Kigezi 0.286 ** 0.158 *** 0.065 *** 0.031   

  0.091   0.032   0.019   0.023   

Female -1.864 *** -0.447 *** -0.73 *** 0.115 *** 

  0.151   0.039   0.056   0.011   

Urban 2.654 *** 0.902 *** 0.709 *** -1.574 *** 

  0.162   0.043   0.031   0.051   

Anglican 0.461 *** 0.203 *** 0.106 ** 0.041 * 

  0.091   0.019   0.036   0.02   

Muslim -0.433 *** -0.15 *** -0.092 * 0.071 ** 

  0.097   0.03   0.039   0.022   

Other relig. -0.361 * 0.021   -0.221 *** 0.006   

  0.144   0.048   0.061   0.038   

R2 0.27               

Pseudo R2     0.171   0.175   0.143   

N 4,526,849   4,526,849   4,554,446   4,554,446   

*p<0.05, ** p<0.01, ***p<0.001 

 

Note: All regressions use adjusted standard errors clustered at the district level and employ 

Huber/White/sandwich variance estimates to adjust for heteroskedasticity and intra-district correlation, 

and are weighted by individual according to the IPUMS 10% sample of the 1991 Uganda Census. All 

regressions are run with district and birth-cohort fixed effects, along with binary variables for marital 

status and 23 ethnicity dummies. 

 

 

 

 

 

 

 



Table 3: Estimates of equation (1) for years of education as the dependent variable by district within 

Kigezi using Rukungiri (high malaria) and Kabale (low malaria). 

 

Dep Var: Yrs of School Rukungiri   Kabale   

  b/se   b/se   

Post-Treat. 0.132 * 0.122 * 

  0.052   0.051   

Kigezi 0.614 ** -0.278   

  0.186   0.242   

Post* Kigezi 0.477 *** 0.215 *** 

  0.063   0.055   

Female -1.854 *** -1.872 *** 

  0.162   0.155   

Urban 2.596 *** 2.64 *** 

  0.156   0.165   

Anglican 0.504 *** 0.471 *** 

  0.09   0.093   

Muslim -0.41 *** -0.427 *** 

  0.096   0.097   

Other relig. -0.314 * -0.352 * 

  0.145   0.147   

          

R2 0.27   0.27   

N 4,210,838   4,403,579   

*p<0.05, ** p<0.01, ***p<0.001 

 

Note: All regressions use adjusted standard errors clustered at the district level and employ 

Huber/White/sandwich variance estimates to adjust for heteroskedasticity and intra-district correlation, 

and are weighted by individual according to the IPUMS 10% sample of the 1991 Uganda Census. All 

regressions are run with district and birth-cohort fixed effects, along with binary variables for marital 

status and 23 ethnicity dummies. 

 

 

 

 

 

 

 

 

 



Table 4: Estimates of equation (1) with 5-year age categories for dependent variables:  years of 

education, primary school completion, literacy, and asset-based income category. 

 

Dep Var: 
Yrs of 

Schooling   
Primary 
School   Literacy   SES   

  b/se   b/se   b/se   b/se   

Post-Treat. 0.829 *** -0.115 *** 0.298 *** -0.01   

  0.082   0.03   0.031   0.017   

Kigezi 0.693 ** 0.086   -0.122   0.014   

  0.199   0.066   0.076   0.055   

Post* Kigezi 0.267 ** 0.15 *** 0.051 ** 0.048   

  0.093   0.036   0.019   0.026   

Female -1.749 *** -0.397 *** -0.7 *** 0.106 *** 

  0.149   0.038   0.056   0.011   

Urban 2.559 *** 0.868 *** 0.683 *** -1.57 *** 

  0.157   0.043   0.03   0.051   

Anglican 0.44 *** 0.191 *** 0.101 ** 0.041 * 

  0.09   0.019   0.036   0.019   

Muslim -0.439 *** -0.15 *** -0.097 * 0.067 ** 

  0.098   0.03   0.04   0.022   

Other relig. -0.394 ** 0.011   -0.236 *** 0.006   

  0.142   0.048   0.061   0.037   

R2 0.258               

Psuedo R2     0.158   0.167   0.143   

N 5,397,320   5,397,320   5,425,965   5,425,965   

*p<0.05, ** p<0.01, ***p<0.001 

 

Note: All regressions use adjusted standard errors clustered at the district level, employ Huber-White 

sandwich estimator standard errors, and are weighted by individual according to the IPUMS 10% sample 

of the 1991 Uganda Census. All regressions are run for ages 18 to 42 with district and 5-year birth-cohort 

fixed effects (centered on ages ending in 0 and 5), along with binary variables for marital status and 23 

ethnicity dummies. 

 

 

 

 

 

 

 

 

 



Table 5: Estimates of equation (4) run at the district-level pre- and post-eradication for dependent 

variables:  years of education, primary school completion, literacy, and asset-based income category. 

 

Dep. Var: 
Yrs of 

Schooling   Primary School   Literacy   

  b/se   b/se   b/se   

Post-Treat. 0.32 *** -1.525 *** -1.65 *** 

  0.062   0.362   0.333   

Kigezi -0.319   -2.061   -1.315 * 

  0.226   2.29   0.59   

Post* Kigezi 0.404 *** 3.03 *** 0.854   

  0.103   0.419   0.449   

              

R2 0.89   0.942   0.941   

N 70   70   70   

*p<0.05, ** p<0.01, ***p<0.001 

 

Note: These results are produced by first estimating equation (3) using the individual-level covariates 

from equation (1) including gender, urban status, religion, marital status, and 23 ethnicity indicators. 

Equation (3) uses adjusted standard errors clustered at the district level, employs Huber-White sandwich 

estimator standard errors, and is weighted by individual according to the IPUMS 10% sample of the 1991 

Uganda Census.  The residuals from equation (3) (interpreted as variation in the dependent variables 

unexplained by individual covariates) are then averaged by district and pre- and post-eradication to 

create educational outcome dependent variables, controlling for individual characteristics. The 

remaining independent variables from equation (1) are regressed on these mean residuals by district 

both pre- and post-eradication, following equation (4) with Huber-White sandwich estimator standard 

errors.  Seventy observations come from 35 districts, with one observation each for pre- and post-

malaria intervention. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6: Estimates of equation (1) using years of education as the dependent variable over varying 

birth-cohort windows. 

 

Dep 
Var:  
Yrs of 
School 

Ages 20-
60   

Ages 20-
50   

Ages 20-
40   

Ages 25-
35   

Ages 
29-33   

  b/se   b/se   b/se   b/se   b/se   

                      

Post-
Treat. 1.46 *** 1.051 *** 0.13 * 0.125 * 0.137 * 

  0.058   0.048   0.051   0.05   0.053   

Kigezi -0.22   0.701 ** -0.364   0.663 ** 0.808 *** 

  0.222   0.204   0.229   0.209   0.196   

Post* 
Kigezi 0.12   0.189   0.286 ** 0.27 * 0.174 * 

  0.156   0.135   0.091   0.103   0.073   

Female -2.045 *** -2.035 *** -1.864 *** -2.082 *** -2.189 *** 

  0.136   0.144   0.151   0.158   0.149   

Urban 2.657 *** 2.663 *** 2.654 *** 2.831 *** 2.859 *** 

  0.148   0.156   0.162   0.182   0.19   

Anglican 0.428 *** 0.454 *** 0.461 *** 0.489 *** 0.49 *** 

  0.084   0.088   0.091   0.096   0.1   

Muslim -0.533 *** -0.5 *** -0.433 *** -0.465 *** -0.478 *** 

  0.085   0.09   0.097   0.098   0.097   

Other 
relig. -0.481 ** -0.44 ** -0.361 * -0.328 * -0.285   

  0.144   0.145   0.144   0.157   0.166   

                      

R2 0.3   0.285   0.27   0.28   0.288   

N 6,116,704   5,469,774   4,526,849   2,371,661   969,341   

*p<0.05, ** p<0.01, ***p<0.001 

 

Note: All regressions use adjusted standard errors clustered at the district level and employ 

Huber/White/sandwich variance estimates to adjust for heteroskedasticity and intra-district correlation, 

and are weighted by individual according to the IPUMS 10% sample of the 1991 Uganda Census. All 

regressions are run with district and birth-cohort fixed effects, along with binary variables for marital 

status and 23 ethnicity dummies. Ages 20-60 correspond to birth-cohorts 1931-1971, ages 20-50 

correspond to 1941-1971, ages 20-40 correspond to 1951-1971, ages 25-35 correspond to 1956-1966, 

ages 29-33 correspond to 1958-1962. 

 

 

 



 

 

 

 

Table 7: Change in probability of literacy and primary-school completion and percentage change in 

literacy and primary-school completion with covariates set to their reference levels using equation (1). 

 

 
Change in Prob. 95% CI Mean (%) Increase (%) 95% CI (%) 

Primary-
School Comp. 0.063 0.0578 0.0674 12.00% 52.50% 48.17% 56.17% 

                

Literacy 0.0044 0.0038 0.0049 54.00% 0.81% 0.70% 0.91% 

 

Note: Probability changes estimated using the CLARIFY program with Monte Carlo simulations and 

covariates are set to their reference levels. That is, we estimate the change in an individual’s probability 

of literacy and primary-school completion, investigating the probability change for a single, Catholic 

male, born in 1959, living in a rural area from the Baganda tribe to that individual’s probability of literacy 

and primary-school completion if they had been born in Kigezi, post-eradication campaign. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 8: Summary of previous evidence on the impact of malaria eradication on educational and 

income outcomes compared to results from the present study (Cutler, et al, 2010, Bleakely, 2010, and 

Lucas, 2010). 

 

Authors   
Cutler, 
et al 

Barofsky, 
et al Bleakely Lucast 

DEPENDENT 
VARIABLES Country: India Uganda US Mex. Col. Brazil Para. 

Sri 
Lanka 

Years of 
Schooling Males X ++ N/A X X X N/A N/A 

  Females X X N/A N/A N/A N/A ++ ++ 

Consumption 
/ Income Males ++ X ++ ++ ++ ++ N/A N/A 

  Females ++ X N/A N/A N/A N/A N/A N/A 

Literacy All X ++ N/A ++ ++ ++ ++^ ++^ 

Prim Comp All X ++ N/A N/A N/A N/A ++*^ ++*^ 
DATA                   

Birth Place   No Yes Yes Yes Yes Yes Yes Yes 
 

KEY: N/A = Not applicable, X = No effect or mixed evidence over multiple specifications, ++ = Positive 

educational or income effects from malaria eradication, t Refers to decreases educational attainment 

for being in either in pre-epidemic or epidemic cohorts before malaria eradication in Sri Lanka and 

Paraguay, *Refers to years of primary schooling, ^ Regressions only include females. 
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