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Sample Size and Power Calculations for
Additive Interactions

Tyler J. VanderWeele

Abstract
Interactions measured on the additive scale are more relevant than multiplicative interaction

for assessing public health importance and also more closely related to notions of mechanistic
synergism. Most work on sample size and power calculations for interaction have focused on the
multiplicative scale. Here we derive analytic expressions for sample size and power calculations
for interactions on the additive scale. We give formulae for detecting additive interaction on the
risk scale from a cohort study, formulae for detecting additive interaction using the relative excess
risk for interaction from a logistic regression with cohort data, and formulae for detecting additive
interaction for the relative excess risk for interaction from a logistic regression with case-control
data. When main effects of both exposures are positive, power to detect positive interaction on the
additive scale will be greater than that on the multiplicative scale. Excel spreadsheets are provided
for power and sample size calculations for additive, multiplicative, and case-only interaction
estimates.

KEYWORDS: additive interaction, effect heterogeneity, power, relative excess risk due to
interaction, sample size, synergism
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Introduction

The literature on power and sample size calculations for interaction has fo-
cused on the multiplicative scale (Lubin and Gail, 1990; Hwang et al., 1994;
Foppa and Spiegelman, 1997; Yang et al., 1999; Garcia-Closas and Lubin,
1999; Qiu et al., 2000; Luan et al. 2001; Gauderman, 2002ab; Sturmer, 2002;
Wang et al., 2003; Wang and Zhao, 2003; Demidenko, 2008; VanderWeele,
2011). However, interaction on the additive scale is more relevant for public
health purposes (Rothman et al.,1980; Rothman et al., 2008) and is also more
closely related to notions of mechanistic synergism within the su¢ cient cause
framework (Rothman, 1976; VanderWeele and Robins, 2007, 2008; Rothman
et al., 2008). Arguably, the reason interaction is most frequently assessed on
the multiplicative scale is that this is what is most easily computed from the
output of standard logistic regression software. In addition, in the context of
case-control studies, odds ratios can be estimated but risk di¤erences cannot,
unless additional information concerning e.g. the prevalence of the outcome
or exposures in the underlying population is available (Rothman et al., 2008).
This again leads to the multiplicative scale as being the default for assessing
interaction. That power and sample size calculations are better developed for
multiplicative interaction than for additive interaction perhaps further encour-
ages the use of the multiplicative scale for interaction assessment. However,
measures of additive interaction based on risk ratios or odds ratios using the
relative excess risk due to interaction ("RERI"; Rothman, 1986) can easily
be calculated from logistic regression with either cohort or case-control data
(Hosmer and Lemeshow, 1992) and in this paper we will derive power and
sample size formulae for interaction on the additive scale. Power and sample
size calculations for additive interaction were discussed in Greenland (1983,
1985) but no closed form expressions were provided.

In this paper, we will consider measures of additive interaction based
on absolute risks and also on the relative excess risk due to interaction for
both cohort and case-control data and we will provide closed form analytic
expressions for power and sample size in each of these cases. Analytically,
we will for the most part follow the development of Demidenko (2008) who
considered multiplicative interaction but we will be taking a similar approach
for the additive scale. We will see that when main e¤ects of both exposures
are positive, power to detect positive interaction on the additive scale will
be greater than that on the multiplicative scale, providing yet another reason,
beyond public health relevance and relation to mechanistic synergism, for using
the additive scale to assess interaction. The reader who is interested in only
the application of the power and sample size formulae derived in this paper is
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referred to Appendix 2 at the end of the paper on epidemiologic practice. This
appendix gives instructions on using Excel spreadsheets (included as an online
supplement to this paper) to automatically carry out power and sample size
calculations for additive and multiplicative interaction for cohort, case-control
and case-only data.

Notation and De�nitions

We will suppose we have a binary outcome Y and two binary exposures G and
E. Although G and E might represent genetic and environmental exposures,
respectively, nothing in the development will require this. They might be two
environmental exposures, or two genetic exposures, or behavior exposures,
etc. Let pge = P (Y = 1jG = g; E = e) and let �ge = P (G = g; E = e). The
measure of interaction on the additive scale using risks is then

p11 � p10 � p01 + p00:

This can be re-expressed as (p11�p00)�f(p10�p00)+(p01�p00)g and measures
the extent to which the e¤ect of both exposures combined exceeds (or is less
than) the sum of the e¤ects of each exposure considered separately. If p11 �
p10� p01+ p00 > 0, the interaction is said to be positive or "superadditive". If
p11�p10�p01+p00 < 0, the interaction is said to be negative or "subadditive".
If p11 � p10 � p01 + p00 = 0, there is said to be no interaction on the additive
scale. This measure of additive interaction corresponds to the coe¢ cient of
the product term for the two exposure in a linear risk model for the outcome.

In many studies, analyses are presented using risk ratios or odds ratios
rather than absolute risks. De�ne the risk ratio as RRge =

P (Y=1jG=g;E=e)
P (Y=1jG=0;E=0) =

pge
p00
and the odds ratio as ORge =

P (Y=1jG=g;E=e)=P (Y=0jG=g;E=e)
P (Y=1jG=0;E=0)=P (Y=0jG=0;E=0) =

pge=(1�pge)
p00=(1�p00) .

The measure of multiplicative interaction used on the risk ratio or odds ratio
scale is then generally taken as IRR = RR11

RR10RR01
or IOR = OR11

OR10OR01
respectively.

These measures of multiplicative interaction correspond to the exponentiated
coe¢ cients of the product term for the two exposures in log-linear and logistic
regression models for the outcome respectively.

Suppose now we were to divide our measure of additive interaction
based on risks, p11 � p10 � p01 + p00, by the baseline risk p00. We would
then obtain what is sometimes referred to as the relative excess risk due to
interaction or RERI (Rothman, 1986):

RERI = RR11 �RR10 �RR01 + 1:
This measure RERI will be greater than 0 (or respectively less than 0) if and
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only if the measure of additive interaction using absolute risks, p11�p10�p01+
p00, is greater than 0 (or less than 0 respectively). The relative excess risk due
to interaction can thus be used to assess additive interaction using data on
relative risks. When the probability of the outcome is rare in all exposure
strata then odds ratios will approximate risk ratios i.e. pge=(1�pge)

p00=(1�p00) �
pge
p00
and

thus we can approximate RERI by

RERIOR = OR11 �OR10 �OR01 + 1 � RERI:

This �nal measure, RERIOR = OR11 � OR10 � OR01 + 1, is advantageous
because it is an approximate measure of additive interaction and yet can also
be obtained directly from logistic regression analyses and from case-control
data. We will, however, �rst begin with additive interaction on the absolute
risk scale using cohort data.

Additive Interaction in Cohort Studies Using A Linear Risk Model

Suppose data were available from a cohort study and we were to use a linear
risk model to measure additive interaction:

P (Y = 1jG = g; E = e) = �0 + �1g + �2e+ �3ge: (1)

In this model �3 = p11� p10� p01 + p00 is our measure of additive interaction.
Suppose we plan to �t this model to the cohort data using maximum likelihood
and use a Wald test for the null hypothesis �3 = 0. Once we have �t the model
and obtained an estimate b�3 of �3 from the data, the Wald test statistic for the
null hypothesis �3 = 0 is given by b�3=bV where bV is the estimated variance ofb�3. We would reject the null at signi�cance level � if j b�3=bV j > Z1��=2 where
Z1��=2 is the (1��=2)th quantile of the standard normal distribution. Suppose
we wish to calculate the sample size required to reject the null hypothesis with
signi�cance level � and power � if the magnitude of the interaction were �3 = �.

By standard sample size arguments, the sample size required to detect
an additive interaction of magnitude �3 = � with signi�cance level � and power
� is

n =
(Z1��=2 + Z�)

2V

�2

where Z1��=2 and Z� are the (1 � �=2)th and �th quantiles respectively of
the standard normal distribution and where V is the variance of b�3 under the
alternative that �3 = �. The di¢ culty lies in calculating the variance V . In
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Appendix 1, we show that the variance V is given by

V =
1

L0
+
1

F 0
+
1

J 0
+
1

R0

where

L0 =
1

(�0)(1� �0)
�00

F 0 =
1

(�0 + �1)f1� (�0 + �1)g
�10

J 0 =
1

(�0 + �2)f1� (�0 + �2)g
�01

R0 =
1

(�0 + �1 + �2 + �3)f1� (�0 + �1 + �2 + �3)g
�11:

Thus to calculate the sample size we would need to specify (i) the signif-
icance level �, the power �, and the magnitude of additive interaction �3 = �;
(ii) the proportion of subjects in each exposure stratum, �00; �10; �01; �11; and
(iii) the main e¤ect of the two exposures on the additive scale �1 and �2 and
the baseline risk of the doubly unexposed group �0 = P (Y = 1jG = 0; E = 0).

Instead of specifying the proportion of subjects in each joint exposure
stratum �00; �10; �01; �11, we could instead specify the marginal probability of
each exposure �g = P (G = 1) and �e = P (E = 1) along with the odds ratio
relating G and E, � = fP (G = 1jE = 1)=P (G = 0jE = 1g=fP (G = 1jE =
0)=P (G = 0jE = 0g. The probabilities �00; �10; �01; �11 are then given by
(Demidenko, 2008):

�00 =
1� �e
1 + C

�10 =
(1� �e)C
1 + C

�01 =
�e

1 + C�

�11 =
C��e
1 + C�

(2)

162

Epidemiologic Methods, Vol. 1 [2012], Iss. 1, Art. 8

Authenticated | 134.174.187.56
Download Date | 12/18/12 8:21 PM



where

C =
q +

p
q2 + 4�g(1� �g)�
2(1� �g)�

and where q = �g(1 + �) + �e(1��)� 1:

If G and E are independent then � = 1 and C simpli�es to C = �e=(1� �e).
If instead of calculating the required sample size for a �xed power �,

we wanted to calculate the power for a given sample size using the Wald test
for the null hypothesis �3 = 0 based on model (1) we could proceed as follows.
For a �xed sample size n the power to reject the null �3 = 0 at signi�cance
level � under the alternative that �3 = � is given by

Power = ��1
n
�Z1��=2 + �

p
(n=V )

o
where ��1 is the inverse cumulative distribution function for a standard normal
random variable and where V can be calculated as above. In Appendix 2 we
describe how to use a simple Excel spreadsheet (included with this paper as
an online supplement) to carry out such sample size and power calculations
automatically. The online supplement also provides Excel spreadsheets for the
sample size and power calculations for additive interaction using relative excess
risk due to interaction from logistic regression with cohort or case-control data
described in the following sections. The use of these Excel spreadsheets is
described in detail in Appendix 2. Finally, it should be noted that if the
null hypothesis were rejected for extreme values of �3 on either side of zero
(two-sided test) then the relevant power formula would be:

Power = ��1
n
�Z1��=2 + �

p
(n=V )

o
+ ��1

n
�Z1��=2 � �

p
(n=V )

o
:

Before moving on, we give a brief example of the use of these formulae
for additive interaction.

Example 1. Suppose we wish to calculate the power of a test at signif-
icance level � = 0:05, with n = 4000, with the prevalence of the genetic and
environmental factors being �g = 0:5 and �e = 0:3 respectively and assuming
these are independent so that� = 1, with the probability of the outcome in the
reference category of �0 = P (Y = 1jG = 0; E = 0) = 0:02, with main e¤ects on
the risk di¤erence scale of �1 = 0:01 and �2 = 0:01 and with additive interac-
tion �3 = 0:02. We can use the equations in (2) to calculate �00 = 0:35; �10 =
0:35; �01 = 0:15; �11 = 0:15 and from this we can calculate L0; F 0; J 0; R0 and
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the variance V and the power Power = ��1
n
�Z1��=2 + �

p
(n=V )

o
to obtain

0:32.

Additive Interaction in Cohort Studies Using Logistic Regression
and RERI

In this section we consider power and sample size calculations for measures
of interaction based on RERIOR obtained from logistic regression using co-
hort data. We will �rst review the power and sample size calculations for
multiplicative interaction from logistic regression using cohort data given by
Demidenko (2008) since the variance calculation of Demidenko will underlie
those given here for additive interaction using the relative excess risk due to
interaction.

Suppose we �t a logistic regression model to cohort data:

log itfP (Y = 1jG = g; E = e)g = 
0 + 
1g + 
2e+ 
3ge: (3)

The coe¢ cient 
3 is generally referred to as a measure of interaction of the
multiplicative scale. The exponentiated coe¢ cient is equal to the odds ratio
multiplicative interaction ratio e
3 = IOR = OR11

OR10OR01
. Suppose we wish to use

a Wald test for the null hypothesis 
3 = 0. The sample size required to detect
a multiplicative interaction of magnitude 
3 = � with signi�cance level � and
power � is

n =
(Z1��=2 + Z�)

2Vmult(OR)
�2

where Z1��=2 and Z� are the (1��=2)th and �th quantiles respectively of the
standard normal distribution and where Vmult(OR) is the variance of b
3 under
the alternative that �3 = �. Demidenko (2008) derives the variance matrix for
the maximum likelihood estimator of (
0; 
1; 
2; 
3), given in Appendix 1, and
speci�cally shows that

Vmult(OR) =
1

L
+
1

F
+
1

J
+
1

R
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where

L =
e
0

(1 + e
0)2
�00

F =
e
0+
1

(1 + e
0+
1)2
�10

J =
e
0+
2

(1 + e
0+
2)2
�01

R =
e
0+
1+
2+
3

(1 + e
0+
1+
2+
3)2
�11: (4)

Once again, to calculate the sample size we would need to specify
(i) the signi�cance level �, the power �, and the magnitude of additive in-
teraction 
3 = �; (ii) the proportion of subjects in each exposure stratum,
�00; �10; �01; �11; and (iii) the main e¤ect odds ratios of the two exposures
on the logistic scale, 
1 and 
2, and the log odds of the baseline risk of
the doubly unexposed group 
0 = logfP (Y = 1jG = 0; E = 0)=P (Y =
0jG = 0; E = 0)g. Once again, if instead of specifying the joint probabili-
ties �00; �10; �01; �11, we speci�ed the marginal probabilities of each exposure
�g = P (G = 1) and �e = P (E = 1) and the odds ratio relating G and E,
� = fP (G = 1jE = 1)=P (G = 0jE = 1g=fP (G = 1jE = 0)=P (G = 0jE = 0g
then we could obtain the �00; �10; �01; �11 using the formulae in (2). And
once again, if instead of calculating the required sample size for a given
power, we wanted to calculate the power for a given sample size we could
use Power = ��1

�
�Z1��=2 + �

p
(n=Vmult(OR))

	
.1

1Demidenko (2008) also noted that a number of previous authors (Hwang et al., 1994;
Foppa and Spiegelman, 1997) who had considered sample size and power calculations for
interaction in logistic regression had relied on a di¤erent formula for their sample size cal-
culations. These other authors had assumed that for the test statistic, the variance of b
3
had been calculated under the null hypothesis of no interaction. When the variance for
the test statistic is calculated under the null of no interaction then the required sample

size is given by n =
(Z1��=2

p
V0+Z�

p
Vmult(OR))

�2 rather than by n = (Z1��=2+Z�)
2Vmult(OR)

�2 ,
where V0 is the variance of b
3 calculated under the null that 
3 = 0. Demidenko (2008)
points out that although the sample size calculations of Hwang et al. (1994) and Foppa and
Spiegelman (1997) would be �ne if, for b
3, the variance were indeed calculated under the
null, in practice, the variance of b
3 is almost always calculated under the alternative; it is
the variance under the alternative that is generally given as the default in standard logistic
regression output. Thus, the sample size calculations of Hwang et al. (1994) and Foppa
and Spiegelman (1997), although not technically incorrect, do not correspond to the test
statistics that are generally used in practice. A similar point and criticism was made by
Garcia-Closas and Lubin (1999) some years earlier. Both Garcia-Closas and Lubin (1999)
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Example 2. Suppose we wish to calculate the power of a test at signif-
icance level � = 0:05, with n = 5000, with the joint prevalence of the genetic
and environmental factors being �00 = 0:35; �10 = 0:20; �01 = 0:20; �11 = 0:25
respectively, with the probability of the outcome in the reference category of
P (Y = 1jG = 0; E = 0) = 0:015, with main e¤ects on the odds ratio scale
of e
1 = 1:3 and e
2 = 1:4 and with odds ratio multiplicative interaction
e
3 = 1:6. We can calculate L; F; J;R from these values and the variance
Vmult(OR) to obtain Power = ��1

n
�Z1��=2 + �

p
(n=V )

o
= 0:216.

We will now use the variance matrix calculations of Demidenko (2008)
to derive sample size and power formulae for the relative excess risk due to
interaction (RERI). The RERI from logistic regression model (3) is given by:

RERIOR = e

1+
2+
3 � e
1 � e
2 + 1:

Suppose we wish to use a Wald test for the null hypothesis RERIOR = 0. The
sample size required to detect a RERIOR of magnitude � = e
1+
2+
3 � e
1 �
e
2 + 1 with signi�cance level � and power � is

n =
(Z1��=2 + Z�)

2VRERI(OR)
�2

where Z1��=2 and Z� are the (1 � �=2)th and �th quantiles respectively
of the standard normal distribution and where VRERI(OR) is the variance of
RERIOR = eb
1+b
2+b
3 � eb
1 � eb
2 + 1 under the alternative. Using the delta
method, we show in Appendix 1 that this variance is given by:

VRERI(OR) = (
1

L
+
1

R
)e2(
1+
2+
3) � 2

L
e2
1+
2+
3 � 2

L
e
1+2
2+
3

+(
1

L
+
1

F
)e2
1 + (

1

L
+
1

J
)e2
2 +

2

L
e
1+
2

where L; F; J;R are given as in equation (4) above.
To calculate the sample size to reject the null of no additive interaction

using RERIOR, we would need to specify (i) the signi�cance level �, the power
�; (ii) the proportion of subjects in each exposure stratum, �00; �10; �01; �11;

and Demidenko (2008) note that when interactions are large, the sample size calculations
using the "null-variance" can underestimate the required sample size if the test statistic
with the variance under the alternative is in fact used. Likewise a similar point pertains to
the sample size and power calculations of Yang et al. (1997) for multiplicative interaction
in case-only studies (cf. VanderWeele, 2011).
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and (iii) the main e¤ect odds ratios of the two exposures on the logistic scale,

1 and 
2, the log odds of the baseline risk of the doubly unexposed group 
0 =
logfP (Y = 1jG = 0; E = 0)=P (Y = 0jG = 0; E = 0)g, and the magnitude
of the interaction on the multiplicative scale 
3. Instead of specifying the
magnitude of the interaction on the multiplicative scale, 
3, one could specify
the magnitude of RERIOR under the alternative RERIOR = � and then back-
calculate the magnitude of 
3 = log(� + e


1 � e
2 � 1)� 
1 � 
2.
And once again, if instead of specifying the joint probabilities

�00; �10; �01; �11, we speci�ed the marginal probabilities of each exposure �g =
P (G = 1) and �e = P (E = 1) and the odds ratio relating G and E, � =
fP (G = 1jE = 1)=P (G = 0jE = 1g=fP (G = 1jE = 0)=P (G = 0jE = 0g
then we could obtain �00; �10; �01; �11 using the formulae in (2). And once
again, if instead of calculating the required sample size for a given power, we
wanted to calculate the power for a given sample size we could use Power =
��1

�
�Z1��=2 + �

p
(n=VRERI(OR))

	
.

Example 3. Suppose again we wish to calculate the power of a test
at signi�cance level � = 0:05, with n = 5000, with the joint prevalence of
the genetic and environmental factors being �00 = 0:35; �10 = 0:20; �01 =
0:20; �11 = 0:25 respectively, with the probability of the outcome in the ref-
erence category of P (Y = 1jG = 0; E = 0) = 0:015, with main e¤ects on
the odds ratio scale of e
1 = 1:3 and e
2 = 1:4 and with odds ratio mul-
tiplicative interaction e
3 = 1:6 as in Example 2, but that we now wish to
calculate the power for testing RERIOR > 0. Here the true RERIOR is
� = e
1+
2+
3 � e
1 � e
2 + 1 = (1:3)(1:4)(1:6)� (1:3)� (1:4) + 1 = 1:212 > 0.
From L; F; J;R we can calculate the variance VRERI(OR) to obtain Power =
��1

�
�Z1��=2 + �

p
(n=VRERI(OR))

	
= 0:482. In this example, the power to

detect additive interaction, 0:482, is greater than that to detect multiplicative
interaction, 0:216.

The reader is reminded that the tests for additive interaction using
RERIOR hold only approximately to the extent that the outcome is rare so
that RERIOR approximates RERI on the risk ratio scale. In Appendix 1 we
also derive sample size and power formulae for the multiplicative interaction
from a log-linear model and for additive interaction using RERI estimated
from a log-linear model. However, if the measure of additive interaction is �t
with cohort data, it may be preferable to �t model (1) directly for additive
interaction using absolute risks rather than employing RERI.
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Additive Interaction in Case-Control Studies Using Logistic Regres-
sion and RERI

Suppose instead we �t a logistic regression model to case-control data:

log itfP (Y = 1jG = g; E = e)g = 
0 + 
1g + 
2e+ 
3ge:

The sample size required to detect a RERIOR of magnitude � = e
1+
2+
3 �
e
1 � e
2 + 1 with signi�cance level � and power � is

n =
(Z1��=2 + Z�)

2V �RERI(OR)
�2

where

V �RERI(OR) = (
1

L�
+
1

R�
)e2(
1+
2+
3) � 2

L�
e2
1+
2+
3 � 2

L�
e
1+2
2+
3

+(
1

L�
+
1

F �
)e2
1 + (

1

L�
+
1

J�
)e2
2 +

2

L�
e
1+
2

with

L� =
e
0

(1 + e
0)2
��00

F � =
e
0+
1

(1 + e
0+
1)2
��10

J� =
e
0+
2

(1 + e
0+
2)2
��01

R� =
e
0+
1+
2+
3

(1 + e
0+
1+
2+
3)2
��11:

and where ��00; �
�
10; �

�
01; �

�
11 are now the proportions of subjects in each joint

exposure stratum in the case-control sample.
If we know the overall outcome prevalence in the underlying popula-

tion, P (Y = 1), we could also obtain the proportions ��00; �
�
10; �

�
01; �

�
11 from

the proportions of subjects in each joint exposure stratum in the underly-
ing population, �00; �10; �01; �11, though doing so requires solving a non-linear
equation numerically (Demidenko, 2008). Alternatively, if the outcome is rare
we can obtain ��00; �

�
10; �

�
01; �

�
11 from �00; �10; �01; �11 approximately using the
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following formulas (see Appendix 1 for proof):

��00 � �00P
�(Y = 0) +

�00
�00 + �10e
1 + �01e
2 + �11e
1+
2+
3

P �(Y = 1)

��10 � �10P
�(Y = 0) +

e
1�10
�00 + �10e
1 + �01e
2 + �11e
1+
2+
3

P �(Y = 1)

��01 � �01P
�(Y = 0) +

e
2�01
�00 + �10e
1 + �01e
2 + �11e
1+
2+
3

P �(Y = 1)

��11 � �11P
�(Y = 0) +

e
1+
2+
3�11
�00 + �10e
1 + �01e
2 + �11e
1+
2+
3

P �(Y = 1)

where P �(Y = 0) is the proportion of controls in the case-control sample
and P �(Y = 1) is the proportion of cases in the case-control sample. If we
instead specify the marginal probabilities of each exposure �g = P (G = 1) and
�e = P (E = 1) and the odds ratio, �, relating G and E, in the underlying
population then we can calculate �00; �10; �01; �11 using the formulae in (2).

Thus, to calculate the sample size to reject the null of no additive
interaction using RERIOR from case-control data we would need to specify (i)
the signi�cance level �, the power �; (ii) the proportion of subjects in each
exposure stratum, ��00; �

�
10; �

�
01; �

�
11 in the case-control sample, or alternatively

these proportions �00; �10; �01; �11 or the marginal probabilities and marginal
odds ratio, �g; �e;�, n the underlying population along with a rare outcome
assumption and the proportions of cases P �(Y = 1) in the case-control sample,
and �nally (iii) the main e¤ect odds ratios of the two exposures on the logistic
scale, 
1 and 
2, the log odds of the baseline probability of the outcome in the
doubly unexposed group 
0 = logfP �(Y = 1jG = 0; E = 0)=P �(Y = 1jG =
0; E = 0)g in the case-control sample, and the magnitude of the interaction on
the multiplicative scale 
3 (or instead the magnitude of RERIOR = � and then
back-calculate the magnitude of 
3 = log(�+e


1�e
2�1)�
1�
2). Note that
if the joint or marginal exposure probabilities are speci�ed separately for the
cases and controls then under an assumption of a rare outcome, the distribution
of the exposures amongst the controls could be used as an approximation to
�00; �10; �01; �11 or �g; �e;�.

Note also that with case control data, 
0 = logfP �(Y = 1jG = 0; E =
0)=P �(Y = 0jG = 0; E = 0)g is the log odds of baseline probability of the
outcome in doubly unexposed group in the case-control sample i.e. the log the
number of cases to controls in the study for the doubly unexposed group. It
is shown in the Appendix that under a rare outcome assumption 
0 can be
approximated as 
0 � log it[1=f1+(�00+�10e
1+�01e
2+�11e
1+
2+
3)P �(Y =
0)=P �(Y = 1)g].
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Example 4. Suppose we wish to calculate the same size required for
a test at signi�cance level � = 0:05, with power � = 0:80, with the joint
prevalence of the genetic and environmental factors being �g = 0:5; �e = 0:3
respectively in the underlying population with the factors being independent
in the underlying population so that � = 1. Suppose that the number of cases
and controls in the study were going to be equal P �(Y = 1) = P �(Y = 0) =
0:5, with main e¤ects on the odds ratio scale of e
1 = 1:1 and e
2 = 1:1 and
with multiplicative interaction e
3 = 1:5. We can calculate that the sample size
then required to detect positive multiplicative interaction would be n = 3447.
We can also calculate that sample size required to detect positive interaction
using RERIOR would be n = 2212.

It should also be noted that when multiplicative interaction is of in-
terest and the genetic and environmental factors are independent of one an-
other in the underlying population, a "case-only" estimator of multiplicative
interaction will have greater power to detect multiplicative interaction as it
exploits the independence assumption (Piegorsch et al., 1994; Yang et al.,
1999). Power and sample size calculations for case-only estimators have been
considered elsewhere (Yang et al., 1999; VanderWeele, 2011). Although these
case-only estimators can be quite powerful, they are also fairly sensitive to
the assumption that the two exposures are independent in the population and
can result in considerable bias if this assumption does not hold (Albert et al.,
2001).

A Power Comparison of Additive and Multiplicative Interaction

VanderWeele (2009a) noted that in a log-linear model with non-negative main
e¤ects, whenever positive multiplicative interaction is present on the risk ratio
scale, positive additive interaction on the risk di¤erence scale will be present as
well; the reverse implication does not hold. Here we will explore power to detect
such additive or multiplicative interaction and we will consider the odds ratio
scale rather than the risk ratio scale. In this power comparison we will assume
a case-control study with a rare outcome so that RERIOR approximates a
measure of additive interaction. Table 1 below reports power for a number of
scenarios with varying sample sizes, main e¤ect odds ratios and multiplicative
interaction parameters on the odds ratio scale IOR = OR11

OR10OR01
.
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Table 1. Power to detect additive interaction and multiplicative interaction for
various sample sizes, main e¤ects, and interaction parameters (�rst number in
each column is power to detect additive interaction; second number is power
for multiplicative interaction)
IOR OR10 OR01 n = 500 n = 1000 n = 3000 n = 5000
1.1 1 1 :05; :05 :06; :06 :10; :09 :14; :13
1.1 1.3 1.3 :07; :04 :10; :05 :23; :09 :34; :12
1.1 1.5 1.8 :13; :04 :23; :05 :55; :08 :77; :11
1.3 1 1 :12; :11 :21; :17 :50; :42 :72; :62
1.3 1.3 1.3 :18; :10 :32; :15 :73; :37 :91; :56
1.3 1.5 1.8 :27; :09 :48; :14 :91; :33 :99; :50
1.5 1 1 :25; :19 :44; :34 :88; :77 :98; :93
1.5 1.3 1.3 :32; :17 :56; :30 :95; :70 1:00; :89
1.5 1.5 1.8 :40; :15 :68; :26 :99; :63 1:00; :84
2 1 1 :57; :44 :85; :73 1:00; :99 1:00; 1:00
2 1.3 1.3 :58; :39 :86; :65 1:00; :98 1:00; 1:00
2 1.5 1.8 :59; :34 :87; :59 1:00; :97 1:00; 1:00
3 1 1 :81; :77 :98; :97 1:00; 1:00 1:00; 1:00
3 1.2 1.3 :74; :70 :96; :94 1:00; 1:00 1:00; 1:00
3 1.5 1.8 :68; :62 :93; :89 1:00; 1:00 1:00; 1:00

.

In these examples it is assumed that the proportion of case and controls
in the case-control sample are equal and that the prevalence of the genetic and
environmental factors are each �g = �e = 0:5 with the odds ratio relating these
factors being � = 1:1. Note that in all scenarios considered there is positive
interaction on both additive and multiplicative scales. Power for one-sided
test (rejecting only for positive interaction) is reported.

We see that for the scenarios considered here with non-negative main
e¤ects and positive interaction, power is greater to detect additive interaction
than multiplicative interaction. However, as noted in Greenland (1983), when
outcome probabilities are additive or sub-additive, power to detect a (negative)
multiplicative interaction will often be greater.

Power and Sample Size Calculations for Su¢ cient Cause Interactions
and Epistatic Interactions

VanderWeele and Robins (2007, 2008) discuss "causal" or "su¢ cient cause"
interactions within the su¢ cient cause and counterfactual frameworks (Roth-
man, 1976; Rubin, 1990; Hernán, 2004) which provide a somewhat stronger
notion of positive additive interaction. A su¢ cient cause interaction is present
if there are individuals for whom the outcome would occur if both exposures

171

VanderWeele: Sample Size and Power Calculations for Additive Interactions

Published by De Gruyter, 2012

Authenticated | 134.174.187.56
Download Date | 12/18/12 8:21 PM



are present but would not occur if just one or the other exposure is present.
In counterfactual notation, if we let Yge denote the counterfactual outcome
(or potential outcome) for each subject if, possibly contrary to fact, G had
been set to g and E had been set to e, then a su¢ cient cause interaction is
present if for some individual Y11 = 1 but Y10 = Y01 = 0. VanderWeele and
Robins (2007, 2008) showed that if the e¤ect of the two exposures were un-
confounded (in that the counterfactual outcomes Yge were independent of the
actual exposures fG;Eg) then

p11 � p10 � p01 > 0

would imply the presence of a su¢ cient cause interaction. This is a stronger
condition than regular positive additive interaction which only requires p11 �
p10 � p01 + p00 > 0 because with the condition p11 � p10 � p01 > 0 we are no
longer adding back in the outcome probability p00 for the doubly unexposed
group. The condition p11 � p10 � p01 > 0 expressed in terms of RERI is
equivalent to RERI > 1.

VanderWeele (2010ab) discussed empirical tests for an even stronger
notion of interaction. We might say that there is a "singular" or "epistatic"
interaction if there are individuals in the population who will have the outcome
if and only if both exposures are present; in counterfactual notation, that is,
there are individuals for whom Y11 = 1 but Y10 = Y01 = Y00 = 0. In the
genetics literature, when gene-gene interactions are considered, such response
patterns are sometimes called instances of "compositional epistasis" (Phillips,
2008; Cordell, 2009) and constitute settings in which the e¤ect of one genetic
factor is masked unless the other is present. VanderWeele (2010ab) noted that
if the e¤ects of the two exposures on the outcome were unconfounded then

p11 � p10 � p01 � p00 > 0

would imply the presence of such an "epistatic interaction". Again this is an
even stronger notion of interaction in that we are now subtracting p00. The
condition p11 � p10 � p01 � p00 > 0 expressed in terms of RERI is equivalent
to RERI > 2.

It is relatively straightforward to derive sample size and power formulae
for tests for such su¢ cient cause or epistatic interactions. The sample size for
RERI given above could be used but for su¢ cient cause interaction, to test
RERI > 1, one would replace the � in the denominator of the sample size
formula by (��1); and for epistatic interaction, to test RERI > 2, one would
replace the � in the denominator of the formula by (� � 2).
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Thus, for cohort data, to detect a su¢ cient cause interaction (RERI >
1) at signi�cance level � with power � when the true RERI is � = e
1+
2+
3�
e
1 � e
2 + 1, the required sample size would be

n =
(Z1��=2 + Z�)

2VRERI
(� � 1)2

where VRERI is the variance of RERI (see Appendix 1). And likewise, the
power to detect a su¢ cient cause interaction for a given sample size is Power =
��1

n
�Z1��=2 + (� � 1)

p
(n=VRERI)

o
. Similar formulae hold for odds ratios

and using case-control data under a rare outcome: once again, one simply
replaces � with (� � 1) in all relevant formulae.

Similarly, for cohort data, to detect an epistatic interaction (RERI >
2) at signi�cance level � with power � when the true RERI is � = e
1+
2+
3�
e
1 � e
2 + 1, the required sample size would be

n =
(Z1��=2 + Z�)

2VRERI
(� � 2)2 :

The power to detect an epistatic interaction for a given sample size is Power =
��1

n
�Z1��=2 + (� � 2)

p
(n=VRERI)

o
. Similar formulae hold for odds ratios

and using case-control data under a rare outcome: one simply replaces � with
(� � 2) in all relevant formulae.

Finally, it should be noted that if it can be assumed that the e¤ects
of both exposures are positive "monotonic" in the sense that the counterfac-
tuals Yge are non-decreasing in g and e for all individuals (i.e. the exposures
never have protective e¤ects on the outcome for any individual), then the tests
p11�p10�p01+p00 > 0 and RERI > 0 can be used to test for su¢ cient cause
interaction (VanderWeele and Robins, 2007, 2008). For epistatic interactions,
if the e¤ect of at least one of the exposures is positive monotonic (Yge is non-
decreasing in at least of of g and e), then p11 � p10 � p01 > 0 su¢ ces for an
epistatic interaction the tests for RERI > 1 could be used; if the e¤ect of
both exposures are positive monotonic then p11 � p10 � p01 + p00 > 0 su¢ ces
and and tests for RERI > 0 could be used to test for an epistatic interac-
tion (VanderWeele, 2010ab). To interpret interaction estimates causally, or to
draw conclusions about su¢ cient cause or epistatic interaction, control must
be made for confounding for both exposures. If control for confounding is only
made for one of the two exposures the interaction estimates can still often be
interpreted as measures of e¤ect heterogeneity (VanderWeele, 2009b; Vander-
Weele and Knol, 2011), i.e. of how the e¤ect of one exposure varies across
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strata of the other (without commenting on the e¤ect of the second exposure
itself). Sensitivity analysis techniques for interaction and e¤ect modi�cation
(VanderWeele and Arah, 2011; VanderWeele et al., 2012) can also be useful in
assessing the impact of unmeasured confounding for interaction estimates. To
interpret estimates causally, measurement error in interaction analyses should
also be taken into account or corrected for (Garcia Closas et al., 1998; Zhang
et al., 2008; VanderWeele, 2012); such measurement error can often lead to
bias and e¤ect estimate attenuation, and will often decrease power.

Discussion

In this paper we have derived sample size and power formulae for additive
interaction in a variety of scenarios. We have considered additive interaction
for absolute risks in cohort data and also the use of the relative excess risk
due to interaction from logistic regression using cohort or case-control data.
We saw that when the main e¤ects were both positive then the power to
detect positive interaction on the additive scale was in general greater than
on the multiplicative scale. We have also discussed how the sample size and
power calculations for the relative excess risk due to interaction can be easily
modi�ed to provide sample size and power calculations for causal interactions
corresponding to notions of synergism in the su¢ cient cause framework and
to notions of compositional epistasis in genetics.

As is often the case with analytic formulae for sample size and power
calculations, we have not considered the consequences of control for additional
covariates. In settings in which these covariates are independent of the ex-
posures (e.g. if the exposures were both randomized) then adjustment for
additional covariates should increase the power of tests (Robinson and Jewell,
1991) and in such cases the sample size and power calculations in this paper
could be considered conservative estimates.

The sample size and power formulae in this paper provide additional
tools for researchers to utilize additive interaction in their analyses. It is hoped
that these additional tools will further encourage the use of the additive scale
for interaction analysis. Not only is additive interaction more relevant for
public health purposes and more closely related to mechanistic interaction in
the su¢ cient cause framework, but as we have seen, power will often be greater
to detect additive interaction.
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Appendix 1. Derivations

A.1. Derivations for additive interaction with absolute risk and cohort data

For model (1),

P (Y = 1jG = g; E = e) = �0 + �1g + �2e+ �3ge: (1)

the likelihood is given by

L(�0; �1; �2; �3) =
Yn

i=1
(�0+�1gi+�2ei+�3giei)

yif1�(�0+�1gi+�2ei+�3giei)g1�yi

and the log-likelihood by l(�0; �1; �2; �3) =Xn

i=1
yi log(�0+�1gi+�2ei+�3giei)+logf1�(�0+�1gi+�2ei+�3giei)g(1�yi):
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The second derivative is given by

@2l(�0; �1; �2; �3)

@(�0; �1; �2; �3)2
=
Xn

i=1

�yi + 2yiQi �Qi2
Qi2(1�Qi)2

0BB@
1 gi ei giei
gi gi giei giei
ei giei ei giei
giei giei giei giei

1CCA
where Qi = �0 + �1gi + �2ei + �3giei. Let Q = �0 + �1G + �2E + �3GE. The
expected information matrix is then given by

I = E

2664Y � 2Y Q+Q2Q2(1�Q)2

0BB@
1 G E GE
G G GE GE
E GE E GE
GE GE GE GE

1CCA
3775

= E

2664E
2664Y � 2Y Q+Q2Q2(1�Q)2

0BB@
1 G E GE
G G GE GE
E GE E GE
GE GE GE GE

1CCA jG;E
3775
3775

= E

2664E
2664 1

Q(1�Q)

0BB@
1 G E GE
G G GE GE
E GE E GE
GE GE GE GE

1CCA jG;E
3775
3775

which we may write as

1

(�0)(1� �0)
M1�00 +

1

(�0 + �1)f1� (�0 + �1)g
M2�10

+
1

(�0 + �1 + �2)f1� (�0 + �1 + �2)g
M3�01

+
1

(�0 + �1 + �2 + �3)f1� (�0 + �1 + �2 + �3)g
M4�11

where

M1 =

0BB@
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1CCA ;M2 =

0BB@
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

1CCA
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M3 =

0BB@
1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

1CCA ;M4 =

0BB@
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1CCA
If we let L0 = 1

(�0)(1��0)�00, F
0 = 1

(�0+�1)f1�(�0+�1)g�10, J
0 = 1

(�0+�2)f1�(�0+�2)g�01,
and R0 = 1

(�0+�1+�2+�3)f1�(�0+�1+�2+�3)g�11 we then have

I =

0BB@
L0 + F 0 + J 0 +R0 F 0 +R0 J 0 +R0 R0

F 0 +R0 F 0 +R0 R0 R0

J 0 +R0 R0 J 0 +R0 R0

R0 R0 R0 R0

1CCA :
The inverse of this matrix is

I�1 =

0BB@
1
L0 � 1

L0 � 1
L0

1
L0

� 1
L0

1
L0 +

1
F 0

1
L0 � 1

L0 �
1
F 0

� 1
L0

1
L0

1
L0 +

1
J 0 � 1

L0 �
1
J 0

1
L0 � 1

L0 �
1
F 0 � 1

L0 �
1
J 0

1
L0 +

1
F 0 +

1
J 0 +

1
R0

1CCA ,
from which it follows V = 1

L0 +
1
F 0 +

1
J 0 +

1
R0 .

A.2. Derivations for relative excess risk due to interaction from logistic regres-
sion using cohort data

Demidenko (2008) showed that for the logistic regression model (3):

log itfP (Y = 1jG = g; E = e)g = 
0 + 
1g + 
2e+ 
3ge: (3)

the variance-covariance matrix for the maximum likelihood estimate of
(
0; 
1; 
2; 
3) was given by0BB@

1
L

� 1
L

� 1
L

1
L

� 1
L

1
L
+ 1

F
1
L

� 1
L
� 1

F

� 1
L

1
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L
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J
� 1
L
� 1

J
1
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� 1
L
� 1

F
� 1
L
� 1

J
1
L
+ 1

F
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J
+ 1

R

1CCA ,
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where L =
e
0

(1 + e
0)2
�00

F =
e
0+
1

(1 + e
0+
1)2
�10

J =
e
0+
2

(1 + e
0+
2)2
�01

R =
e
0+
1+
2+
3

(1 + e
0+
1+
2+
3)2
�11:

From the delta method, it follows that the variance of \RERI = eb
1+b
2+b
3 �
eb
1 � eb
2 + 1 is given by0BB@

0
e
1+
2+
3 � e
1
e
1+
2+
3 � e
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e
1+
2+
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1

F
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1

L
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2

L
e
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A.3. Derivations for multiplicative and additive interaction for the log-linear
model
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For the log-linear model,

logfP (Y = 1jG = g; E = e)g = �0 + �1g + �2e+ �3ge: (5)

suppose we wish to use a Wald test for the null hypothesis �3 = 0. The sample
size required to detect an multiplicative interaction of magnitude �3 = � with
signi�cance level � and power � is

n =
(Z1��=2 + Z�)

2Vmult(RR)
�2

where Z1��=2 and Z� are the (1��=2)th and �th quantiles respectively of the
standard normal distribution and where Vmult(RR) is the variance of b�3 under
the alternative that �3 = �. Likewise, we can calculate the power for a given
sample size using Power = ��1

�
�Z1��=2 + �

p
(n=Vmult(RR))

	
. The variance

Vmult(RR) can be derived as follows. The likelihood is given by

L(�0; �1; �2; �3) =
Yn

i=1
e(�0+�1gi+�2ei+�3giei)yif1� e(�0+�1gi+�2ei+�3giei)g1�yi

and the log-likelihood by l(�0; �1; �2; �3) =Xn

i=1
yi(�0 + �1gi + �2ei + �3giei) + logf1� e(�0+�1gi+�2ei+�3giei))g(1� yi):

The second derivative is given by

@2l(�0; �1; �2; �3)

@(�0; �1; �2; �3)2
=
Xn

i=1

�(1� yi)Qi
(1�Qi)2

0BB@
1 gi ei giei
gi gi giei giei
ei giei ei giei
giei giei giei giei

1CCA
where Qi = e�0+�1gi+�2ei+�3giei. Let Q = e�0+�1G+�2E+�3GE. The expected
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information matrix is then given by

I = E

2664(1� Y )Q(1�Q)2

0BB@
1 G E GE
G G GE GE
E GE E GE
GE GE GE GE

1CCA
3775

= E

2664E
2664(1� Y )Q(1�Q)2

0BB@
1 G E GE
G G GE GE
E GE E GE
GE GE GE GE

1CCA jG;E
3775
3775

= E

2664E
2664 Q

(1�Q)

0BB@
1 G E GE
G G GE GE
E GE E GE
GE GE GE GE

1CCA jG;E
3775
3775

which we may write as

e�0

(1� e�0)M1�00 +
e�0+�1

(1� e�0+�1)M2�10

+
e�0+�2

(1� e�0+�2)M3�01 +
e�0+�1+�2+�3

(1� e�0+�1+�2+�3)M4�11

where

M1 =

0BB@
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1CCA ;M2 =

0BB@
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

1CCA

M3 =

0BB@
1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

1CCA ;M4 =

0BB@
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1CCA
If we let Ly = e�0

(1�e�0 )�00, F
y = e�0+�1

(1�e�0+�1 )�10, J
y = e�0+�2

(1�e�0+�2 )�01, and R
y =

e�0+�1+�2+�3
(1�e�0+�1+�2+�3 )�11 we then have

I =

0BB@
Ly + F y + Jy +Ry F y +Ry Jy +Ry Ry

F y +Ry F y +Ry Ry Ry

Jy +Ry Ry Jy +Ry Ry

Ry Ry Ry Ry

1CCA :
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The inverse of this matrix is

I�1 =

0BB@
1
Ly � 1

Ly � 1
Ly

1
Ly

� 1
Ly

1
Ly +

1
F y

1
Ly � 1

Ly �
1
F y

� 1
Ly

1
Ly

1
Ly +

1
Jy � 1

Ly �
1
Jy

1
Ly � 1

Ly �
1
F y � 1

Ly �
1
Jy

1
Ly +

1
F y +

1
Jy +

1
Ry

1CCA ,
from which it follows V = 1

Ly +
1
F y +

1
Jy +

1
Ry .

The RERI from log-linear model (5) is given by:

RERI = e�1+�2+�3 � e�1 � e�2 + 1:

Suppose we wish to use a Wald test for the null hypothesis RERI = 0. The
sample size required to detect aRERI of magnitude � = e�1+�2+�3�e�1�e�2+1
with signi�cance level � and power � is

n =
(Z1��=2 + Z�)

2VRERI(RR)
�2

where Z1��=2 and Z� are the (1��=2)th and �th quantiles respectively of the
standard normal distribution and where VRERI(RR) is the variance of RERI =
eb�1+b�2+b�3�eb�1�eb�2+1 under the alternative. Likewise, to calculate the power
for a given sample size we could use

Power = ��1
n
�Z1��=2 + �

q
(n=VRERI(RR))

o
:

Using an argument analogous to that in Appendix A.2 we have that

V �RERI(RR) = (
1

Ly
+
1

Ry
)e2(�1+�2+�3) � 2

Ly
e2�1+�2+�3 � 2

Ly
e�1+2�2+�3

+(
1

Ly
+
1

F y
)e2�1 + (

1

Ly
+
1

Jy
)e2�2 +

2

Ly
e�1+�2 :

A.4 Derivations for Case-Control Exposure Probabilities from the Probabilities
in the Underlying Population

Here we derive the proportions in each joint exposure group in the case-
control sample, ��00; �

�
10; �

�
01; �

�
11, from the proportion in each joint exposure

group in the underlying population, �00; �10; �01; �11, under an assumption
that the outcome is rare. We will use P �(�) to denote probabilities in the case-
control sample and P (�) to denote probabilities in the underlying population.
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We have that ��ge =

P �(G = g; E = e)

= P �(G = g; E = ejY = 0)P �(Y = 0) + P �(G = g; E = ejY = 1)P �(Y = 1)
= P (G = g; E = ejY = 0)P �(Y = 0) + P (G = g; E = ejY = 1)P �(Y = 1)
� �geP

�(Y = 0) + P (G = g; E = ejY = 1)P �(Y = 1)

where the �nal equality follows because the outcome is rare and thus the expo-
sure distribution among the controls will approximate that in the underlying
population. We then also have that

P (G = g; E = ejY = 1) =
P (Y = 1jG = g; E = e)P (G = g; E = e)

P (Y = 1)

=
P (Y = 1jG = g; E = e)P (G = g; E = e)X
i;j
P (Y = 1jG = i; E = j)P (G = i; E = j)

=

P (Y=1jG=g;E=e)
P (Y=1jG=0;E=0)�geX
i;j

P (Y=1jG=i;E=j)
P (Y=1jG=0;E=0)�ij

�
P (Y=1jG=g;E=e)=f1�P (Y=1jG=g;E=e)g
P (Y=1jG=0;E=0)=f1�P (Y=1jG=0;E=0)g�geX
i;j

P (Y=1jG=i;E=j)=f1�P (Y=1jG=i;E=j)g
P (Y=1jG=0;E=0)=f1�P (Y=1jG=0;E=0)g�ij

where the �nal equality follows from the rare outcome assumption which im-
plies that risk ratios approximate odds ratio. The odds ratios can then be
obtained from the speci�cation of the parameters of the logistic regression
model and we thus obtain:

��00 � �00P
�(Y = 0) +

�00
�00 + �10e
1 + �01e
2 + �11e
1+
2+
3

P �(Y = 1)

��10 � �10P
�(Y = 0) +

e
1�10
�00 + �10e
1 + �01e
2 + �11e
1+
2+
3

P �(Y = 1)

��01 � �01P
�(Y = 0) +

e
2�01
�00 + �10e
1 + �01e
2 + �11e
1+
2+
3

P �(Y = 1)

��11 � �11P
�(Y = 0) +

e
1+
2+
3�11
�00 + �10e
1 + �01e
2 + �11e
1+
2+
3

P �(Y = 1):

Under this rare outcome assumption we can also obtain 
0 = logfP �(Y =
1jG = 0; E = 0)=P �(Y = 0jG = 0; E = 0)g, the log odds of baseline proba-
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bility of the outcome in doubly unexposed group in the case-control sample,
from P �(Y = 0) and P �(Y = 1) because

P �(Y = 1jG = 0; E = 0)

=
P �(G = 0; E = 0jY = 1)P �(Y = 1)

P �(G = 0; E = 0)

=
P (G = 0; E = 0jY = 1)P �(Y = 1)

P �(G = 0; E = 0)

�
�00

�00+�10e
1+�01e
2+�11e
1+
2+
3
P �(Y = 1)

�00P �(Y = 0) +
�00

�00+�10e
1+�01e
2+�11e
1+
2+
3
P �(Y = 1)

=
P �(Y = 1)

�00 + �10e
1 + �01e
2 + �11e
1+
2+
3P �(Y = 0) + P �(Y = 1)

= 1=f1 + (�00 + �10e
1 + �01e
2 + �11e
1+
2+
3)P �(Y = 0)=P �(Y = 1)g:

If instead the proportions in each joint exposure group in the case-control
sample are speci�ed, ��00; �

�
10; �

�
01; �

�
11, then we could obtain 
0 by numerically

solving

P �(Y = 0) =
��00

1 + e
0
+

��10
1 + e
0+
1

+
��01

1 + e
0+
2
+

��11
1 + e
0+
1+
2+
3

for 
0. If the joint or marginal exposure probabilities are speci�ed separately
for the cases and controls then under an assumption of a rare outcome, the
distribution of the exposures amongst the controls could be used as an ap-
proximation to �00; �10; �01; �11 or �g; �e;�.

Appendix 2. Epidemiologic Practice: Excel Spreadsheets for Sample
Size and Power Calculations for Additive and Multiplicative Inter-
action

As part of the online supplement for this paper there are two Excel spread-
sheets that will automatically perform power and sample size calculations for
additive and multiplicative interaction for (i) cohort and (ii) case-control, and
case-only data. All of these spreadsheets return sample size and power calcula-
tions for the Wald test statistic for additive or multiplicative interaction with
variance calculated under the alternative (cf. Demidenko, 2008; VanderWeele,
2011).

The �rst spreadsheet performs power and sample size calculations for
additive and multiplicative interaction for cohort data. For the power calcula-
tions, the user has the option of entering marginal exposure probabilities and
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the odds ratio relating the prevalence of both exposures (Sheet 1) or the joint
exposure probabilities (Sheet 2). On Sheet 1, the user inputs the signi�cance
level of the test (alpha), the sample size (n), the probability of the outcome
in the doubly unexposed reference group (p00), the main e¤ect odds ratio for
the �rst exposure (OR10), the main e¤ect odds ratio for the second exposure
(OR01), the odds ratio multiplicative interaction (IOR=OR11=(OR10�OR01)),
the marginal prevalence of the �rst exposure (P(G=1)), the marginal preva-
lence of the second exposure (P(E=1)) and the odds ratio relating the depen-
dence between the two exposures (OR_GE). The Excel spreadsheet returns
both one-sided power (to detect positive interaction) and two-sided power (to
detect positive or negative interaction) for (i) additive interaction on the risk
di¤erence scale, (ii) multiplicative interaction on the risk ratio scale, (iii) mul-
tiplicative interaction on the odds ratio scale, (iv) additive interaction using
the relative excess risk due to interaction (RERI; cf. Hosmer and Lemeshow,
1992) for risk ratios, and (v) additive interaction using the relative excess risk
due to interaction for odds ratios, assuming a rare outcome. On Sheet 2, the
user speci�es the same inputs except that instead of the marginal probabilities
and odds ratio relating the exposures (P(G=1), P(E=1), OR_GE), the user
speci�es the joint exposure probabilities for each of the four possible exposure
combinations (in the Excel spreadsheet these are pi00, pi10, pi01, pi11). The
Excel spreadsheet then again returns items (i)-(v) above.

For sample size calculations from cohort data, the user has the option of
entering marginal exposure probabilities and the odds ratio relating the preva-
lence of both exposures (Sheet 3) or the joint exposure probabilities (Sheet 4).
The user speci�es exactly the same parameters as the spreadsheet for power
calculations for cohort data except that instead of specifying the sample size,
the power is speci�ed (Power), and the Excel spreadsheet returns the required
sample size for a test of the speci�ed signi�cance level and power to detect
(i) additive interaction on the risk di¤erence scale, (ii) multiplicative interac-
tion on the risk ratio scale, (iii) multiplicative interaction on the odds ratio
scale, (iv) additive interaction using the relative excess risk due to interaction
(RERI) for risk ratios, (v) additive interaction using the relative excess risk
due to interaction for odds ratios, assuming a rare outcome.

The second spreadsheet performs power and sample size calculations for
additive and multiplicative interaction for case-control and case-only data. For
power calculations (Sheet 1), the user inputs the signi�cance level of the test
(alpha), the number of cases (n Cases) and number of controls (n Controls),
the main e¤ect odds ratio for the �rst exposure (OR10), the main e¤ect odds
ratio for the second exposure (OR01), the odds ratio multiplicative interac-
tion (IOR), the marginal prevalence of the �rst exposure (P(G=1)), the mar-
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ginal prevalence of the second exposure (P(E=1)) and the odds ratio relating
the dependence between the two exposures (OR_GE). The Excel spreadsheet
returns both one-sided power (to detect positive interaction) and two-sided
power (to detect positive or negative interaction) for (i) additive interaction
using the relative excess risk due to interaction (RERI) for odds ratios and
(ii) multiplicative interaction on the odds ratio scale. If the two exposures are
speci�ed as independent (i.e. if OR_GE is speci�ed as 1) then the spreadsheet
will also return the power for the case-only estimator of multiplicative inter-
action (cf. Piegorsch et al, 1994; Yang et al., 1999) based on the number of
cases. If the two exposures are not speci�ed as independent (i.e. if OR_GE is
speci�ed as any number other than 1), the spreadsheet will return "#DIV/0!"
for the power for the case-only estimator indicating that the case-only test is
inapplicable in this setting because the two exposures are not independent.
All power calculations for the case-control and case-only power spreadsheet
make a rare outcome assumption. The power calculations are based on the
variance calculated under the alternative (as in Demidenko (2008) for logistic
regression multiplicative interactions and VanderWeele (2011) for case-only
multiplicative interactions) rather the variance calculated under the null, as
the variance under the alternative corresponds to the test statistics that are
commonly used in practice.

For sample size calculations for additive and multiplicative interaction
for case-control and case-only data (Sheet 2), the user inputs the signi�cance
level of the test (alpha), the proportion of cases in the case-control sample
(Cs/(Cs+Cont)), the desired power of the test (Power), the main e¤ect odds
ratio for the �rst exposure (OR10), the main e¤ect odds ratio for the second
exposure (OR01), the odds ratio multiplicative interaction (IOR), the mar-
ginal prevalence of the �rst exposure (P(G=1)), the marginal prevalence of
the second exposure (P(E=1)) and the odds ratio relating the dependence
between the two exposures (OR_GE). The Excel spreadsheet returns the re-
quired sample size for a test of the speci�ed signi�cance level and power for (i)
additive interaction using the relative excess risk due to interaction (RERI)
for odds ratios and (ii) multiplicative interaction on the odds ratio scale. If the
two exposures are speci�ed as independent (i.e. if OR_GE is speci�ed as 1)
then the spreadsheet will also return the required sample size, i.e. number of
cases, to detect multiplicative interaction for the case-only estimator of mul-
tiplicative interaction. If the two exposures are not speci�ed as independent
(i.e. if OR_GE is speci�ed as any number other than 1), the spreadsheet will
return "#DIV/0!" for the required sample size for the case-only estimator in-
dicating that the case-only test is inapplicable in this setting because the two
exposures are not independent. All power calculations for the case-control and
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case-only sample size spreadsheet make a rare outcome assumption. The sam-
ple size calculations are based on the variance calculated under the alternative
as this corresponds to the test statistics that are commonly used in practice
(cf. Garcia-Closas and Lubin, 1999; Demidenko, 2008; VanderWeele, 2011).
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