Working Paper Series

Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county vs. ZIP code analyses

Jarvis T. Chen, ScD¹, Nancy Krieger, PhD ${ }^{2}$

April 21, 2020

HCPDS Working Paper Volume 19, Number 1

The views expressed in this paper are those of the author(s) and do not necessarily reflect those of the Harvard Center for Population and Development Studies.

Affiliations

1. Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health
2. Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health

Corresponding Author

Jarvis T. Chen, ScD, Research Scientist, Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health

Email: jarvis@hsph.harvard.edu

Abstract

No national, state, or local public health monitoring data in the US currently exist regarding the unequal economic and social burden of COVID-19. To address this gap, we draw on methods of the Public Health Disparities Geocoding Project, whereby we merge county-level cumulative death counts with population counts and area-based socioeconomic measures (ABSMs: \% below poverty, \% crowding, and \% population of color, and the Index of Concentration at the Extremes) and compute rates, rate differences, and rate ratios by category of countylevel ABSMs. To illustrate the performance of the method at finer levels of geographic aggregation, we analyze data on (a) confirmed cases in Illinois ZIP codes and (b) positive test results in New York City ZIP codes with ZIP code level ABSMs. We detect stark gradients though complex gradients in COVID-19 deaths by county-level ABSMs, with dramatically increased risk of death observed among residents of the most disadvantaged counties. Monotonic socioeconomic gradients in Illinois confirmed cases and New York City positive tests by ZIP code level ABSMs were also observed. We recommend that public health departments use these straightforward cost-effective methods to report on social inequities in COVID-19 outcomes to provide an evidence base for policy and resource allocation.

Title: \quad Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county vs. ZIP code analyses

Authors: Jarvis T. Chen, ScD
Nancy Krieger, PhD

Corresponding

author: Jarvis T. Chen, ScD
Research Scientist
Department of Social and Behavioral Sciences
Harvard T.H. Chan School of Public Health
677 Huntington Avenue
Boston, MA 02115
Email: jarvis@hsph.harvard.edu

Abstract

No national, state, or local public health monitoring data in the US currently exist regarding the unequal economic and social burden of COVID-19. To address this gap, we draw on methods of the Public Health Disparities Geocoding Project, whereby we merge county-level cumulative death counts with population counts and area-based socioeconomic measures (ABSMs: \% below poverty, $\%$ crowding, and $\%$ population of color, and the Index of Concentration at the Extremes) and compute rates, rate differences, and rate ratios by category of county-level ABSMs. To illustrate the performance of the method at finer levels of geographic aggregation, we analyze data on (a) confirmed cases in Illinois ZIP codes and (b) positive test results in New York City ZIP codes with ZIP code level ABSMs. We detect stark gradients though complex gradients in COVID-19 deaths by county-level ABSMs, with dramatically increased risk of death observed among residents of the most disadvantaged counties. Monotonic socioeconomic gradients in Illinois confirmed cases and New York City positive tests by ZIP code level ABSMs were also observed. We recommend that public health departments use these straightforward cost-effective methods to report on social inequities in COVID-19 outcomes to provide an evidence base for policy and resource allocation.

Suggested citation: Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county vs ZIP code analyses. Harvard Center for Population and Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. https://tinyurl.com/y7v72446

INTRODUCTION

As communities in the United States (US) grapple with the COVID-19 pandemic, there is an urgent need for real-time data to better understand how particular populations are affected, including who is most at risk of infection, developing serious illness, and dying [1-2]. Informed by an awareness of the critical importance of racial/ethnic, economic, and gender inequalities in shaping individuals' exposure to and ability to protect themselves from SARS-CoV-2, as well as their ability to practice physical distancing, maintain economic wellbeing, and access appropriate healthcare when sick, there have been increasing calls for improved data to provide an evidencebase for action [1-4]. Descriptive epidemiology, which is vital to informing efforts to distribute resources, develop treatments, and coordinate public policy, is hampered by the paucity of disaggregated data by important social variables like race/ethnicity and socioeconomic position in the data reported by public health departments. For example, data from the COVID-19 tracking project [5] suggests that only ~ 21 states currently report COVID-19 cases or deaths disaggregated by race/ethnicity, and among those that do, substantial proportions (typically $\geq 50 \%$) of cases and deaths are of unknown or missing race/ethnicity. Data tables on the US Centers for Disease Control and Prevention's own webpage reporting COVID-19 cases by race/ethnicity show upwards of 65% of reported cases with missing race/ethnicity information [6]. Furthermore, to our knowledge, no states are reporting COVID-19 cases or deaths by measures of individual socioeconomic position, though US death certificates routinely collect information on decedent's education [1-2, 7].

The Public Health Disparities Geocoding Project was established to address the absence of socioeconomic data in most routinely collected public health surveillance data [8-12]. By geocoding health records and linking them to US Census-derived data on neighborhood
socioeconomic variables, we have shown that these methods can be used to compute valid estimates of socioeconomic gradients in health and, moreover, that area-based socioeconomic measures (ABSMs) can be used to characterize the influence of neighborhood socioeconomic context on health above and beyond their association with individual socioeconomic position. We have applied these techniques to a wide range of health outcomes, from birth to death and including cancer and infectious diseases, and have shown that the resulting estimates of socioeconomic gradients are valid and robust. The series of papers [8-12] stemming from this project have been cited over 3500 times and have had a demonstrable impact on US public health surveillance systems and health research more generally.

To respond to the urgent need in the United States for documentation of stark social inequities in who is affected by the COVID-19 pandemic, in this paper we quantify disparities in COVID-19 death rate in the US by county level sociodemographic attributes using currently available surveillance and US Census data. To illustrate the performance of these methods at finer levels of geographic aggregation, we additionally analyze data on (a) cumulative incidence of confirmed cases in Illinois ZIP codes and (b) cumulative incidence of positive test results in New York City ZIP codes with ZIP code level ABSMs. Our intention is to illustrate how state and local health departments can easily implement these types of analyses, using freely available US Census data, and provide tabular and graphic summaries of these social inequities to contribute to discussions on policies and interventions. In the discussion, we also discuss interpretation of these social inequities given limitations of the data and make recommendations for how public health departments can readily incorporate area-based socioeconomic measures into surveillance and monitoring.

METHODS

COVID-19 Data Sources

US county death data: We obtained publicly available data on COVID-19 deaths at the county level from the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE) [13] and USA Facts [14]. Both sources report time series of cumulative confirmed cases and deaths, but notably, JHU CSSE reports a single entry for all of New York City, aggregating over the five counties corresponding to the city boroughs. Because this aggregation obscures substantial differences by boroughs (for example, death rates by borough were 128.3 per 100,000 in the Bronx, 108.1 per 100,000 in Brooklyn, 119.8 per 100,000 in Queens, 65.5 per 100,000 in Manhattan, and 87.1 per 100,000 in Staten Island), we used the USA Facts county dataset, which maintains separate reporting for New York counties. Differences were observed between JHU CSSE and USA Facts death counts on April 16, 2020 for 241 out of 2,717 matched counties, with discrepancies exceeding ± 10 deaths for only 21 counties. Unmatched entries in the USA Facts datasets consisted of 421 counties with 0 deaths that did not appear in the JHU CSSE dataset, with the exception of a single death in Nantucket County, MA. Conversely, 56 unmatched entries in the JHU CSSE dataset consisted of 50 entries (298 deaths in 50 states) with "county unassigned", plus 2 entries for 152 deaths on cruise ships, and four entries for US territories (Guam, Northern Mariana Islands, Puerto Rico, and US Virgin Islands, 64 deaths). Our analytic sample consisted of 30,318 COVID-19 deaths reported in 3,144 US counties (excluding territories) as of April 16, 2020. We additionally present analyses of US COVID-19 cases as of April 16, 2020 by county characteristics in the Supplemental Appendix.

Illinois data on confirmed cases at the zip code level: We obtained ZIP code tabulation area (ZCTA) level data on confirmed cases in Illinois from the lookup tool developed by the Illinois Department of Public Health and the Chicago Reporter [15]. ZCTAs are US Census defined geographic units that correspond to areas roughly covered by US Postal Service (USPS) ZIP codes [16]. While there is not always a one-to-one correspondence between ZCTAs and USPS ZIP codes, the US Census ZCTAs provide a basis for linking sociodemographic and economic variables from the US Census American Community Survey to health records geocoded at the ZIP code level. As noted by the Illinois data source, infections among incarcerated populations are not fully represented in these data, including Cook County Jail (60608) and Stateville Correctional Center (60403), and possibly other ZIP codes. Illinois also reported data suppression for ZIP codes with <6 confirmed cases. Our analytic sample thus consisted of 24,675 confirmed cases reported in 372 Illinois ZCTAs as of April 16, 2020.

New York City data on positive tests at the zip code level: We obtained ZCTA-level data on positive tests in New York City from the New York City Department of Health and Mental Hygiene's COVID-19 GitHub repository [17]. Our analytic sample consisted of 125,422 positive tests reported in New York City 177 ZCTAs as of April 16, 2020.

Population denominator and area attributes data

We extracted county and ZCTA level population counts and sociodemographic attributes from the American Community Survey (ACS) 2014-2018 five-year estimates [18] using the tidycensus package in R [19]. ABSMs included: \% of persons below poverty, \% household crowding, and \% population of color (defined as the proportion of population who are not White

Non-Hispanic), and a measure of racialized economic segregation, using the Index of Concentration at the Extremes [20]. This measure captures the extent to which the population in a given area is concentrated at either extreme of a social metric and ranges from -1 (everyone in the worst category) to 1 (everyone in the best category). For our analyses, we set the extremes for this ICE as: (a) high-income White population, versus (b) low-income Black population [20]. For analysis purposes, we defined categories of ABSMs using a priori cutpoints for $\%$ below poverty $(0-4.9 \%, 5-9.9 \%, 10-14.9 \%, 15-19.9 \%$, and $20-100 \%)$ and quintile cutpoints based on the distribution of county-level attributes in the US (county-level death analysis) or the distribution of ZCTA attributes within Illinois and New York City (ZCTA level analyses of confirmed cases and positive tests, respectively). Definitions, source variables from the ACS, and categorical cutpoints are presented in Table 1.

Statistical Methods

Drawing on the methods of the Public Health Disparities Geocoding Project [10], we merged cumulative counts of confirmed cases, positive tests, and deaths at the reported level of geography with population denominators and ABSMs. We then aggregated over areas within defined categories as described above. Since no data source currently reports disaggregated data by age and county or ZCTA, we computed crude outcome rates per 100,000 by ABSM categories rather than age-standardized rates. To quantify absolute and relative disparities, we computed rate differences and rate ratios setting the reference category to the socially most advantaged groups. We note that we use the term "death rate" in the county-level analysis to refer to cumulative deaths per 100,000 population (technically a cumulative incidence proportion); this quantity is distinct from the case fatality rate or infection fatality rate. Similarly,
the rate of positive tests in the NYC ZCTA analysis is computed as the number of positive tests per 100,000 population (a cumulative incidence proportion) rather than positive tests as a proportion of all tests.

RESULTS

County level COVID-19 death in the US

As shown in Figures 1a-1d and Table 2, the highest COVID-19 death rates were consistently observed among those living in the most disadvantaged versus most advantaged counties in relation to: \% poverty (19.3 per 100,000 vs. 9.9 per 100,000); the Index of Concentration at the Extremes for racialized economic segregation (15.0 per 100,000 vs. 13.8 per 100,000); $\%$ crowding (16.8 per 100,000 vs. 4.9 per 100,000); and \% population of color (17.1 per 100,000 vs. 2.9 per 100,000). The gradient is particularly stark for $\%$ population of color, whereby populations living in counties where $61-100 \%$ of the population is of color experienced a COVID-19 death rate 6 -fold greater than those living in counties where $0-17.2 \%$ of the population is of color. However, socioeconomic gradients were not always monotonic, most notably for the Index of Concentration at the Extremes, for which residents of counties in the most advantaged quintile experienced a COVID-19 death rate (13.8 per 100,000) only slightly lower than residents of counties in the lowest quintile. In contrast, residents of counties in the middle quintile of the Index of Concentration of the Extremes experienced the lowest COVID-19 death rates (3.9 per 100,000).

ZCTA level confirmed COVID-19 cases in Illinois

As shown in Figures 2a-d and Table 3, we observed consistent and monotonic socioeconomic gradients in cumulative incidence of COVID-19 diagnoses for all ABSMs using finer resolution

ZCTA-level data in Illinois. The highest rates of COVID-19 confirmed cases were observed among the most disadvantaged compared to most advantaged categories of \% poverty (367.7 per 100,000 vs. 155.3 per 100,000), Index of Concentration at the Extremes (438.3 per 100,000 vs. 155.4 per 100,000), $\%$ crowding (314.4 per 100,000 vs. 173.0 per 100,000), and $\%$ population of color (447.0 per 100,000 vs. 127.8 per 100,000). The steepest gradient was observed by quintiles of \% population of color, with residents of ZCTAs in the highest quintile experiencing a rate 3.5 times that of residents in the lowest quintile.

ZCTA level positive COVID-19 tests in New York City

Similarly strong socioeconomic gradients were observed with finer resolution ZCTA-level data in New York City in relation to the rate of positive tests. These unequal patterns persist even in the context of New York City's substantially greater rates of infection. The population rate of positive COVID-19 tests was highest among residents in the most disadvantaged vs. most advantaged categories of the Index of Concentration at the Extremes (1603.6 per 100,000 vs. 1067.5 per 100,000), $\%$ crowding (1699.0 per 100,000 vs. 1219.4 per 100,000), and $\%$ population of color (1771.5 per 100,000 vs. 1248.6 per 100,000). Similarly, the highest rate of positive tests was observed among residents living in counties in the two most disadvantaged categories of ZCTA-level poverty (15-19.9\% poverty: 1553.0 per 100,000 and 20-100\% poverty: 1504.3 per 100,000 , vs. 1046.7 per 100,000 in the most advantaged category, $0-4.9 \%$ poverty). These contrasts correspond to relative risks between 1.31 and 1.42.

DISCUSSION

The unequal burden of COVID-19

Linkage of available COVID-19 surveillance data to ABSMs at the county and ZIP code levels reveals a substantially unequal burden of COVID-19 outcomes experienced by people living in the most disadvantaged counties and ZCTAs by socioeconomic and sociodemographic characteristics. These strikingly inequitable patterns of disease burden, heretofore obscured by the lack of disaggregated reporting by race/ethnicity and socioeconomic position in publicly available US COVID-19 surveillance data, speak to the urgent need for improved testing, surveillance and monitoring, data transparency, and targeting of public health interventions for community protection and health care resources.

Looking across the US, people living in the most impoverished, crowded, and racially and economically polarized counties are experiencing substantially elevated rates of COVID-19 infection and death. We chose to focus our main analysis on COVID-19 death at the county level because this is the geographic level at which comprehensive data on COVID-19 for all parts of the US are being reported. We focus on death in particular because, unlike confirmed case counts, these numbers are less likely to be affected by well-documented inconsistencies in testing eligibility, procedures, and availability [21-22]. (We do, however, include a county-level analysis of COVID-19 cases in Supplemental Appendix 1). Reported deaths due to COVID-19 nonetheless may not capture the potentially large burden of mortality due to unexplained deaths among individuals who were not tested for SARS-CoV-2, who might have died at home or in nursing facilities, or who might have died of a pre-existing condition whose disease course was exacerbated by coronavirus infection [23-25]. If individuals living in disadvantaged counties were less likely to have been tested for SARS-CoV-2, to have accessed healthcare given
infection, or generally less likely to have had their death recorded as COVID-19 related, we would expect that our analyses underestimated the magnitude of inequities across categories of

Abstract

ABSMs.

In spite of these data limitations, we saw strong associations of COVID-19 death rates with all four county-level ABSMs. These inequities are fundamentally related to the material circumstances in which people live and work. For example, individuals living in low income areas may be more likely to be classified as "essential workers" who are less able to practice physical distancing and may not have access to personal protective equipment (PPE) [1-3, 2627]. "Essential workers" also include many healthcare professionals including nurses, home health aides, and nursing home employees whose risk of occupational exposure to SARS-CoV-2 is high and who live in working class communities [28-30]. Moreover, we noted a strong association with county $\%$ crowding, defined as the proportion of households in an area with more than one person per room (excluding bathrooms and kitchens) [31]; by this definition, a one-bedroom apartment with 1 bedroom, 1 dining room, and 1 living room would be categorized as crowded only if 4 or more persons were in the household.

Socioeconomic gradients in COVID-19 death rates by county poverty and the Index of Concentration at the Extremes exhibited more complex patterns. This likely reflects the contribution of particularly large counties with high levels of transmission. Depending on the stratum of county-level ABSM in which it falls, a county with a large number of deaths will tend to dominate the computed rate for that stratum. Table 5 shows the top 25 counties by cumulative count of deaths, along with population and ABSM estimates. These counties include all five boroughs of New York City as well as surrounding areas with high death counts in New York state, New Jersey, and Connecticut. The list also includes other large US urban areas with
substantial transmission. Together, these 25 counties account for over 53% of reported COVID19 deaths in the US. Examination of this list suggests that the higher death rates observed in the $5-9.9 \%$ category of county poverty and the most advantaged quintile of the Index of Concentration at the Extremes reflects the contribution of counties like Nassau, Suffolk, Westchester, and New York (Manhattan) Counties, NY to these strata. It is also important to note that county-level analyses gloss over important socioeconomic heterogeneity within counties, which may further contribute to the more complex socioeconomic gradients seen here. Also potentially relevant are changing class dynamics of COVID-19 infections, whereby early cases may have arisen from travelers who could afford international travel, followed by increased risk among essential workers and working class communities with crowded housing.

ZIP code level analyses

To illustrate the utility of using finer levels of geography, we additionally presented analyses of confirmed COVID-19 cases in Illinois and positive tests in New York City in the ZCTA level, the only two COVID-19 outcomes for which ZCTA-level data were available in these localities. ZCTA-level analyses revealed more consistently monotonic gradients for all ABSMs, though the magnitude of disparities comparing the top to the bottom socioeconomic categories was smaller on the relative disparity scale. Together, these results suggest that analyzing inequities in COVID-19 outcomes at finer levels of geographic aggregation is feasible and can provide important information about the unequal spread and impact of COVID-19 within counties and cities. As with the county-level death analysis, the results suggest that areas with higher rates of poverty, crowded housing, and populations of color are being disproportionately affected. Moreover, given unequal patterns of testing, if residents of these neighborhoods are not able to
access testing, these results may be understanding the true magnitude of inequities in COVID-19 infection.

Recommendations for public health departments

The results we have presented reaffirm the urgency of documenting how historically disadvantaged communities are being unequally affected by the devastation of the COVID-19 pandemic. In the absence of national leadership and in the wake of chronic underfunding of public health infrastructure, state and local health departments have been left to fend for themselves in fulfilling the vital functions of public health surveillance in providing an evidence base for action and ensuring accountability [1-2]. The methods of the Public Health Disparities Geocoding Project [8-12] provide a well-validated, robust, and cost-effective methodology by which public health departments can enhance their reporting of disparities in COVID-19 outcomes.

Based on the analyses we have presented here, we recommend that state and local public health departments adopt reporting of COVID-19 outcomes minimally by ZCTA-level characteristics, which we consider preferable to county-level reporting. In our earlier work, we originally recommended routine reporting by socioeconomic characteristics of census tracts [10,16]. While we stand by that recommendation, we recognize that it may be more feasible for surveillance systems to implement ZCTA-level analyses in the short term, since ZIP code is easy to ask of individuals as they are being tested, is already recorded on death certificates, and does not require additional steps for geocoding, compared to census tracts [1]. We emphasize that reporting of disparities by ZCTA characteristics need not entail risk of individual data disclosure due to small numbers in small areas: because our methodology involves aggregating over

ZCTAs with similar socioeconomic characteristics, summary statistics are reported for aggregations of ZCTAs and typically have large enough numbers not to require data suppression [24]. Because of this, we additionally recommend that, whenever possible, public health departments report summary statistics by race/ethnicity, gender, and age within strata of ZCTAlevel ABSMs in order to paint a fuller picture of the extent of inequities in COVID-19 outcomes. To assist public health departments who wish to implement these types of analyses, we direct interested readers to the Public Health Disparities Geocoding Project website at http://www.hsph.harvard.edu/thegeocodingproject/.

Statistical considerations

Aggregation over areas is analogous to how state and local health departments typically report disease rates by sex and race/ethnicity and avoids problems with statistical instability in the estimation of small area rates at the county and ZCTA levels by essentially assuming that populations within strata of ABSMs have a common disease experience. While marginalizing over disease counts and population at risk may obscure meaningful area differences important to questions of disease etiology or, in the case of COVID-19, infectious disease transmission dynamics, we maintain that cumulative incidence proportions computed for strata of ABSMs still provide an important description of what populations are impacted by COVID-19 and where disease burdens are most substantial.

The analyses we have presented here can be easily implemented by state and local health departments using existing surveillance data and an Excel spreadsheet or similar software. We argue that these simple descriptive analyses of inequities are vital to identifying the communities who are experiencing the most serious impacts of the pandemic and to holding government
leaders and policy makers accountable for directing resources to those in need. Throughout, we have presented confidence limits based on traditional formulas for the variance of an incidence rate [25], which assumes that the count of events is Poisson distributed and arises from a homogenous pool of person-time. Given county variation in SARS-CoV-2 transmission dynamics (including when infected cases were seeded in these communities and how the pace of transmission has been affected by containment and mitigation strategies) as well as variation in the susceptibility of populations in these counties above and beyond what is explained by the area-based socioeconomic measures considered here, the assumption of homogeneity is likely unrealistic. More sophisticated statistical models can be employed to model area-level variation in rates, including overdispersed Poisson, negative binomial, mixed models, and zero-inflated models [26-28]. In our experience, however, estimates of socioeconomic inequities can be sensitive to the modelling approach taken, and the interpretation of summary measures of health disparities at the population level may be complicated by model assumptions. Even when there are variations in area-level rates within strata of ABSMs, estimates from the aggregated method still have relevant interpretation as the "average" health experience of persons living in areas with particular socioeconomic characteristics. While our future work will address small-area estimation and appropriate models for handling spatial heterogeneity in COVID-19 outcomes, we should not lose sight of the immediate need for timely data on economic and social inequities to inform policy and interventions.

REFERENCES

1. Krieger N, Gonsalves G, Bassett MT, Hanage W, Krumholz HM. "The Fierce Urgency Of Now: Closing Glaring Gaps In US Surveillance Data On COVID-19" Health Affairs Blog, April 14, 2020. DOI: 10.1377/hblog20200414.238084 Accessed April 21, 2020.
2. Krieger N. COVID-19, Data, and Health Justice. Commonwealth Fund, To The Point, April 16, 2020. https://www.commonwealthfund.org/blog/2020/covid-19-data-and-health-justice Accessed April 21, 2020
3. Kendi IX, What the racial data show, The Atlantic, April 6, 2020. https://www.theatlantic.com/ideas/archive/2020/04/coronavirus-exposing-our-racialdivides/609526 Accessed April 21, 2020.
4. Kendi IX, Why don't we know who the coronavirus victims are? The Atlantic, April 1, 2020. https://www.theatlantic.com/ideas/archive/2020/04/stop-looking-away-race-covid-19-victims/609250/ Accessed April 21, 2020
5. The COVID Tracking Project. Available at: https://covidtracking.com/about-data. Accessed April 21, 2020.
6. US Centers for Disease Control and Prevention. Cases of Coronavirus (COVID-19) in the US. Available at: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-inus.html. Accessed April 20, 2020.
7. Rehkopf DH, Haughton L, Chen JT, Waterman PD, Subramanian SV, Krieger N. Monitoring socioeconomic disparities in death: comparing individual-level education and area-based socioeconomic measures. Am J Public Health 2006; 96:2135-2138; doi:10.2105/AJPH.2005.075408. (erratum: AJPH 2007; 97:1543).
8. Krieger N, Chen JT, Waterman PD, Rehkopf DH, Subramanian SV. Painting a truer picture of US socioeconomic and racial/ethnic health inequalities: The Public Health Disparities Geocoding Project. Am J Public Health 2005; 95: 312-323.
9. Krieger N, Chen JT, Waterman PD, Rehkopf DH, Subramanian SV. Race/ethnicity, gender, and monitoring socioeconomic gradients in health: a comparison of area-based socioeconomic measures-the Public Health Disparities Geocoding Project. Am J Public Health. 2003; 93: 1655-1671.
10. Krieger N, Chen JT, Waterman PD, Soobader M-J, Subramanian SV, Carson R. Geocoding and Monitoring US Socioeconomic Inequalities in Mortality and Cancer Incidence: Does Choice of Area-Based Measure and Geographic Level Matter?-The Public Health Disparities Geocoding Project. Am J Epidemiol 2002; 156(5):471-82.
11. Krieger N, Chen JT, Waterman PD, Soobader M-J, Subramanian SV, Carson R. Monitoring socioeconomic inequalities in sexually transmitted diseases, tuberculosis, and
violence: geocoding and choice of area-based socioeconomic measures -- The Public Health Disparities Geocoding Project. Public Health Report. 2003; 118:240-260.
12. Krieger N, Chen JT, Waterman PD, Soobader M-J, Subramanian SV, Carson R. Choosing area-based socioeconomic measures to monitor social inequalities in low birthweight and childhood lead poisoning -The Public Health Disparities Geocoding Project (US). J Epidemiol Community Health 2003; 57:186-199.
13. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis; published online Feb 19. https://doi.org/10.1016/S1473-3099(20)30120-1. Data available on Github: https://github.com/CSSEGISandData/COVID-19 Accessed April 16, 2020.
14. COVID-19 deaths dataset. USA Facts. Available at: https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/ Accessed April 16, 2020.
15. Eads D, Friedrich P. MAP: Find the number of COVID-19 cases in Illinois by ZIP code. Available at: https://www.wbez.org/stories/map-by-zip-code-of-coronavirus-covid-19-cases-illinois/90ca85cd-bdf4-423a-a7bc-924fcee9d0f3 Accessed April 16, 2020.
16. Krieger N, Waterman P, Chen JT, Soobader M-J, Subramanian SV, Carson R. ZIP Code caveat: bias to spatiotemporal mismatches between ZIP Codes and US census-defined areas -- The Public Health Disparities Geocoding Project. Am J Public Health 2002; 92:1100-1102.
17. New York City Department of Health and Mental Hygiene COVID-19 GitHub repository. Available at: https://raw.githubusercontent.com/nychealth/coronavirus-data/master/tests-by-zcta.csv. Accessed April 17, 2020.
18. US Census Bureau. 2014-2018 American Community Survey 5-year estimates. Accessed April 17, 2020.
19. Tidy census package: https://github.com/walkerke/tidycensus
20. Krieger N, Waterman PD, Spasojevic J, Li W, Maduro G, Van Wye G. Public Health monitoring of privilege and deprivation using the Index of Concentration at the Extremes (ICE). Am J Public Health 2016; 106:256-263. doi: 10.2105/AJPH.2015/302955
21. Kost GJ. Geospatial Hotspots Need Point-of-Care Strategies to Stop Highly Infectious Outbreaks: Ebola and Coronavirus. Arch Pathol Lab Med 2020 Apr 16. doi: 10.5858/arpa.2020-0172-RA [epub ahead of print]
22. CDC COVID-19 Response Team. Geographic differences in COVID-19 cases, deaths, and incidence - United States, February 12-April 7, 2020. MMWR 2020 Apr 17; 69(15):465-471. doi: $10.15885 / \mathrm{mmwr} . \mathrm{mm} 6915 \mathrm{e} 4$
23. Wu J, McCann Al. 28,000 missing deaths: tracking the true toll of the coronavirus crisis. New York Times, April 21, 2020.
https://www.nytimes.com/interactive/2020/04/21/world/coronavirus-missing-deaths.html
24. Watkins A, Rashbaum WK. How many people have actually died from coronavirus in New York? New York Times, April 10, 2020. https://www.nytimes.com/2020/04/10/nyregion/new-york-coronavirus-death-count.html
25. CDC COVID-19 Response Team. Geographic differences in COVID-19 cases, deaths, and incidence - United States, February 12-April 7, 2020. MMWR 2020 Apr 17; 69(15):465-471. doi: $10.15885 / \mathrm{mmwr} . \mathrm{mm} 6915 \mathrm{e} 4$
26. García M. Chelsea, city of the working class Latino immigrant, emerges as COVID-19 hotspot. Boston Globe, April 7, 2020. https://www.bostonglobe.com/2020/04/07/opinion/chelsea-city-working-latino-immigrant-emerges-covid-19-hotspot/?p1=Article_Inline_Related_Link Accessed April 21, 2020.
27. Hawkins D. The coronavirus is falling heavily on black Americans. Why? The Guardian, April 16, 2020. https://www.theguardian.com/commentisfree/2020/apr/16/black-workers-coronavirus-covid-19 Accessed April 21, 2020.
28. Bailey M, Gee A, Jewett C, Renwick, Varney S. COVID-19: Lost on the Frontline. Kaiser Health News, April 15, 2020. https://khn.org/news/lost-on-the-frontline-health-care-worker-death-toll-covid19-coronavirus/ Accessed April 21, 2020.
29. Campbell R, Gebeloff R. How millions of women became the most essential workers in America. New York Times, April 18, 2020. https://www.nytimes.com/2020/04/18/us/coronavirus-women-essential-workers.html Accessed April 21, 2020.
30. O'Donnell J. How do health care staffers learn if co-workers have coronavirus? Word of mouth. USA Today, April 17, 2020. https://www.usatoday.com/story/news/health/2020/04/17/coronavirus-health-care-workers-warning-covid-19-colleagues/2982026001/ Accessed April 21, 2020.
31. US Department of Housing and Urban Development Office of Policy Development and Research (2007). Measuring Overcrowding in Housing. Available at: https://www.census.gov/content/dam/Census/programssurveys/ahs/publications/Measuring_Overcrowding_in_Hsg.pdf. Accessed April 21, 2020
32. Chen, JT. Merging survey data with aggregate data from other sources: opportunities and challenges. In: Timothy P. Johnson (ed.) Handbook of health survey methods. New York, NY: John Wiley \& Sons, 2015.
33. Rothman KJ, Greenland S. (1998) Modern Epidemiology, Chapter 15. Philadelphia, PA: Lippincott-Raven
34. Chen, JT. Multilevel and hierarchical models for disease mapping. In: Boscoe, FP (ed). Geographic health data: fundamental techniques for analysis. Oxfordshire, UK: CABI, 2013: 183-208.
35. Wu X, Nethery RC, Sabath BM, Braun D, Dominici F. Exposure to air pollution and COVID-19 mortality in the United States. medRxiv 2020.04.05.20054502; doi: https://doi.org/10.1101/2020.04.05.20054502 Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. https://tinyurl.com/y7v72446

Table 1: Population counts and area based socioeconomic measures, source variables, and cutpoints computed from the 2014-2018 American Community Survey 5 -year estimates

Variable	Formula: Source Variables	US County Cutpoints	ZCTA cutpoints (Illinois)	ZCTA cutpoints (NYC)
Population Counts				
Total population	B01003 001E			
White Non- Hispanic Population	B01001H_001E			
Area-based socioeconomic measures				
$\%$ of persons below poverty	B17001_002E/B17001_001E	$\begin{aligned} & \hline 0-4.9 \% \\ & 5-9.9 \% \\ & 10-14.9 \% \\ & 15-19.9 \% \\ & 20-100 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0-4.9 \% \\ & 5-9.9 \% \\ & 10-14.9 \% \\ & 15-19.9 \% \\ & 20-100 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0-4.9 \% \\ & 5-9.9 \% \\ & 10-14.9 \% \\ & 15-19.9 \% \\ & 20-100 \% \\ & \hline \end{aligned}$
Index of Concentration at the Extremes (high income white households versus low income black households)	$\begin{aligned} & \left(\left(\mathrm{B} 19001 \mathrm{~A} _014 \mathrm{E}+\mathrm{B} 19001 \mathrm{~A} _015 \mathrm{E}+\right.\right. \\ & \text { B19001A_016E }+ \text { B19001A_017E) - } \\ & \text { (B19001B_002E }+ \text { B19001B_003E }+ \\ & \text { B19001B_004E }+ \\ & \text { B19001B_005E) }) \text { /B19001_001E, } \end{aligned}$	$\begin{aligned} & \text { Q1: }(-0.522,0.114] \\ & \text { Q2: }(0.114,0.159] \\ & \text { Q3: }(0.159,0.205] \\ & \text { Q4: }(0.205,0.283] \\ & \text { Q5: }(0.283,0.536] \end{aligned}$	$\begin{aligned} & \text { Q1: }(-0.612,0.0175] \\ & \text { Q2: }(0.0175,0.171] \\ & \text { Q3: }(0.171,0.289] \\ & \text { Q4: }(0.289,0.403] \\ & \text { Q(5: } 0.403,0.721] \end{aligned}$	$\begin{aligned} & \text { Q1: }(-0.385,-0.102] \\ & \text { Q2: }(-0.102,0.0212] \\ & \text { Q3: }(0.0212,0.141] \\ & \text { Q4: }(0.141,0.29] \\ & \text { Q5: }(0.29,0.7] \end{aligned}$
\% crowding (>1 person per room)	$\begin{aligned} & \text { (B25014_005E + B25014_006E + } \\ & \text { B25014_007E + B25014_011E + } \\ & \text { B25014_012E + B25014_013E) / } \\ & \text { B25014_001E } \end{aligned}$	$\begin{aligned} & \text { Q1: }(0,0.0147] \\ & \text { Q2: }(0.0147,0.0212] \\ & \text { Q3: }(0.0212,0.0306] \\ & \text { Q4: }(0.0306,0.0491] \\ & \text { Q5: }(0.0491,0.493] \end{aligned}$	$\begin{aligned} & \text { Q1: }(0,0.00975] \\ & \text { Q2:(0.00975,0.0177] } \\ & \text { Q3:(0.0177,0.0274] } \\ & \text { Q4: }(0.0274,0.0472] \\ & \text { Q5: }(0.0472,0.143] \end{aligned}$	Q1:(0.00942,0.0478] Q2: $(0.0478,0.0698]$ Q3: $(0.0698,0.0978]$ Q4: $(0.0978,0.138]$ Q5: $(0.138,0.297]$
\% population of color (not White Non-Hispanic)	$\begin{aligned} & \text { B01003_001E - B01001H_001E)/ } \\ & \text { B01003_001E } \end{aligned}$	$\begin{aligned} & \text { Q1: }(0,0.172] \\ & \text { Q2: }(0.172,0.302] \\ & \text { Q3: }(0.302,0.443] \\ & \text { Q4: }(0.443,0.61] \\ & \text { Q5: }(0.61,1] \end{aligned}$	$\begin{aligned} & \text { Q1: }(0.0318,0.197] \\ & \text { Q2:c(0.197,0.315] } \\ & \text { Q3: }(0.315,0.46] \\ & \text { Q4: }(0.46,0.744] \\ & \text { Q5: }(0.744,0.99] \end{aligned}$	$\begin{aligned} & \text { Q1: }(0.0839,0.402] \\ & \text { Q2: }(0.402,0.584] \\ & \text { Q3: }(0.584,0.826] \\ & \text { Q4: }(0.826,0.957] \\ & \text { Q5: }(0.957,0.992] \end{aligned}$

Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county vs ZIP code analyses. Harvard Center for Population and Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. https://tinyurl.com/y7v72446

Table 2: US COVID-19 death rate per 100,000 by county characteristics as of 4/16/2020

	Number of counties	Number of deaths	Population	$\begin{array}{r} \text { Death rate } \\ \text { per } \\ 100,000 \\ \hline \end{array}$	($95 \% \mathrm{CI}$)		Rate difference per 100,000	($95 \% \mathrm{CI}$)		Rate ratio	($95 \% \mathrm{CI}$)	
\% poverty (categories)												
0-4.9\%	41	443	4,495,932	9.9	(8.9	,10.8)	0.0	(reference)		1.00	(reference)	
5-9.9\%	558	7,877	71,157,744	11.1	(10.8	,11.3)	1.2	(0.3	,2.2)	1.12	(1.02	,1.24)
10-14.9\%	1,023	8,031	108,820,591	7.4	(7.2	,7.5)	-2.5	(-3.4	,-1.5)	0.75	(0.68	,0.82)
15-19.9\%	860	6,654	101,961,251	6.5	(6.4	,6.7)	-3.3	(-4.3	,-2.4)	0.66	(0.60	,0.73)
20-100\%	659	7,034	36,428,205	19.3	(18.9	,19.8)	9.5	(8.4	,10.5)	1.96	(1.78	,2.16)
missing		279										
Index of Concentration at the Extremes (high income white households versus low income black households)												
(-0.522,0.114]	974	9,314	61,949,063	15.0	(14.7	,15.3)	1.3	(0.8	,1.7)	1.09	(1.06	,1.12)
(0.114,0.159]	701	4,941	64,942,197	7.6	(7.4	,7.8)	-6.2	(-6.5	,-5.8)	0.55	(0.53	,0.57)
(0.159,0.205]	696	2,564	65,113,354	3.9	(3.8	,4.1)	-9.8	(-10.2	,-9.5)	0.29	(0.27	,0.30)
(0.205,0.283]	515	4,082	64,525,801	6.3	(6.1	,6.5)	-7.4	(-7.8	,-7.1)	0.46	(0.44	,0.48)
(0.283,0.536]	255	9,138	66,333,308	13.8	(13.5	,14.1)	0.0	(reference)		1.00	(reference)	
missing		279										
\% crowding (quintiles)												
$(0,0.0147]$	1,047	3,189	65,273,354	4.9	(4.7	,5.1)	0.0	(reference)		1.00	(reference)	
(0.0147, 0.0212$]$	709	3,973	64,425,866	6.2	(6.0	,6.4)	1.3	(1.0	,1.5)	1.26	(1.20	,1.32)
(0.0212,0.0306]	656	6,739	63,510,499	10.6	(10.4	,10.9)	5.7	(5.4	,6.0)	2.17	(2.08	,2.27)
(0.0306, 0.0491]	443	5,423	65,654,959	8.3	(8.0	,8.5)	3.4	(3.1	,3.7)	1.69	(1.62	,1.77)
(0.0491,0.493]	244	10,715	63,913,934	16.8	(16.4	,17.1)	11.9	(11.5	,12.2)	3.43	(3.30	,3.57)
missing		279										
\% percent population of color												
$(0,0.172]$	1,635	1,862	65,219,459	2.9	(2.7	,3.0)	0.0	(reference)		1.00	(reference)	
(0.172,0.302]	549	3,981	65,166,967	6.1	(5.9	,6.3)	3.3	(3.0	,3.5)	2.14	(2.03	,2.26)
(0.302,0.443]	468	7,034	69,376,152	10.1	(9.9	,10.4)	7.3	(7.0	,7.6)	3.55	(3.37	,3.74)
(0.443, 0.61]	280	6,534	60,922,155	10.7	(10.5	,11.0)	7.9	(7.6	,8.2)	3.76	(3.57	,3.96)
(0.61,1]	209	10,628	62,217,817	17.1	(16.8	,17.4)	14.2	(13.9	,14.6)	5.98	(5.70	,6.29)
missing		279										

Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county vs ZIP code analyses. Harvard Center for Population and Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. https://tinyurl.com/y7v72446

Table 3: Illinois rate of confirmed COVID-19 cases per 100,000 population by ZCTA characteristics as of 4/16/2020

	Number ZCTAs	Number of confirmed cases	Population	$\begin{array}{r} \text { Confirmed } \\ \text { case rate } \\ \text { per } 100,000 \\ \hline \end{array}$	(95\% CI)		Rate difference per $100,000$	(95\% CI)		Rate ratio	($95 \% \mathrm{CI}$)	
\% poverty (categories)												
0-4.9\%	65	2,378	1,531,569	155.3	(149.0	,161.5)	0.0	(reference)		1.00	(reference)	
5-9.9\%	138	6,442	3,357,448	191.9	(187.2	,196.6)	36.6	(28.8	,44.4)	1.24	(1.18	,1.30)
10-14.9\%	65	4,682	2,052,094	228.2	(221.6	,234.7)	72.9	(63.9	,81.9)	1.47	(1.40	,1.54)
15-19.9\%	39	3,085	1,225,648	251.7	(242.8	,260.6)	96.4	(85.6	,107.3)	1.62	(1.54	,1.71)
20-100\%	63	8,041	2,186,595	367.7	(359.7	,375.8)	212.5	(202.3	,222.7)	2.37	(2.26	,2.48)
missing		47										
Index of Concentration at the Extremes (high income white households versus low income black households)												
(-0.612,0.0175]	63	9,077	2,070,809	438.3	(429.3	,447.3)	283.0	(272.5	,293.5)	2.82	(2.71	,2.94)
(0.0175,0.171]	72	4,258	2,087,542	204.0	(197.8	,210.1)	48.6	(40.5	,56.8)	1.31	(1.25	,1.37)
(0.171,0.289]	75	4,582	2,070,229	221.3	(214.9	,227.7)	66.0	(57.6	,74.3)	1.42	(1.36	,1.49)
(0.289,0.403]	77	3,502	2,058,711	170.1	(164.5	,175.7)	14.7	(7.0	,22.5)	1.09	(1.04	,1.15)
(0.403, 0.721$]$	82	3,196	2,057,150	155.4	(150.0	,160.7)	0.0	(reference)		1.00	(reference)	
missing		60										
\% crowding (quintiles)												
(0,0.00975]	87	3,370	1,948,122	173.0	(167.1	,178.8)	0.0	(reference)		1.00	(reference)	
(0.00975,0.0177]	82	3,131	2,060,973	151.9	(146.6	,157.2)	-21.1	(-29.0	,-13.2)	0.88	(0.84	,0.92)
(0.0177,0.0274]	64	5,009	2,052,139	244.1	(237.3	,250.8)	71.1	(62.2	,80.0)	1.41	(1.35	,1.47)
(0.0274,0.0472]	68	6,386	2,101,938	303.8	(296.4	,311.3)	130.8	(121.4	,140.3)	1.76	(1.68	,1.83)
(0.0472,0.143]	54	6,450	2,051,676	314.4	(306.7	,322.0)	141.4	(131.7	,151.0)	1.82	(1.74	,1.89)
missing		329										
\% percent population of color												
(0.0318,0.197]	99	2,651	2,073,667	127.8	(123.0	,132.7)	0.0	(reference)		1.00	(reference)	
(0.197,0.315]	78	2,992	2,023,605	147.9	(142.6	,153.2)	20.0	(12.8	,27.2)	1.16	(1.10	,1.22)
(0.315,0.46]	77	4,071	2,159,499	188.5	(182.7	,194.3)	60.7	(53.1	,68.2)	1.47	(1.40	,1.55)
(0.46,0.744]	60	5,731	2,038,179	281.2	(273.9	,288.5)	153.3	(144.6	,162.1)	2.20	(2.10	,2.30)
(0.744,0.99]	55	9,172	2,051,861	447.0	(437.9	,456.2)	319.2	(308.8	,329.5)	3.50	(3.35	,3.65)
missing		58										

Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county vs ZIP code analyses. Harvard Center for Population and Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. https://tinyurl.com/y7v72446

Table 4: New York City rate of positive COVID-19 tests per 100,000 population by ZCTA characteristics as of 4/16/2020

	Number of ZCTAs	Number of positive tests	Population	$\begin{gathered} \text { Rate per } \\ 100,000 \\ \hline \end{gathered}$	(95\% CI)		$\begin{array}{r} \text { Rate } \\ \text { difference } \\ \text { per } \\ 100,000 \\ \hline \end{array}$	(95\% CI)		Rate ratio	($95 \% \mathrm{CI}$)	
\% poverty (categories)												
0-4.9\%	9	1,362	130,121	1046.7	(991.1	,1102.3)	0.0	(reference)		1.00	(reference)	
5-9.9\%	41	20,609	1,506,286	1368.2	(1349.5	,1386.9)	321.5	(262.8	,380.1)	1.31	(1.24	,1.38)
10-14.9\%	48	30,294	2,100,915	1441.9	(1425.7	,1458.2)	395.2	(337.3	,453.1)	1.38	(1.30	,1.45)
15-19.9\%	27	22,359	1,439,746	1553.0	(1532.6	,1573.3)	506.3	(447.1	,565.5)	1.48	(1.40	,1.57)
20+\%	52	48,982	3,256,108	1504.3	(1491.0	,1517.6)	457.6	(400.4	,514.8)	1.44	(1.36	,1.52)
missing		1,816										
Index of Concentration at the Extremes (high income white households versus low income black households)												
(-0.385,-0.102]	28	25,855	1,612,266	1603.6	(1584.1	,1623.2)	536.2	(511.1	,561.2)	1.50	(1.47	,1.53)
(-0.102,0.0212]	30	28,209	1,749,736	1612.2	(1593.4	,1631.0)	544.7	(520.3	,569.2)	1.51	(1.48	,1.54)
(0.0212,0.141]	29	26,844	1,623,732	1653.2	(1633.5	,1673.0)	585.8	(560.6	,611.0)	1.55	(1.52	,1.58)
(0.141,0.29]	39	23,751	1,692,826	1403.0	(1385.2	,1420.9)	335.6	(311.9	,359.3)	1.31	(1.29	,1.34)
(0.29,0.7]	50	17,913	1,678,089	1067.5	(1051.8	,1083.1)	0.0	(reference)		1.00	(reference)	
missing		2,850										
\% crowding (quintiles)												
(0.00942,0.0478]	47	20,428	1,675,260	1219.4	(1202.7	,1236.1)	0.0	(reference)		1.00	(reference)	
(0.0478,0.0698]	37	23,808	1,688,963	1409.6	(1391.7	,1427.5)	190.2	(165.7	,214.7)	1.16	(1.13	,1.18)
(0.0698,0.0978]	38	24,507	1,679,177	1459.5	(1441.2	,1477.7)	240.1	(215.3	,264.8)	1.20	(1.17	,1.22)
(0.0978,0.138]	31	25,783	1,682,708	1532.2	(1513.5	,1550.9)	312.8	(287.8	,337.9)	1.26	(1.23	,1.28)
(0.138,0.297]	23	28,434	1,673,537	1699.0	(1679.3	,1718.8)	479.6	(453.8	,505.5)	1.39	(1.37	,1.42)
missing		2,462										
\% population of color (quintiles)												
(0.0839,0.402]	43	21,166	1,695,113	1248.6	(1231.8	,1265.5)	0.0	(reference)		1.00	(reference)	
(0.402,0.584]	38	20,554	1,678,144	1224.8	(1208.1	,1241.6)	-23.8	(-47.6	,-0.1)	0.98	(0.96	,1.00)
(0.584,0.826]	38	25,541	1,708,248	1495.2	(1476.8	,1513.5)	246.5	(221.6	,271.4)	1.20	(1.18	,1.22)
(0.826,0.957]	29	27,231	1,708,722	1593.6	(1574.7	,1612.6)	345.0	(319.7	,370.3)	1.28	(1.25	,1.30)
(0.957,0.992]	28	29,042	1,639,409	1771.5	(1751.1	,1791.9)	522.8	(496.4	,549.3)	1.42	(1.39	,1.44)
missing		1,888										

Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county vs ZIP code analyses. Harvard Center for Population and Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. https://tinyurl.com/y7v72446

Table 5: Deaths, population, crude death rate, and county-level area-based measures for counties with the largest cumulative death counts as of 4/16/2020
Index of

Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county vs ZIP code analyses. Harvard Center for Population and Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. https://tinyurl.com/y7v72446

Supplemental Appendix Table A.1: US COVID-19 cases per 100,000 by county characteristics as of 4/16/2020

	Number of counties	Number of deaths	Population	Death rate per 100,000	(95\% CI)		Rate differen ce per 100,000	($95 \% \mathrm{CI}$)		$\begin{aligned} & \text { Rate } \\ & \text { ratio } \\ & \hline \end{aligned}$	($95 \% \mathrm{CI}$)	
\% poverty (categories)												
0-4.9\%	41	9,236	4,495,932	205.4	(201.2	,209.6)	0.0	(reference)		1.00	(reference)	
5-9.9\%	558	200,112	71,157,744	281.2	(280.0	,282.5)	75.8	(71.4	,80.2)	1.37	(1.34	,1.40)
10-14.9\%	1023	177,196	108,820,591	162.8	(162.1	,163.6)	-42.6	(-46.9	,-38.3)	0.79	(0.78	,0.81)
15-19.9\%	860	161,502	101,961,251	158.4	(157.6	,159.2)	-47.0	(-51.3	,-42.8)	0.77	(0.76	,0.79)
20-100\%	659	112,604	36,428,205	309.1	(307.3	,310.9)	103.7	(99.1	,108.2)	1.50	(1.47	,1.54)
missing		31										
Index of Concentration at the Extremes (high income white households versus low income black households)												
(-0.522,0.114]	974	160,588	61,949,063	259.2	(258.0	,260.5)	-82.8	(-84.7	,-80.9)	0.76	(0.75	,0.76)
(0.114,0.159]	701	103,896	64,942,197	160.0	(159.0	,161.0)	-182.1	(-183.8	,-180.4)	0.47	(0.46	,0.47)
(0.159,0.205]	696	70,626	65,113,354	108.5	(107.7	,109.3)	-233.6	(-235.2	,-232.0)	0.32	(0.31	,0.32)
$(0.205,0.283]$	515	98,635	64,525,801	152.9	(151.9	,153.8)	-189.2	(-190.9	,-187.5)	0.45	(0.44	,0.45)
(0.283,0.536]	255	226,905	66,333,308	342.1	(340.7	,343.5)	0.0	(reference)		1.00	(reference)	
missing		31										
\% crowding (quintiles)												
$(0,0.0147]$	1047	75,149	65,273,354	115.1	(114.3	,116.0)	0.0	(reference)		1.00	(reference)	
(0.0147,0.0212]	709	95,224	64,425,866	147.8	(146.9	,148.7)	32.7	(31.4	,33.9)	1.28	(1.27	,1.30)
(0.0212,0.0306]	656	160,008	63,510,499	251.9	(250.7	,253.2)	136.8	(135.3	,138.3)	2.19	(2.17	,2.21)
(0.0306,0.0491]	443	142,573	65,654,959	217.2	(216.0	,218.3)	102.0	(100.6	,103.4)	1.89	(1.87	,1.90)
(0.0491,0.493]	244	187,660	63,913,934	293.6	(292.3	,294.9)	178.5	(176.9	,180.0)	2.55	(2.53	,2.57)
missing		67										
\% percent population of color												
$(0,0.172]$	1635	44,958	65,219,459	68.9	(68.3	,69.6)	0.0	(reference)		1.00	(reference)	
(0.172,0.302]	549	95,876	65,166,967	147.1	(146.2	,148.1)	78.2	(77.1	,79.3)	2.13	(2.11	,2.16)
(0.302,0.443]	468	177,223	69,376,152	255.5	(254.3	,256.6)	186.5	(185.2	,187.9)	3.71	(3.67	,3.74)
(0.443,0.61]	280	155,758	60,922,155	255.7	(254.4	,256.9)	186.7	(185.3	,188.2)	3.71	(3.67	,3.75)
(0.61,1]	209	186,845	62,217,817	300.3	(298.9	,301.7)	231.4	(229.9	,232.9)	4.36	(4.31	,4.40)
missing		21										

LIST OF FIGURES:

Figure 1a: US COVID-19 deaths per 100,000 population by county \% below poverty (categories) (as of 4.16.2020)
Figure 1b: US COVID-19 deaths per 100,000 population by county Index of Concentration at the Extremes (white/black race + income) (quintiles) (as of 4.16.2020)

Figure 1c: US COVID-19 deaths per 100,000 population by county $\%$ crowding (>1 person per room) (as of 4.16.2020)

Figure 1d: US COVID-19 deaths per 100,000 population by county \% population of color (as of 4.16.2020)

Figure 2a: Illinois COVID-19 confirmed cases per 100,000 population by ZIP code \% below poverty (categories) (as of 4.16.2020)

Figure 2b: Illinois COVID-19 confirmed per 100,000 population by ZIP code Index of Concentration at the Extremes (white/black race + income) (quintiles) (as of 4.16.2020)

Figure 2c: Illinois COVID-19 confirmed per 100,000 population by ZIP code $\%$ crowding (>1 person per room) (as of 4.16.2020)

Figure 2d: Illinois COVID-19 confirmed per 100,000 population by ZIP code \% population of color (as of 4.16.2020)

Figure 3a: NYC COVID-19 confirmed cases per 100,000 population by ZIP code \% below poverty (categories) (as of 4.16.2020)

Figure 3b: NYC COVID-19 confirmed per 100,000 population by ZIP code Index of Concentration at the Extremes (white/black race + income) (quintiles) (as of 4.16.2020)

Figure 3c: NYC COVID-19 confirmed per 100,000 population by ZIP code $\%$ crowding (>1 person per room) (as of 4.16.2020)

Figure 3d: NYC COVID-19 confirmed per 100,000 population by ZIP code \% population of color (as of 4.16.2020)

Figure A.1a: US COVID-19 cases per 100,000 population by county \% below poverty (categories) (as of 4.16.2020)

Figure A.1b: US COVID-19 cases per 100,000 population by county Index of Concentration at the Extremes (white/black race + income) (quintiles) (as of 4.16.2020)

Figure A.1c: US COVID-19 cases per 100,000 population by county $\%$ crowding (>1 person per room) (as of 4.16.2020)

Figure A.1d: US COVID-19 cases per 100,000 population by county \% population of color (as of 4.16.2020)

Figure 1a: US COVID-19 deaths per 100,000 population
by county \% below poverty (categories) (as of 4.16.2020)

Figure 1b: US COVID-19 deaths per 100,000 population
by county Index of Concentration at the Extremes (white/black race + income) 18 -(as of 4.16.2020) 15.03
(9,314 / 61,949,063)
13.78

Figure 1c: US COVID-19 deaths per 100,000 population
by county \% crowding (>1 person per room) (as of 4.16.2020)

Figure 1d: US COVID-19 deaths per 100,000 population by county \% population of color (as of 4.16.2020)

Figure 2a: Illinois COVID-19 confirmed cases per 100,000 population by ZIP code \% below poverty (categories) (as of 4.16.2020)

Figure 2 b : Illinois COVID-19 confirmed cases per 100,000 population
by ZIP code Index of Concentration at the Extremes (white/black race + income) 500 -(as of 4.16.2020)
438.33

Figure 2c: Illinois COVID-19 confirmed cases per 100,000 population
by ZIP code \% crowding (>1 person per room) (as of 4.16.2020)

Figure 2d: Illinois COVID-19 confirmed cases per 100,000 population by ZIP code \% population of color (as of 4.16.2020)

Figure 3a: NYC COVID-19 positive tests per 100,000 population
by ZIP code \% below poverty (categories) (as of 4.16.2020)

Figure 3b: NYC COVID-19 positive tests per 100,000 population by ZIP code Index of Concentration at the Extremes (white/black race + income) (as of 4.16.2020)
1653.23
(26,844 / 1,623,732)
1603.64
1612.19
(28,209 / 1,749,736)

Figure 3c: NYC COVID-19 positive tests per 100,000 population by ZIP code \% crowding (>1 person per room) (as of 4.16.2020)

Figure 3d: NYC COVID-19 positive tests per 100,000 population
by ZIP code \% population of color (as of 4.16.2020)

Figure A.1a: US COVID-19 cases per 100,000 population
by county \% below poverty (categories) (as of 4.16.2020)

Figure A.1b: US COVID-19 cases per 100,000 population
by county Index of Concentration at the Extremes (white/black race + income) (as of 4.16.2020)
342.07
$(226,905 / 66,333,308)$
(103,896 / 64,942,197)
108.47
$(70,626 / 65,113,354)$
100-

county Index of Concentration at the Extremes (white/black race + income)

Figure A.1c: US COVID-19 cases per 100,000 population by
county \% crowding (>1 person per room) (as of 4.16.2020)

Figure A.1d: US COVID-19 cases per 100,000 population
by county \% population of color (as of 4.16.2020)

Addendum: May 28, 2020

This document contains updates to the analyses we present in our working paper,

Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county vs ZIP code analyses. Harvard Center for Population and Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020.

Background

In our original working paper, we presented analyses of disparities in COVID-19 deaths by United States (US) county social metrics, confirmed COVID-19 cases in Illinois by ZIP code social metrics, and positive tests in New York City by ZIP code social metrics as of April 16, 2020.

In this addendum, we update our analyses as of May 5, 2020. We also note refinements and minor corrections we made to our analytic methodology, and interpret the data in the context of the ongoing COVID-19 pandemic.

Methods

Population denominator sources

In our original analyses, we used population estimates for counties and ZIP code tabulation areas (ZCTAs) from the 2014-2018 American Community Survey (ACS) five-year estimates [1]. The ACS is still the most viable source for ZCTA level population estimates, but for the county analysis, we have switched to using the population estimates made available by

USA Facts in conjunction with their county COVID-19 data [2]. These estimates are based on the US Census county-level projections for 2018.

Calculation of age-standardized rates

In our previous analyses, we presented crude "rates" for mortality, confirmed cases, and positive tests per 100,000 by dividing counts by the relevant population estimates. As we considered replicating our analyses for other dates, we realized that this quantity is technically a cumulative incidence proportion and that its magnitude would be sensitive to the amount of person time under observation. That is, even if underlying rates were constant, the cumulative incidence would be larger at a later date because more cases are accrued over a longer period of observation. This type of quantity is being reported in the popular press as a "per capita" rate.

In these updated analyses we present "true" incidence rates by dividing observed counts by person-time under observations, which we express as events per 100,000 person-years. To compute person-time, we calculate the number of days since January 22, 2020 (the start of the USA Facts COVID-19 death data), and divide this quantity by 365.25 to re-express the denominator on the scale of person-years.

An advantage of this approach is that it readily permits comparison of the magnitude of COVID-19 mortality rates to published mortality rates for other causes of death. We have revised our analysis of COVID-19 outcomes as of April 16, 2020 to present this type of rate, which also allows comparison across time. We note that this does not change the magnitude of the incidence rate ratio results since it merely involves multiplying the denominators by a constant.

Temporal Comparison

Comparing analyses of US COVID-19 deaths by county social metrics over time is particularly sensitive to which counties had substantial transmission To provide further context to the comparisons we make between April 16, 2020 and May 5, 2020, for US COVID-19 deaths by county social metrics, we also conducted sensitivity analyses restricting to (a) counties with ≥ 50 confirmed COVID-19 cases as of April 16 and (b) counties with <50 confirmed cases as of April 16 and ≥ 50 confirmed cases as of May 5 .

Quintile cutpoints

Our latest analysis also corrects a small error in the handling of values for the lowest quintiles of social metrics where some zero values were not included in the lowest quintile.

Availability of R code and ACS-derived county and ZCTA variables

We have also made ACS-derived county and ZCTA level variables and R code for replicating our analyses available on the COVID-19 Resources page of our Public Health Disparities Geocoding Project website [3].

Results

County level COVID-19 death in the US

As of April 16, 2020, the highest COVID-19 death rates per 100000 person-years were consistently observed among those living in the most disadvantaged versus most advantaged
counties in relation to: \% poverty (91.3 vs. 41.4); ICE (69.2 vs. 59.8), \% crowding (80.2 vs. 20.9), and \% population of color (80.2 vs. 12.2) (see Table S. 1 and Figure S.1). These contrasts correspond to mortality rate ratios of 2.21 (95% CI $2.01,2.43$), 1.16 (95% CI 1.13, 1.19), 3.83 (95% CI 3.69, 3.99), and 6.57 (95% CI 6.26, 6.90).

As of May 5, 2020, rates per 100,000 were dramatically higher (Table S. 4 and Figure S.4), and the disparity between rates among the most disadvantaged and most advantaged counties was: \% poverty (143.2 vs. 83.3); ICE (113.0 vs. 108.8); \% crowding (124.4 vs. 48.2); and $\%$ population of color (127.7 vs. 25.9). Because the magnitude of rates by May $\geq 5,2020$ was much larger than in April, the absolute rate differences were correspondingly larger. Meanwhile, the mortality rate ratios for the most disadvantaged category vs. the most advantaged category were somewhat attenuated: for \% poverty IRR=1.72 (95\% CI 1.61, 1.83); for the Index of Concentration at the Extremes IRR=1.04 (95\% CI 1.02, 1.06); for \% crowding 2.58 (95\% CI 2.52, 2.65); and for \% population of color IRR=4.94 (95\% CI 4.78, 5.09). Socioeconomic gradients were not always monotonic, most notably for ICE, for which residents of counties in the most advantaged quintile experienced a death rate only slightly lower than residents of counties in the most disadvantaged quintile. In contrast, residents of counties in the middle quintile of ICE experienced the lowest COVID-19 death rates (16.7 per 100,000 on April 16 and 37.1 per 100,000 on May 5).

In sensitivity analyses restricting to (a) counties with ≥ 50 confirmed COVID-19 cases as of April 16, and (b) counties with <50 confirmed cases as of April 16 and ≥ 50 confirmed cases as of May 5 (Table S.7) we see that the additional contribution of deaths and population at risk from counties with <50 confirmed cases as of April 16 and ≥ 50 confirmed cases as of May 5 is
small relative to counties with ≥ 50 confirmed cases in both time periods. In the counties with ≥ 50 confirmed cases in both time periods, mortality rates increase across all categories of social metrics, but they increase more rapidly in the least disadvantaged categories, which results in attenuated social gradients on May 5 compared with April 16.

ZCTA level confirmed COVID-19 cases in Illinois

As shown in Table S. 2 and Figure S.2, we observed consistent and monotonic socioeconomic gradients in cumulative incidence of COVID-19 diagnoses for all ABSMs using finer resolution ZCTA-level data in Illinois. As of April 16, the highest rates of COVID-19 confirmed cases per 100,000 person-years were observed among the most disadvantaged compared to most advantaged categories of \% poverty (1291.5 vs. 545.3), ICE (1,535.0 vs. 545.6), \% crowding (1104.1 vs. 614.7), and \% population of color (1,569.9 vs. 449.4). These correspond to incidence rate ratios of $2.37(2.26,2.48), 2.81$ (95% CI $2.70,2.93$), 1.8- ($95 \% \mathrm{CI}$ 1.72, 1.87), and 3.49 (95% CI $3.35,3.65$).

As of May 5, overall rates were dramatically higher (Table S. 5 and Figure S.5), and disparities persisted by poverty ($2,817.5$ vs. $1,093.3$), ICE ($3,453.6$ vs. $1,084.0$), $\%$ crowding ($3,454.2$ vs. $1,084.0$) , and $\%$ population of color ($4,027.5 \mathrm{vs}$. 782.4). Relative disparities were also higher than in April, with IRRs comparing the most advantaged to disadvantaged categories observed for \% poverty of $\operatorname{IRR}=2.58(95 \%$ CI $2.50,2.66)$; for $\operatorname{ICE} \operatorname{IRR}=3.19(95 \%$ CI 3.10, 3.27); for \% crowding IRR=3.07 (95% CI $2.99,3.15$); and for \% population of color IRR=5.15 (95\% CI 5.00, 5.30).

Strong socioeconomic gradients were also observed with finer resolution ZCTA-level data in New York City in relation to the rate of positive tests (Table S. 3 and Figure S.3). These unequal patterns persist even in the context of New York City's substantially greater rates of infection overall. The rate of positive COVID-19 tests per 100,000 person-years was highest among residents in the most disadvantaged vs. most advantaged categories of ICE (5,591.8 vs. $3,749.0$), $\%$ crowding ($5,967.0$ vs. $4,331.3$), and $\%$ population of color ($6,221.5$ vs. 4,391.0), while for poverty, the highest rates were seen in the $15-19.9 \%$ category $(5,454.1)$ and the $20-$ 100% category $(5,283.2)$ vs. the $0-4.9 \%$ category $(3,676.1)$. These disparities correspond to incidence rate ratios for ICE of 1.49 (95\% CI 1.46, 1.62), for \% crowding 1.38 (95\% CI 1.35, 1.40), and for \% population of color 1.42 (95% CI 1.39, 1.44).

As of May 5, the population rate of positive COVID-19 tests per 100000 person-years was highest among residents in the most disadvantaged vs. most advantaged categories of \% crowding ($8,441.5 \mathrm{vs} .5,616.4$), and \% population of color (8,919.2 vs. 5,645.0) (Table S. 6 and Figure S.6). Similarly, the highest rate of positive tests was observed among residents living in counties in the two most disadvantaged categories of ZCTA-level poverty (15-19.9\% poverty: $7,651.7$ and $20-100 \%$ poverty: $7,411.7$ vs. $4,561.4$ in the most advantaged category, $0-4.9 \%$ poverty). By quintiles of the ICE, the highest rates were observed in the most disadvantaged quintile and the third quintile ($8,024.6$ and $8,026.0$ vs. $4,771.1$). These correspond to incidence rate ratios of approximately 1.6 for for the categories of \% poverty, ICE, and \% population of color with the highest rates compared with the lowest rates, and for \% crowding, IRR=1.50 $(95 \%$ CI 1.48, 1.53), indicating that disparities increased between April and May.

We continue to find stark disparities in who is diagnosed with and who is dying from COVID-19, with residents of the most disadvantaged counties and ZIP codes showing markedly elevated rates. Using the metric of rates per 100,000 person years, which is more robust to differences in length of observation period than cumulative incidence "per capita", rates of positive tests in New York City, confirmed cases in Illinois, and deaths across the US have nevertheless substantially increased, reflecting the exponential spread of coronavirus in US communities.

When looking at changes in disparities over time, we note that disparities in death rates by county social metrics have somewhat attenuated between April 16 and May 5. Our sensitivity analyses confirm that the overall attenuation between the most disadvantaged and advantaged categories represents faster increases in the mortality rates for more affluent counties compared with more disadvantaged counties. In the US county analysis, there was a large pool of counties that, as of April 16, and not registered many deaths. As the epidemic spread and some of these more affluent counties begin to register deaths, this served to dampen some of the disparity comparing the most disadvantaged and advantaged categories of county social metrics. However, this slight diminution of the relative risk in no way undercuts two key points: (a) even with higher baseline rates, the rate ratio across categories of county-level social metrics is large, and (b) the magnitude of the observed rate differences is both large and increasing over time, pointing to the profound burden on communities with the least economic and racial/ethnic privilege.

Notably, disparities using finer grained ZIP code level metrics in Illinois and New York City increased between April 16 and May 5. This suggests that in these areas, populations living in disadvantaged ZIP codes continued to experience a disproportionate burden of COVID-19 risk and that increases in the more disadvantaged areas outstripped increases in more affluent ZIP codes.

In interpreting these data, it is important to keep in mind the limitations of COVID-19 data. Data on the population rate of positive tests and confirmed cases is sensitive to where testing is being conducted [4]. Though deaths are less sensitive to inconsistencies of testing, jurisdictions may nevertheless vary in how deaths are reported and whether numbers are for confirmed COVID-19 deaths, presumed COVID-19 deaths, or both [5, 6]. Moreover, the county and ZIP code level data we used were not available disaggregated by race/ethnicity or age. This precludes age-adjusted analyses, and so we were only able to analyze crude rates. Reliance on comparison of crude rates is hampered by two potential issues: (a) likely differences in age structure across the different social strata, and (b) the possibility of different age-specific risks across social strata. If worst-off areas had younger populations, on average, compared to betteroff areas, but all social groups had the same age-specific rates, then estimates of social gradients based on the crude rates would underestimate the true social gradient. If, in addition, the agespecific risks were greater among worse-off groups (due to differences in exposure, given occupational structures, and also differences in severity, due to differentials in pre-existing premature morbidity, then the crude estimate would more severely underestimate the actual social gradient. Moreover, the absence of race/ethnicity in the data also make it impossible to characterize racial/ethnic disparities in COVID-19 outcomes.

References

1. US Census Bureau. American Community Survey, 2014-2018 data release.
https://www.census.gov/newsroom/press-releases/2019/acs-5-year.html ; accessed May 28, 2020.
2. COVID-19 deaths dataset. USA Facts. Available at:
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/ Accessed May 28, 2020
3. Krieger N, Chen JT, Waterman PD. Using the methods of the Public Health Disparities Geocoding Project to monitor COVID-19 inequities and guide action for health justice (May 15, 2020). https://www.hsph.harvard.edu/thegeocodingproject/covid-19-resources/ ; accessed May 28, 2020.
4. Preliminary Estimate of Excess Mortality During the COVID-19 Outbreak - New York City, March 11-May 2, 2020. MMWR Morb Mortal Wkly Rep 2020; 69:603-605. DOI:
http://dx.doi.org/10.15585/mmwr.mm6919e5)
5. Leon DA, Shkolnikov VM Smeeth L, Magnus P, Pecholdová M, Jarvis CI. COVID-19: a need for real-time monitoring of weekly excess deaths (letter). Lancet 2020; published on-line: April
6. https://doi.org/10.1016/S0140-6736(20)30933-8
7. Chen JT, Waterman PD, Krieger N. COVID-19 and the unequal surge in mortality rates in Massachusetts, by city/town and ZIP Code measures of poverty, household crowding, race/ethnicity, and racialized economic segregation. Harvard Center for Population and Development Studies Working Paper Series, Volume 19, Number 2. May 9, 2020.
 Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. Addendum: May 28, 2020.

Table S.1: US COVID-19 death rate per 100000 person-years, rate differences, and rate ratios by county characteristics as of April 16, 2020 (3 142 counties, 31,437 deaths, $328,239,523$ population)

	Number of counties	Number of deaths	Population*	Death rate per 100000 personyears	(95\% CI)		$\begin{array}{r} \text { Rate } \\ \text { difference } \\ \text { per } \\ 100000 \\ \text { person- } \\ \text { years } \\ \hline \end{array}$	(95\% CI)		Rate ratio	(95\% CI)	
\% poverty (categories)												
0-4.9\%	41	449	4,661,334	41.4	(37.6	,45.2)	0.0	(reference)		1.00	(reference)	
5-9.9\%	558	7,904	72,698,937	46.7	(45.7	,47.7)	5.3	(1.4	,9.3)	1.13	(1.03	,1.24)
10-14.9\%	1023	8,463	111,359,813	32.7	(32.0	,33.4)	-8.7	(-12.6	,-4.8)	0.79	(0.72	,0.87)
15-19.9\%	860	6,898	103,142,585	28.7	(28.1	,29.4)	-12.7	(-16.5	,-8.8)	0.69	(0.63	,0.76)
20-100\%	659	7,723	36,337,933	91.3	(89.3	,93.4)	49.9	(45.6	,54.3)	2.21	(2.01	,2.43)
Index of Concentration at the Extremes (high income white households versus low income black households)												
(-0.522,0.114]	974	10,015	62,191,173	69.2	(67.8	,70.6)	9.4	(7.6	,11.3)	1.16	(1.13	,1.19)
(0.114,0.159]	701	5,337	65,858,776	34.8	(33.9	,35.8)	-24.9	(-26.5	,-23.4)	0.58	(0.56	,0.60)
(0.159,0.205]	696	2,565	66,166,730	16.7	(16.0	,17.3)	-43.1	(-44.5	,-41.7)	0.28	(0.27	,0.29)
(0.205,0.283]	515	4,093	66,201,038	26.6	(25.8	,27.4)	-33.2	(-34.6	,-31.7)	0.44	(0.43	,0.46)
(0.283, 0.536$]$	255	9,427	67,782,885	59.8	(58.6	,61.0)	0.0	(reference)		1.00	(reference)	
\% crowding (quintiles)												
(0,0.0147]	1089	3,213	65,973,004	20.9	(20.2	,21.7)	0.0	(reference)		1.00	(reference)	
(0.0147,0.0212]	709	3,989	65,506,176	26.2	(25.4	,27.0)	5.2	(4.2	,6.3)	1.25	(1.19	,1.31)
(0.0212,0.0306]	656	6,751	64,811,652	44.8	(43.7	,45.8)	23.8	(22.5	,25.1)	2.14	(2.05	,2.23)
(0.0306,0.0491]	443	5,462	67,551,767	34.7	(33.8	,35.7)	13.8	(12.6	,15.0)	1.66	(1.59	,1.73)
(0.0491,0.493]	244	12,022	64,388,610	80.2	(78.8	,81.7)	59.3	(57.7	,60.9)	3.83	(3.69	,3.99)
\% percent population of color												
(0,0.172]	1636	1,872	65,899,452	12.2	(11.7	,12.8)	0.0	(reference)		1.00	(reference)	
(0.172,0.302]	549	3,995	66,645,498	25.8	(25.0	,26.6)	13.6	(12.6	,14.5)	2.11	(2.00	,2.23)
(0.302,0.443]	468	7,091	71,036,761	42.9	(41.9	,43.9)	30.7	(29.5	,31.8)	3.51	(3.34	,3.70)
(0.443, 0.61]	280	6,766	61,880,053	47.0	(45.9	,48.1)	34.8	(33.5	,36.0)	3.85	(3.66	,4.05)
(0.61,1]	209	11,713	62,777,759	80.2	(78.7	,81.6)	68.0	(66.4	,69.5)	6.57	(6.26	,6.90)

[^0] Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. Addendum: May 28, 2020.

Table S.2: Illinois rate of confirmed COVID-19 cases per 100000 person-years, rate differences, and rate ratios by ZCTA characteristics as of April 16, 2020 (461 ZIP codes, 24,675 cases, $10,353,354$ population)

 Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. Addendum: May 28, 2020.

Table S.3: New York City rate of positive COVID-19 tests per 100000 person-years, rate differences, and rate ratios by ZCTA characteristics as of April 16, 2020 (177 ZCTAs, 125,422 positive tests, 8433176 population)

	Number ZCTAs	Number of positive tests	Population ${ }^{*}$	$\begin{gathered} \text { Rate per } \\ 100,000 \\ \hline \end{gathered}$	(95\% CI)		$\begin{array}{r} \text { Rate } \\ \text { difference } \\ \text { per } \\ 100,000 \\ \hline \end{array}$	(95\% CI)		Rate ratio	(95\% CI)	
\% poverty (categories)												
0-4.9\%	9	1,362	130,121	3676.1	(3480.9	,3871.3)	0.0	(reference)		1.00	(reference)	
5-9.9\%	41	20,609	1,506,286	4805.1	(4739.5	,4870.7)	1129.0	(923.1	,1335.0)	1.31	(1.24	,1.38)
10-14.9\%	48	30,294	2,100,915	5064.1	(5007.1	,5121.2)	1388.0	(1184.6	,1591.4)	1.38	(1.30	,1.45)
15-19.9\%	27	22,359	1,439,746	5454.1	(5382.6	,5525.6)	1778.0	(1570.1	,1985.9)	1.48	(1.40	,1.57)
20+\%	52	48,982	3,256,108	5283.2	(5236.4	,5330.0)	1607.1	(1406.3	,1807.8)	1.44	(1.36	,1.52)
missing ZCTA		1,816										
Index of Concentration at the Extremes (high income white households versus low income black households)												
[-0.385,-0.102]	29	26,889	1,688,793	5591.8	(5525.0	,5658.7)	1842.9	(1756.4	,1929.4)	1.49	(1.46	,1.52)
(-0.102,0.0212]	30	28,209	1,749,736	5662.0	(5596.0	,5728.1)	1913.1	(1827.2	,1999.0)	1.51	(1.48	,1.54)
(0.0212,0.141]	29	26,844	1,623,732	5806.2	(5736.7	,5875.6)	2057.2	(1968.7	,2145.8)	1.55	(1.52	,1.58)
$(0.141,0.29]$	39	23,751	1,692,826	4927.5	(4864.8	,4990.2)	1178.5	(1095.2	,1261.9)	1.31	(1.29	,1.34)
(0.29,0.7]	50	17,913	1,678,089	3749.0	(3694.1	,3803.9)	0.0	(reference)		1.00	(reference)	
missing ZCTA		1,816										
\% crowding (quintiles)												
[0.00942,0.0478]	48	21,074	1,708,791	4331.3	(4272.8	,4389.7)	0.0	(reference)		1.00	(reference)	
(0.0478,0.0698]	37	23,808	1,688,963	4950.6	(4887.7	,5013.5)	619.4	(533.5	,705.2)	1.14	(1.12	,1.16)
(0.0698,0.0978]	38	24,507	1,679,177	5125.7	(5061.5	,5189.8)	794.4	(707.6	,881.2)	1.18	(1.16	,1.21)
(0.0978,0.138]	31	25,783	1,682,708	5381.2	(5315.5	,5446.9)	1050.0	(962.0	,1137.9)	1.24	(1.22	,1.27)
(0.138,0.297]	23	28,434	1,673,537	5967.0	(5897.7	,6036.4)	1635.8	(1545.1	,1726.5)	1.38	(1.35	,1.40)
missing ZCTA		1,816										
\% population of color (quintiles)												
[0.0839,0.402]	44	21,238	1,698,653	4391.0	(4332.0	,4450.1)	0.0	(reference)		1.00	(reference)	
(0.402,0.584]	38	20,554	1,678,144	4301.5	(4242.7	,4360.3)	-89.5	(-172.8	,-6.1)	0.98	(0.96	,1.00)
(0.584,0.826]	38	25,541	1,708,248	5251.0	(5186.6	,5315.4)	860.0	(772.6	,947.4)	1.20	(1.17	,1.22)
(0.826,0.957]	29	27,231	1,708,722	5596.9	(5530.4	,5663.4)	1205.9	(1117.0	,1294.8)	1.27	(1.25	,1.30)
(0.957,0.992]	28	29,042	1,639,409	6221.5	(6150.0	,6293.1)	1830.5	(1737.7	,1923.3)	1.42	(1.39	,1.44)
missing ZCTA		1,816										

 Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. Addendum: May 28, 2020.

Table S.4: US COVID-19 death rate per 100000 person-years, rate differences, and rate ratios by county characteristics as of May 5, 2020 (3,142 counties, 68,656 deaths, $322,903,030$ population)

	Number of counties	Number of deaths	Population*	Death rate per 100000 personyears	$(95 \% \mathrm{CI})$		Rate difference per 100000 person- years	(95\% CI)		Rate ratio	(95\% CI)	
\% poverty (categories)												
0-4.9\%	41	1067	4495932	83.3	78.3	88.4	0.0	(reference)		1.00	(reference)	
5-9.9\%	558	17855	71157744	88.1	86.8	89.4	4.8	- 0.4	9.9	1.06	0.99	1.12
10-14.9\%	1023	18895	108820591	61.0	60.1	61.9	- 22.4	- 27.4	- 17.3	0.73	0.69	0.78
15-19.9\%	860	15990	101961251	55.1	54.2	55.9	- 28.3	- 33.3	- 23.2	0.66	0.62	0.70
20-100\%	659	14849	36428205	143.2	140.9	145.5	59.8	54.3	65.3	1.72	1.61	1.83
Index of Concentration at the Extremes (high income white households versus low income black households)												
(-0.522,0.114]	974	19939	61949063	113.0	111.5	114.6	4.2	2.1	6.4	1.04	1.02	1.06
(0.114,0.159]	701	10991	64942197	59.4	58.3	60.5	- 49.4	- 51.2	-47.5	0.55	0.53	0.56
(0.159,0.205]	696	6879	65113354	37.1	36.2	38.0	- 71.7	- 73.4	- 70.0	0.34	0.33	0.35
(0.205,0.283]	515	10297	64525801	56.0	55.0	57.1	- 52.8	- 54.6	- 50.9	0.52	0.50	0.53
(0.283,0.536]	255	20550	66333308	108.8	107.3	110.3	0.0	(reference)		1.00	(reference)	
\% crowding (quintiles)												
(0,0.0147]	1089	8953	65273354	48.2	47.2	49.2	0.0	(reference)		1.00	(reference)	
(0.0147,0.0212]	709	10331	64425866	56.3	55.2	57.4	8.1	6.7	9.6	1.17	1.14	1.20
(0.0212,0.0306]	656	14499	63510499	80.2	78.9	81.5	32.0	30.4	33.6	1.66	1.62	1.71
(0.0306,0.0491]	443	12242	65654959	65.5	64.3	66.6	17.3	15.8	18.8	1.36	1.32	1.40
(0.0491,0.493]	244	22630	63913934	124.4	122.7	126.0	76.2	74.3	78.1	2.58	2.52	2.65
\% percent population of color												
$(0,0.172]$	1636	4804	65219939	25.9	25.1	26.6	0.0	(reference)		1.00	(reference)	
(0.172,0.302]	549	10570	65166967	57.0	55.9	58.1	31.1	29.8	32.4	2.20	2.13	2.28
(0.302,0.443]	468	15687	69376152	79.4	78.2	80.7	53.5	52.1	55.0	3.07	2.97	3.17
(0.443, 0.61]	280	14974	60922155	86.3	84.9	87.7	60.5	58.9	62.0	3.34	3.23	3.45
(0.61,1]	209	22621	62217817	127.7	126.0	129.4	101.8	100.0	103.6	4.94	4.78	5.09

[^1] Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. Addendum: May 28, 2020.

Table S.5: Illinois rate of confirmed COVID-19 cases per 100000 person-years, rate differences, and rate ratios by ZCTA characteristics as of May 5, 2020 (461 ZCTAs, 63,901 confirmed cases, 11,383,197 population)

	Number ZCTAs	Number of confirmed cases	Population ${ }^{*}$	$\begin{array}{r} \text { Confirmed } \\ \text { case rate } \\ \text { per } 100,000 \end{array}$	(95\% CI)		Rate difference per 100,000	($95 \% \mathrm{CI}$)		Rate ratio	(95\% CI)	
\% poverty (categories)												
0-4.9\%	72	4912	1577939	1093.3	1062.7	1123.8	0.0	(reference)		1.00	reference)	
5-9.9\%	159	15584	3556778	1538.8	1514.6	1562.9	445.5	406.6	484.5	1.41	1.36	1.45
10-14.9\%	90	13235	2309648	2012.5	1978.2	2046.8	919.2	873.3	965.2	1.84	1.78	1.90
15-19.9\%	60	10085	1458799	2427.9	2380.5	2475.3	1334.7	1278.3	1391.1	2.22	2.15	2.30
20-100\%	80	19896	2480033	2817.5	2778.4	2856.7	1724.2	1674.6	1773.9	2.58	2.50	2.66
missing ZCTA		189										
Index of Concentration at the Extremes (high income white households versus low income black households)												
(-1,0.0375]	73	22090	2245980	3454.2	3408.6	3499.7	2370.2	2318.1	2422.3	3.19	3.10	3.27
(0.0375,0.166]	95	12447	2304293	1897.1	1863.7	1930.4	813.0	771.2	854.9	1.75	1.70	1.80
(0.166,0.27]	101	13182	2276391	2033.7	1999.0	2068.4	949.7	906.7	992.7	1.88	1.82	1.93
(0.27,0.396]	100	8919	2263673	1383.8	1355.0	1412.5	299.7	261.5	338.0	1.28	1.24	1.32
(0.396,0.721]	91	7051	2284383	1084.0	1058.7	1109.3	0.0	(reference)		1.00	(reference)	
missing ZCTA		212										
\% crowding (quintiles)												
($0,0.00971$]	133	7584	2296157	1160.0	1133.9	1186.1	0.0	(reference)		1.00	(reference)	
(0.00971,0.017]	99	5900	2221492	932.7	908.9	956.5	- 227.2	-262.6	-191.9	0.80	0.78	0.83
(0.017,0.0264]	84	10763	2307613	1638.1	1607.1	1669.0	478.1	437.6	518.6	1.41	1.37	1.45
(0.0264,0.0446]	81	16319	2272821	2521.7	2483.0	2560.3	1361.7	1315.0	1408.3	2.17	2.12	2.23
(0.0446,0.143]	64	23146	2285114	3557.3	3511.5	3603.2	2397.3	2344.6	2450.1	3.07	2.99	3.15
missing ZCTA		189										
\% percent population of color												
(0.00685, 0.18]	146	5104	2290991	782.4	761.0	803.9	0.0	(reference)		1.00	(reference)	
(0.18,0.286]	89	6636	2268672	1027.3	1002.6	1052.0	244.9	212.1	277.6	1.31	1.27	1.36
(0.286,0.445]	94	9652	2291717	1479.2	1449.6	1508.7	696.7	660.2	733.2	1.89	1.83	1.96
(0.445, 0.718$]$	71	16598	2288835	2546.8	2508.1	2585.6	1764.4	1720.1	1808.7	3.26	3.15	3.36
(0.718,0.99]	61	25722	2242982	4027.5	3978.3	4076.7	3245.1	3191.4	3298.8	5.15	5.00	5.30
missing ZCTA		189										

Table S.6: New York City rate of positive COVID-19 tests per 100000 person-years, rate differences, and rate ratios by ZCTA characteristics as of May 5, 2020 (177 ZCTAs, 171615 positive tests, 8433176 population)

	Number of ZCTAs ZCTA	Number of positive tests	Population*	$\begin{aligned} & \text { Rate per } \\ & 100,000 \\ & \hline \end{aligned}$	(95\% CI)		$\begin{array}{r} \text { Rate } \\ \text { difference } \\ \text { per } \\ 100,000 \\ \hline \end{array}$	(95\% CI)		Rate ratio	(95\% CI)	
\% poverty (categories)												
0-4.9\%	9	1690	130121	4561.4	4343.9	4778.9	0.0	(reference)		1.00	(reference)	
5-9.9\%	41	26941	1506286	6281.5	6206.5	6356.5	1720.1	1490.1	1950.2	1.38	1.31	1.45
10-14.9\%	48	41280	2100915	6900.6	6834.1	6967.2	2339.2	2111.8	2566.7	1.51	1.44	1.59
15-19.9\%	27	31368	1439746	7651.7	7567.0	7736.4	3090.3	2856.9	3323.7	1.68	1.60	1.76
20+\%	52	68716	3256108	7411.7	7356.3	7467.1	2850.3	2625.9	3074.7	1.62	1.55	1.71
missing ZCTA		1620										

(-0.385,-0.102]	29	38587	1688793	8024.6	7944.5	8104.6	3253.5	3152.2	3354.7	1.68	1.65	1.71
(-0.102,0.0212]	30	39324	1749736	7893.0	7815.0	7971.0	3121.9	3022.3	3221.5	1.65	1.63	1.68
(0.0212,0.141]	29	37107	1623732	8026.0	7944.3	8107.6	3254.9	3152.4	3357.4	1.68	1.65	1.71
(0.141,0.29]	39	32180	1692826	6676.2	6603.3	6749.2	1905.1	1809.4	2000.8	1.40	1.38	1.42
(0.29,0.7]	50	22797	1678089	4771.1	4709.2	4833.0	0.0	(reference)		1.00	(reference)	
missing ZCTA		1620										
\% crowding (quintiles)												
(0.00942,0.0478]	48	27327	1708791	5616.4	5549.8	5683.0	0.0	(reference)		1.00	(reference)	
(0.0478,0.0698]	37	32369	1688963	6730.8	6657.5	6804.1	1114.4	1015.3	1213.4	1.20	1.18	1.22
(0.0698,0.0978]	38	34018	1679177	7114.9	7039.3	7190.5	1498.5	1397.7	1599.2	1.27	1.25	1.29
(0.0978,0.138]	31	36056	1682708	7525.3	7447.7	7603.0	1908.9	1806.6	2011.2	1.34	1.32	1.36
(0.138,0.297]	23	40225	1673537	8441.5	8359.0	8524.0	2825.0	2719.0	2931.1	1.50	1.48	1.53
missing ZCTA		1620										
\% population of color (quintiles)												
(0.0839,0.402]	44	27303	1698653	5645.0	5578.0	5711.9	0.0	(reference)		1.00	(reference)	
(0.402,0.584]	38	27575	1678144	5770.9	5702.8	5839.0	125.9	30.4	221.4	1.02	1.01	1.04
(0.584,0.826]	38	35079	1708248	7212.0	7136.5	7287.4	1567.0	1466.1	1667.9	1.28	1.26	1.30
(0.826,0.957]	29	38403	1708722	7893.2	7814.2	7972.1	2248.2	2144.7	2351.7	1.40	1.38	1.42
(0.957,0.992]	28	41635	1639409	8919.2	8833.6	9004.9	3274.3	3165.5	3383.0	1.58	1.56	1.60

Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county vs ZIP code analyses. Harvard Center for Population and Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. Addendum: May 28, 2020.

Table S.7: US COVID-19 death rates, rate differences, and rate ratios by county social metrics on April 16, 2020 and May 5, 2020, stratified by counties with $>=50$ cases as of April 16 , 2020 and counties with <50 cases as of April 16 but $>=50$ cases as of May 5, 2020

	ABSM	16-Apr-20											5-May-20										
		Deaths	Population	Rate	(95\% CI)		IRD	(95\% CI)		IRR	(95\% CI)		Deaths	Population	Rate	(95\% CI)		IRD	(95\% CI)		IRR	(95\% CI)	
	\% poverty																						
	0-4.9\%	445	4,118,402	46.4	42.1	50.7	0.0	(reference)		1.00	(reference)		1,050	4,118,402	89.5	84.1	95.0	0.0	(reference)		1.00	(reference)	
	5-9.9\%	7,812	63,277,389	53.0	51.9	54.2	6.6	2.1	11.1	1.14	1.04	1.26	17,644	63,277,389	97.9	96.5	99.4	8.4	2.8	14.0	1.09	1.03	1.16
	10-14.9\%	8,218	88,473,231	39.9	39.1	40.8	-6.5	10.9	-2.1	0.86	0.78	0.95	18,189	88,473,231	72.2	71.2	73.3	-17.3	-22.9	-11.8	0.81	0.76	0.86
	15-19.9\%	6,643	80,755,273	35.3	34.5	36.2	11.1	15.5	-6.7	0.76	0.69	0.84	15,436	80,755,273	67.1	66.1	68.2	-22.4	-27.9	-16.9	0.75	0.70	0.80
	20-100\%	7,541	23,195,580	139.7	136.5	142.9	93.3	87.9	98.6	3.01	2.73	3.31	14,245	23,195,580	215.7	212.1	219.2	126.1	119.7	132.6	2.41	2.26	2.56
	\% crowding																						
	[0,0.0147]	2,983	45,478,318	28.2	27.2	29.2	0.0	(reference)		1.00	(reference)		8,314	45,478,318	64.2	62.8	65.6	0.0	(reference)		1.00	(reference)	
	(0.0147, 0.0212$]$	3,789	47,979,024	33.9	32.9	35.0	5.7	4.3	7.2	1.20	1.15	1.26	9,824	47,979,024	71.9	70.5	73.3	7.7	5.7	9.7	1.12	1.09	1.15
	(0.0212,0.0306]	6,575	48,971,309	57.7	56.3	59.1	29.5	27.8	31.2	2.05	1.96	2.14	14,056	48,971,309	100.8	99.1	102.5	36.6	34.4	38.8	1.57	1.53	1.61
	(0.0306, 0.0491$]$	5,341	58,104,538	39.5	38.4	40.6	11.3	9.8	12.8	1.40	1.34	1.47	11,930	58,104,538	72.1	70.8	73.4	7.9	6.0	9.8	1.12	1.09	1.16
unties	($0.0491,0.493]$	11,971	59,286,686	86.8	85.2	88.3	58.6	56.7	60.4	3.08	2.96	3.20	22,440	59,286,686	132.9	131.2	134.7	68.7	66.5	70.9	2.07	2.02	2.12
cases as of	Index of Concentration at the Extremes (white high income vs. black low income)																						
$\begin{aligned} & \text { April 16, } \\ & 2020 \end{aligned}$	[-0.522,0.114]	9,753	44,925,359	93.3	91.4	95.1	29.9	27.6	32.1	1.47	1.43	1.51	19,137	44,925,359	149.6	147.5	151.7	36.3	33.6	38.9	1.32	1.29	1.35
	(0.114,0.159]	5,173	48,263,585	46.1	44.8	47.3	17.4	19.2	15.6	0.73	0.70	0.75	10,463	48,263,585	76.1	74.7	77.6	-37.2	-39.3	-35.1	0.67	0.66	0.69
	(0.159,0.205]	2,389	49,471,762	20.8	19.9	21.6	42.7	44.2	41.1	0.33	0.31	0.34	6,459	49,471,762	45.9	44.7	47.0	-67.5	-69.4	-65.6	0.40	0.39	0.42
	(0.205,0.283]	3,955	53,551,070	31.7	30.7	32.7	31.7	33.3	30.1	0.50	0.48	0.52	9,979	53,551,070	65.4	64.2	66.7	-47.9	-49.9	-45.9	0.58	0.56	0.59
	(0.283,0.536]	9,389	63,608,099	63.4	62.1	64.7	0.0	(reference)		1.00	(reference)		20,526	63,608,099	113.3	111.8	114.9	0.0	(reference)		1.00	(reference)	
	\% population of color																						
	[0,0.172]	1,465	26,556,436	23.7	22.5	24.9	0.0	(reference)		1.00	(reference)		3,789	26,556,436	50.1	48.5	51.7	0.0	(reference)		1.00	(reference)	
	(0.172,0.302]	3,847	52,822,609	31.3	30.3	32.3	7.6	6.0	9.2	1.32	1.24	1.40	10,228	52,822,609	68.0	66.7	69.3	17.9	15.8	20.0	1.36	1.31	1.41
	(0.302,0.443]	6,983	63,369,394	47.4	46.2	48.5	23.6	22.0	25.3	2.00	1.89	2.11	15,366	63,369,394	85.2	83.8	86.5	35.1	33.0	37.1	1.70	1.64	1.76
	(0.443,0.61]	6,696	57,701,817	49.9	48.7	51.1	26.2	24.5	27.9	2.10	1.99	2.23	14,811	57,701,817	90.1	88.7	91.6	40.0	37.9	42.2	1.80	1.74	1.86
	$(0.61,1]$	11,668	59,369,619	84.5	82.9	86.0	60.7	58.8	62.7	3.56	3.37	3.76	22,370	59,369,619	132.3	130.6	134.1	82.2	79.9	84.6	2.64	2.55	2.73

	16-Apr-20												5-May-20										
	ABSM	Deaths	Population	Rate	(95\% CI)		IRD	(95\% CI)		IRR	(95\% CI)		Deaths	Population	Rate	(95\% CI)		IRD	(95\% CI)		IRR	(95\% CI)	
	\% poverty																						
	0-4.9\%	1	138,377	3.1	-3.0	9.2	0.0	(reference)		1.00	(reference)		1	138,377	2.5	-2.4	7.5	0.0	(reference)		1.00	(reference)	
	5-9.9\%	41	3,125,406	5.6	3.9	7.4	2.5	-3.8	8.9	1.82	0.25	13.20	122	3,125,406	13.7	11.3	16.1	11.2	5.6	16.7	5.40	0.75	38.66
	10-14.9\%	105	7,446,916	6.1	4.9	7.2	3.0	-3.2	9.1	1.95	0.27	13.98	343	7,446,916	16.2	14.5	17.9	13.6	8.4	18.9	6.37	0.90	45.38
	15-19.9\%	108	7,619,297	6.1	4.9	7.2	3.0	-3.2	9.2	1.96	0.27	14.05	328	7,619,297	15.1	13.5	16.8	12.6	7.3	17.8	5.96	0.84	42.42
	20-100\%	81	4,083,938	8.5	6.7	10.4	5.4	-0.9	11.8	2.74	0.38	19.72	356	4,083,938	30.6	27.4	33.8	28.1	22.2	34.0	12.06	1.69	85.87
	\% crowding																						
	[$0,0.0147]$	85	5,205,506	7.0	5.5	8.5	0.0	(reference)		1.00	(reference)		357	5,205,506	24.1	21.6	26.6	0.0	(reference)		1.00	(reference)	
	(0.0147,0.0212]	97	6,536,594	6.4	5.1	7.6	-0.6	-2.6	1.3	0.91	0.68	1.22	281	6,536,594	15.1	13.3	16.9	-9.0	12.0	-5.9	0.63	0.54	0.73
counties with <50 cases as of April 16, 2020 and $>=50$ cases as of May	(0.0212,0.0306]	76	5,649,502	5.8	4.5	7.1	-1.2	-3.2	0.7	0.82	0.60	1.12	249	5,649,502	15.5	13.6	17.4	-8.6	11.8	-5.5	0.64	0.55	0.76
	(0.0306,0.0491]	53	2,953,848	7.7	5.6	9.8	0.7	-1.9	3.2	1.10	0.78	1.55	198	2,953,848	23.5	20.3	26.8	-0.5	-4.7	3.6	0.98	0.82	1.16
	(0.0491, 0.493$]$	25	2,068,484	5.2	3.2	7.2	-1.8	-4.3	0.7	0.74	0.47	1.16	65	2,068,484	11.0	8.4	13.7	13.0	16.7	-9.4	0.46	0.35	0.60
	Index of Concentration at the Extremes (white high income vs. black low income)																						
$\begin{aligned} & \text { as of May } \\ & 5,2020 \end{aligned}$	[-0.522,0.114]	111	5,439,858	8.8	7.1	10.4	3.3	0.6	6.1	1.62	1.03	2.53	446	5,439,858	28.8	26.1	31.5	18.6	14.7	22.4	2.82	2.12	3.75
	(0.114,0.159]	68	5,067,232	5.8	4.4	7.1	0.3	-2.3	2.9	1.06	0.66	1.71	244	5,067,232	16.9	14.8	19.0	6.7	3.2	10.2	1.66	1.23	2.23
	(0.159,0.205]	72	4,979,777	6.2	4.8	7.6	0.8	-1.9	3.4	1.15	0.72	1.83	220	4,979,777	15.5	13.5	17.6	5.3	1.9	8.7	1.52	1.13	2.05
	(0.205,0.283]	62	5,105,347	5.2	3.9	6.5	-0.2	-2.8	2.4	0.96	0.60	1.55	187	5,105,347	12.9	11.0	14.7	2.6	-0.7	6.0	1.26	0.93	1.71
	(0.283,0.536]	23	1,821,720	5.4	3.2	7.6	0.0	(reference)		1.00	(reference)		53	1,821,720	10.2	7.5	13.0	0.0	(reference)		1.00	(reference)	
	\% population of color																						
	[0,0.172]	164	10,324,630	6.8	5.8	7.9	0.0	(reference)		1.00	(reference)		559	10,324,630	19.0	17.4	20.6	0.0	(reference)		1.00	(reference)	
	(0.172,0.302]	69	5,541,701	5.4	4.1	6.6	-1.5	-3.1	0.2	0.78	0.59	1.04	182	5,541,701	11.5	9.9	13.2	-7.5	-9.8	-5.2	0.61	0.51	0.72
	(0.302,0.443]	46	3,048,253	6.5	4.6	8.4	-0.3	-2.5	1.8	0.95	0.69	1.32	195	3,048,253	22.5	19.3	25.6	3.5	-0.1	7.0	1.18	1.00	1.39
	(0.443,0.61]	36	1,722,083	9.0	6.0	11.9	2.2	-1.0	5.3	1.32	0.92	1.89	134	1,722,083	27.3	22.7	32.0	8.3	3.4	13.2	1.44	1.19	1.74
	(0.61,1]	21	1,777,267	5.1	2.9	7.2	-1.7	-4.2	0.7	0.74	0.47	1.17	80	1,777,267	15.8	12.3	19.3	-3.2	-7.0	0.6	0.83	0.66	1.05

Figure S.1: US COVID-19 deaths per 100,000 person-years by county area-based social metrics as of April 16, 2020
(a)

(b)

county Index of Concentration at the Extremes
(high income white vs. low income black)
(c)

county \% crowding (>1 person per room)
(d)

county \% population of color

Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county vs ZIP code analyses. Harvard Center for Population and Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. Addendum: May 28, 2020.

Figure S.2: Illinois COVID-19 confirmed cases per 100,000 person-years by ZIP code area-based social metrics as of April 16, 2020

Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county vs ZIP code analyses. Harvard Center for Population and Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. Addendum: May 28, 2020.

Figure S.3: NYC COVID-19 positive tests per 100,000 person-years by ZIP code area-based social metrics as of April 16, 2020

Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county vs ZIP code analyses. Harvard Center for Population and Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. Addendum: May 28, 2020.

Figure S.4: US COVID-19 deaths per 100,000 person-years by county area-based social metrics as of May 5, 2020
(a)

(b)

(c)

(d)

Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county vs ZIP code analyses. Harvard Center for Population and Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. Addendum: May 28, 2020.

Figure S.5: Illinois COVID-19 positive tests per 100,000 person-years by ZIP code area-based social metrics as of May 5, 2020

Figure S.6: NYC COVID-19 positive tests per 100,000 person-years by ZIP code area-based social metrics as of May 5, 2020

[^2] Population and Development Studies Working Paper Series, Volume 19, Number 1. April 21, 2020. Addendum: May 28, 2020.

[^0]: * Population totals can vary due to counties with missing area-based socioeconomic measures.

[^1]: * Population totals can vary due to counties with missing area-based socioeconomic measures.

[^2]: Chen JT, Krieger N. Revealing the unequal burden of COVID-19 by income, race/ethnicity, and household crowding: US county vs ZIP code analyses. Harvard Center for

