

Navigating NIH: Succeeding as an Independent Investigator

Karen M. Emmons, Ph.D. Associate Dean of Research Office of Research Strategy & Development Harvard School of Public Health

Faculty Life at Harvard

- Build your research program
- Develop collaborations to expand your research in innovative areas
- Develop courses, teaching expertise
- Advise, mentor

SCHOOL OF PUBLIC HEALTH

What Does It Take to be an Independent Investigator?

- Ideas for a program of research in an important scientific area
- Pilot data
- Excellent writing and communication skills
- Good organizational and planning skills
- Tenacity

FUNDING!!

How to Design a Funding Stream: The World According to Karen

- Identify your very best developed idea
 - Apply for most 'independent' mechanism you can
 - Develop the strongest application
- In "down times", begin developing next idea
 - Consider internal pilots, smaller mechanisms
 - When Idea #1 is submitted, write grant for Idea #2
 - When Idea #2 is submitted, conduct work that would address weaknesses in Idea #1 or set you up if funded
- Until you are fully funded, try to keep a couple of ideas in the "pipeline" simultaneously

Funding Sources

- NIH
- Corporate-Sponsored Research
- Foundations

Funding Types

- Research grants
- Pilot grants
- Gifts

NIH Funding 101

3 Funding Instruments for Extramural Research

- <u>Grant</u>: Investigator decides the research to be designed or developed and the approach
 - ~ 84-88% of extramural awards
- <u>Contract</u>: Government decides the research to fill their perceived need and establishes detailed requirements
 - ~ 8-10%
- <u>Cooperative Agreement</u>: Similar to grants, but awarding Institute/Center (IC) and recipient have substantial involvement in carrying out the project's activities
 - ~ 4-6%

Mechanisms for NIH To Get Research Proposals

Investigator-Initiated Research

- Program Announcements (PA)
- <u>Unsolicited</u>, from general institute extramural budget
- R01, R21, R03
- ~ 80% of awards

Request for Applications (RFA)

- <u>Solicited</u>; set-aside of funds for a certain number of awards
- One-time competition to stimulate research in a priority area
- R01, R21, R03, P01, Cooperative Agreement
- If an RFA submission is not successful, a subsequent application should be submitted as a new application, not a resubmission
- ~ 10% of awards

Mechanisms for NIH To Get Research Proposals, *continued*

Program Announcement and Special Review (PAR/S)

- Solicited, but no set-aside of funds
- Reviewed by special emphasis panel

Program Announcement (PA)

- Solicited, but no set-aside of funds
- Reviewed by standing study section

Watch for Funding Opportunities

• NIH Weekly Guide <u>http://grants.nih.gov/grants/guide/</u>

- Harvard Catalyst Grant Central
 <u>https://grants.catalyst.harvard.edu/grants/spring/home</u>
- **Proprietary Funding Opportunity Databases**
 - Community of Science http://pivot.cos.com/funding_main
 - InfoEd SPIN <u>http://www.infoed.org/new_spin/spinmain.asp</u>

NIH Investigator Status

Types of NIH Investigator Status

New Investigator

 A Principal Investigator (PI) who has not yet competed successfully for a substantial, competing NIH research grant (R01 or 'higher') is considered a New Investigator

http://grants1.nih.gov/grants/new_investigators/resources.htm

Early Stage Investigator (ESI)

 An individual who is classified as a New Investigator <u>and</u> is within 10 years of completing his/her terminal research degree or is within 10 years of completing medical residency (or the equivalent)

What Affects NI/ESI Status?

- PI of an R03 or R21? No
 - PI of an NIH contract? No
 - PI of a grant with another Federal agency? No
 - PI of an SBIR/STTR? No

- PI of a U01, specifically for a foreign investigator? Receipt of U01 removes NI status.
- Inheriting an R01 from a PI who moved away or died? No

Multiple Pls

- To facilitate multi-disciplinary, "team" science
- Think carefully before submitting MPI application:
 - Does multiple PI approach fit the science?
 - Each PI must play key role and/or contribute critical intellectual input into project
 - How will multiple PI application affect your NIH funding strategies?
 - For new investigators, inclusion in MPI application may make it difficult to establish your own identity
 - New Investigators funded through MPI will lose new PI status
 - If MPI includes established PI, application will not qualify for NI payline
 - *Must include a Leadership Plan* describing roles, responsibilities, and working relationship of the Pls
 - How will you share leadership of the project?

Multiple PIs: Additional Considerations/ Cautions

- May be more complex to write MPI proposals
 - Must have clear Leadership Plan describing roles, responsibilities and working relationships of Pls
 - May be more difficult to ensure pieces of proposal are well integrated and coordinated
- MPI applications are more difficult to get funded

Application Type	FY 2008 (in %)	FY 2009 (in %)				
Multiple PI	12.6	16.2				
Single PI	21.6	21.2				

NIH Application and Funding Process

- You have an idea!
- You identify an appropriate **NIH institute**
- You find out about their priorities
- You talk with a **Program Official**
- You decide which of the eligible funding mechanisms are the best fit (e.g. R01)
- You watch the funding announcements and see an RFA, RFP, PAR, or PA that fits your research
- You identify best study section
- You write the grant!

Questions so far??

Reviewing Bodies

- Institutional Review Groups (IRG)
 - Study Section-- Review Group for CSR

- Members
 - Appointed for multi-year terms of service
 - A number of temporary ad hoc members are typically assigned to each meeting
- Special Emphasis Panels
 - Review groups formed on an ad hoc basis to review applications requiring special expertise (RFAs) or when a COI occurs

Reviewing Bodies continued

Review Group Descriptions Web page

http://cms.csr.nih.gov/peerreviewmeetings/csrirgdescriptionnew/

IRGs

(Institutional Review Groups)

AARR – AIDS and Related Research

BBBP – Biobehavioral and Behavioral Processes

BCMB – Biological Chemistry and Macromolecular Biophysics

BDCN – Brain Disorders and Clinical Neuroscience

BST – Bioengineering Sciences and Technologies

CB – Cell Biology

CVRS – Cardiovascular and Respiratory Sciences

DKUS – Digestive, Kidney and Urological Systems

EMNR – Endocrinology, Metabolism, Nutrition and Reproductive Sciences

ETTN – Emerging Technologies and Training in Neurosciences

GGG – Genes, Genomes and Genetics **HDM** – Healthcare Delivery & Methodologies **IDM** – Infectious Diseases and Microbiology

IFCN – Integrative, Functional, and Cognitive Neuroscience

IMM – Immunology

IMST – Interdisciplinary Molecular Sciences and Training

MDCN – Molecular, Cellular, and Developmental Neuroscience

MOSS – Musculoskeletal, Oral and Skin Sciences

OBT – Oncology 1 – Basic Translational

OTC - Oncology 2 - Translational Clinical

PSE – Population Sciences and Epidemiology

RPHB – Risk, Prevention & Health Behavior
SBIB – Surg Sciences, Biomedical Imaging, & Bioengineering

VH – Vascular and Hematology

Cell Biology IRG [CB]

Research applications that focus broadly on the study of fundamental cell biological processes, including the functions, interactions and regulation of cells and cellular organelles. Reviews applications that involve a variety of disciplines including biochemistry, biophysics, chemistry, and genetics, and use a variety of techniques including microscopy, genomics, proteomics and computational techniques, with the primary goal of better understanding cell functions.

Topics to be covered include:

- cell growth, proliferation, and cell cycle control;
- nuclear architecture and transport;
- RNA trafficking and localization;
- post-translational modifications, protein processing, glycosylation and folding;
- membrane structure and function;
- lipid traffic and metabolism;
- cell asymmetry and polarity;
- ion transport and regulation, channels, transporters and junctions;
- organelle biogenesis, function, dynamics and protein translocation;
- the secretory pathway, endocytosis, exocytosis and phagocytosis; degradative processes;
- cell fusion; extracellular matrix and ECM receptors;
- signaling mechanisms and networks;
- integrative cell physiology including circadian clocks, stress and oxidative damage response;
- motors, filaments and cargoes; cell locomotion; mitosis and meiosis;
- programmed cell death and apoptosis

- You have an idea!
- You identify an appropriate NIH institute
- You find out about their priorities
- You talk with a Program Official
- You decide which of the eligible funding mechanisms are the best fit (e.g. R01)

Common NIH Research Mechanisms

Common R Grants

- Obtain preliminary data
- Explore a novel or highrisk research area
- Preliminary data may be included
- Hallmark of an established, independent investigator
- Often provides a steady "stream" of funding
- Must include preliminary data

Small Research Grant Program (R03)

- Discrete, well defined projects that realistically need 2 years and limited levels of funding (\$50K dc/year):
 - Pilot or feasibility studies, collection of preliminary data, secondary analysis, small, self-contained research projects, new technology development
- Evaluated on conceptual framework & general approach
- Justified through literature citations, data from other sources, or from investigator-generated data
- Preliminary data are not required, particularly in applications proposing pilot or feasibility studies
- <u>http://grants.nih.gov/grants/guide/pa-files/PA-09-163.html</u>

Small Research Grant Program (R03)– When to Apply

- Great "starter" mechanism
- If need to generate pilot data
- For proof of concept or methods development
- Can be useful while are doing R01, providing 'bridge' funding

Exploratory/Developmental Research Grant Program (R21)

- Investigation of novel scientific ideas/ model systems, tools, or technologies with potential for significant impact on biomedical or biobehavioral research
- Combined (2 years) direct cost < \$275,000.
- Evaluated on the conceptual framework, level of innovation, potential to advance knowledge
- Justified through literature citations, data from other services, or, when available, from investigator-generated data
- Preliminary data are not required for R21 applications; include if available

Exploratory/Developmental Research Grant Program (R21)– When to Apply

- Novel, risky idea
- Larger scale methods development
- Can help to have a more established collaborator
- Scale of research must be appropriate for the mechanism

R01 NIH Investigator Initiated Research Project Grant Program

- Discrete, specified research project
- NIH's most commonly used grant program
- Advance permission required for \$500,000 or more (direct costs) in any year
- Budget reviewed separately from science, must "match"
- Generally awarded 3 to 5 years
- Utilized by all ICs

R01 Grant Program – When to Apply

- Have some evidence of ability to manage external funds
- Have evidence of publication productivity
- Have sufficient support for science proposed
- Have pilot data
- Typically hypothesis-generating or hypothesis-testing
- Aim to submit during NI/ESI eligibility

Writing an NIH Grant

- You have an idea!
- You identify an appropriate NIH institute
- You find out about their priorities
- You talk with a Program Official
- You decide which of the eligible funding mechanisms are the best fit (e.g. R01)

🐺 HARVARD

SCHOOL

- You watch the funding announcements and see an RFA, RFP, PAR, or PA that fits your research
- You identify best study section
- You write the grant!

"Research Plan"

1. Introduction to Application (Resubs or Revisions Applications)

- 2. Specific Aims
- **3. Research Strategy**
 - Significance
 - **Innovation**
 - Approach
 - Preliminary Studies for New Applications
 - Progress Report for Renewal/Revision Applications
 - Research Design and Methods

Keys to Writing Your Best Possible Grant Application

MCHUMOR.COM by T. McCracken 80 00 00

NIH Review Process

NIH Review Process

Center for Scientific Review (CSR) CSR Study Section or Institute

- Scientific Review Officer
 - Completeness of application
 - Assign reviewers
- Peer Review
 - Written critique & numerical scores for review criterion
- Score/No Score; percentile
- Summary Statement
- Institute makes funding decisions

HARVARD SCHOOL OF PUBLIC HEALTH

NIH Review Criteria

- Overall Impact/priority score likelihood to exert sustained, powerful influence on field
- Scored Criteria (1-9):
 - Significance
 - Investigator(s)
 - Innovation
 - Approach
 - Environment

Confessions of a Reviewer

- Reviewers are busy, tired people; grant reviews are on top of their day job
- Impressions of the grant are formed early
- Of the 20-30 people on the study section
 - Likely only 1or 2 are experts on your topic
 - Likely only 3 have read your grant
- Reviewers read many grants for each meeting;
 "stories" are easier to remember and to convey
- If you make the reviewer work harder (e.g. complex writing, minimal margins), they may be less generous in scoring

If Nothing Else, Remember There's One Key to Success!

- You have to sell your ideas to reviewers
- You have to inspire the Reviewer to be your advocate in the Study Section

Grant is Submitted- Now what?!

Do the Happy Dance...

Ether

- Put on Your Armor!
- Start your next grant
- Watch for Score- Make Provisional Plans
- Watch for Summary Statements
- Ask Mentors/Colleagues to read
- Talk with Program Official
- Identify Fixable/Non-Fixable Issues
- Plan Resubmission you get one shot!

Developing your Research Program & Funding Portfolio

How to Design a Funding Stream

KE Coverage (% effort per mechanism)

- Once funded, keep an eye on your/staff
 coverage levels
- Plan for next funding opportunity based on progress in your science AND funding levels
- Anticipate at least a 2year process for getting an idea funded

KE	J 2014	F	M	A	M	J	Jul	A	S	0	N	D
R01 #1	30	30	30	30	30	30	30	30	30	30	30	30
R01 #2	30	30	30									
Sub #1	10	10	10	10	10	10	10	10	10	10	10	10
Sub #2	10	10	10	10	10	10	10	10	10	10	10	10
Dept	20	20	20	20	20	20	20	20	20	20	20	20
тот	100	100	100	70	70	70	70	70	70	70	70	70

How to develop a research program

- Your Resources:
 - Your ideas
 - Don't panic
 - Expose yourself to opportunities to think, learn, and explore ideas

HARVARD SCHOOL OF P

- Carve time out to think and write
- Your read on the gap areas in the literature
- Your mentors
- Harvard Catalyst, CRISP/NIH REPORTER
- Pilot grant opportunities

Develop a Research Program

- Pilot grant opportunities
 - Write a 2-paragraph lay-ish brief of your interest areas to share with chair, mentor, development offices
 - Watch for relevant announcements
 - Use multiple submissions, but consider complementary projects
 - Look for "add-on" opportunities

How to become funded –

- And no, it's not exactly the same as developing a research program!
- Idea
- Commitment
- Grant writing skills

Commitment

- Passion
- Attitude
 - l can't
 - I don't have time
 - There's too much competition
 - It's good as it is now
 - I'll submit now and "get in line"

- \rightarrow I can and I will
- \rightarrow I will reorder my priorities
- \rightarrow I welcome the chance to compete
- \rightarrow It can always be better
- → I won't submit until it's the very best grant I can write

Planning & Strategy

- Plan for specific grant submission deadlines, and lay out specific timeline
- Then add 2-3+ months to timeline

Questions?