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Abstract. In this article, we introduce the evalue package, which performs
sensitivity analyses for unmeasured confounding in observational studies using
the methodology proposed by VanderWeele and Ding (2017, Annals of Inter-

nal Medicine 167: 268–274). evalue reports E-values, defined as the minimum
strength of association on the risk-ratio scale that an unmeasured confounder
would need to have with both the treatment assignment and the outcome to fully
explain away a specific treatment-outcome association, conditional on the mea-
sured covariates. evalue computes E-values for point estimates (and optionally,
confidence limits) for several common outcome types, including risk and rate ra-
tios, odds ratios with common or rare outcomes, hazard ratios with common or
rare outcomes, standardized mean differences in outcomes, and risk differences.
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1 Introduction

A fundamental concern when conducting evaluations using observational data is that
unmeasured confounding—one or more additional factors that cause both the treatment
assignment and the outcome—might be mistaken for a treatment effect. For this reason,
researchers endeavor to adjust for all variables considered to influence these associations
when performing analyses. However, in observational research, it is unlikely that data
for all potential confounding variables will be available. Thus, one should conduct a
postestimation sensitivity analysis to assess how strong a relationship would have to be
between an unmeasured confounder and the treatment assignment, as well as between
the unmeasured confounder and the outcome, to explain away an observed treatment
effect.

c© 2020 StataCorp LLC st0593
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Several sensitivity analyses have been developed for different statistical models (see,
for example, Cornfield et al. [1959]; Rosenbaum and Rubin [1983]; Manski [1990]; Lin,
Psaty, and Kronmal [1998]; Rosenbaum [2002, 2010]; Brumback et al. [2004]; Vander-
Weele and Arah [2011]; Imbens [2003]; Imbens and Rubin [2015]; Ding and VanderWeele
[2016]; and VanderWeele and Ding [2017]). Four community-contributed packages are
currently available for conducting sensitivity analysis in Stata: rbounds (Gangl 2004),
mhbounds (Becker and Caliendo 2007), sensatt (Nannicini 2007), and episens (Orsini
et al. 2008). The first three commands are designed for use with matching estimators
based on the approaches developed by Rosenbaum and Rubin (1983) and Rosenbaum
(2002), and the fourth uses the methods described by Greenland (1996) for assessing
sensitivity in epidemiology (2× 2) tables.

In this article, we introduce the evalue package, which performs sensitivity analyses
for unmeasured confounding in observational studies using the methodology proposed
by VanderWeele and Ding (2017). evalue reports the E-value, which is defined as
the minimum strength of association, on the risk-ratio (RR) scale that an unmeasured
confounder would need to have with both the treatment assignment and the outcome,
conditional on the measured covariates, to explain away a treatment-outcome associa-
tion. In contrast with most other sensitivity analysis approaches that focus on whether
confounding of a specified strength would suffice to explain away an effect estimate, the
E-value focuses on the magnitude of the confounder associations that could produce
confounding bias equal to the observed treatment-outcome association. The E-value
approach and formulas are applicable for multiple confounders. The magnitude of the
confounding associations is then interpreted as the maximum RRs that could be pro-
duced comparing any two values of the whole set of unmeasured confounders (conditional
on the measured covariates). See VanderWeele, Ding, and Mathur (2019) for further
discussion and examples. The investigator does not choose the confounding variables (or
specify their confounding associations) but merely reports how strongly an unmeasured
confounder must be related to the treatment assignment and outcome to explain away
an effect estimate; readers or other researchers may then assess whether the confounder
associations of that magnitude are plausible.

2 Methods

The E-value is computed on the RR scale, so results of statistical models other than the
RR must be converted to the RR scale. In this section, we present the methods involved
in computing the E-value for various model types.

2.1 E-value for RR and rate ratio

The basic formula for computing an E-value for any outcome type on the RR scale (and
its confidence limit closest to the null) is as follows (VanderWeele and Ding 2017):1

1. See Ding and VanderWeele (2016) for proof.
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If RR > 1:
E-value (point estimate) = RR+

√

RR× (RR− 1)

E-value (lower limit [LL]) = 1 if LL ≤ 1, else LL+
√

LL× (LL− 1)

If RR < 1:
E-value (point estimate) = 1/RR+

√

1/RR× (1/RR− 1)

E-value (upper limit [UL]) = 1 if UL ≥ 1, else 1/UL+
√

1/UL× (1/UL− 1)

2.2 E-value for odds ratio

When the outcome is relatively rare (for example, < 15% prevalence by the end of
follow-up), the odds ratio (OR) approximates the RR, so the basic E-value formula (in
section 2.1) should be used. In a case–control study, the outcome needs to be rare only
in the underlying population, not in the study sample (the same considerations hold
when the outcome prevalence is instead approximately > 85% by the end of follow-up
because the variable coding can simply be reversed). When the outcome is not rare
(between 15% and 85% prevalence at the end of follow-up), an approximate E-value
may be obtained by replacing the RR with the square root of the OR (VanderWeele
2017); that is, RR ≈

√
OR in the E-value formula presented in section 2.1. Note that

when the outcome is rare, the
√

OR transformation provides a poor approximation, so
the calculations under the “rare” outcome assumption should be used. However, when
the probability of the outcome is between 15% and 85%, the

√
OR approximation works

quite well (Ding and VanderWeele 2016).

2.3 E-value for hazard ratio

When the outcome is relatively rare as described above, the basic E-value formula (in
section 2.1) should be used. When the outcome is common, an approximate E-value may

be obtained (VanderWeele 2017) by applying the approximation RR ≈ (1−0.5
√
HR)/(1−

0.5
√

1/HR) in the E-value formula in section 2.1.

2.4 E-value for standardized mean difference

With standardized effect sizes d (mean of the outcome variable divided by the pooled
standard deviation [SD] of the outcome) and a standard error for this standardized effect
size SD, an approximate E-value may be obtained (Lipsey and Wilson 2001; Vander-
Weele 2017; Linden 2019) by applying the approximation RR ≈ e[0.91×d] in the E-value
formula. Similarly, an approximate confidence interval (CI) for the RR may be obtained
by using the approximation (e[0.91×d−1.78×SD], e[0.91×d+1.78×SD]). This approach relies
on additional assumptions and approximations. Other sensitivity analysis techniques
have been developed for this setting (Lin, Psaty, and Kronmal 1998; Imbens 2003; Van-
derWeele and Arah 2011), but they generally require additional assumptions, and the
variables do not necessarily have a corresponding E-value.
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2.5 E-value for risk difference

If the adjusted risks for the treated and untreated are p1 and p0, then the E-value may be
obtained by replacing the RR with p1/p0 in the E-value formula. The E-value for the CI

on a risk-difference (RD) scale is complex, requiring the computation of several measures
and then the use of a grid search to find the corresponding bias factor that, when
transformed to the RR scale, will elicit the E-value of the lower confidence limit (see Ding
and VanderWeele [2016] for a comprehensive discussion). Alternatively, if the outcome
probabilities p1 and p0 are not small or large (for example, if they are between 0.20
and 0.80), then the approximate approach for differences in continuous outcomes given
in section 2.4 may be used. Other sensitivity analysis techniques have been developed
for this setting (Lin, Psaty, and Kronmal 1998; Imbens 2003; VanderWeele and Arah
2011) but generally require additional assumptions and do not provide a corresponding
E-value.

2.6 E-values for nonnull hypotheses

Thus far, we have described how to calculate E-values to assess the minimum strength of
the association an unmeasured confounder would need to have with both the treatment
assignment and the outcome to move the point estimate, or one limit of the CI, to the
null. However, a similar procedure can be used to assess the minimum magnitude of
both confounder associations that would be needed to move an estimate to some other
value of the RR. If we have an observed RR of RR and want to assess the minimum
strength of both associations that would be needed to shift the estimate to some other
value RRT , then we first take the ratio of the two values, RR/RRT , and then apply the
E-value formula presented in section 2.1 to this ratio. We encourage investigators to
read the original article introducing the E-value (VanderWeele and Ding 2017) to aid
in understanding and interpretation prior to using the package.

3 The evalue package

This section describes the syntax of the commands in the evalue package for various
model types.

3.1 Syntax

E-value for RR and rate ratio:

evalue rr point estimate
[

, lcl(#) ucl(#) true(#)

figure
[

(twoway options)
] ]
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E-value for OR:

evalue or point estimate
[

, lcl(#) ucl(#) true(#) common

figure
[

(twoway options)
] ]

E-value for hazard ratio (HR):

evalue hr point estimate
[

, lcl(#) ucl(#) true(#) common

figure
[

(twoway options)
] ]

E-value for standardized mean difference (SMD):

evalue smd point estimate
[

, se(#) true(#) figure
[

(twoway options)
] ]

E-value for RD:

evalue rd #a #b #c #d
[

, true(#) level(#) grid(#)

figure
[

(twoway options)
] ]

In the syntax for evalue rd, #a is the number of exposed, diseased individuals
(E = 1, D = 1); #b is the number of exposed, nondiseased individuals (E = 1, D = 0);
#c is the number of unexposed, diseased individuals (E = 0, D = 1); and #d is the
number of unexposed, nondiseased individuals (E = 0, D = 0). If the observed RD is
negative, the exposure coding should first be reversed to yield a positive RD.

3.2 Options

lcl(#) specifies the lower limit of the CI around the point estimate. evalue will use
lcl() to compute an E-value for the CI limit if it is closer to the null than ucl().
This option is available for RR, OR, and HR models.

ucl(#) specifies the upper limit of the CI around the point estimate. evalue will use
ucl() to compute an E-value for the CI limit if it is closer to the null than lcl().
This option is available for RR, OR, and HR models.

se(#) specifies the standard error of the point estimate of the SMD (for example,
Cohen’s d) (see [R] esize). evalue will use se() to compute an E-value for the CI

limit closest to the null. This option is available for SMD model.

true(#) specifies a treatment-effects value to which to shift the observed point estimate
other than the null effect. A null true effect (default values in evalue) is 0 in RD

and SMD models and 1 in all ratio-type models.

common specifies that the outcome prevalence is between 15% and 85% at the end of
follow-up for OR and HR models. When the common option is specified, an ap-
proximate E-value is obtained by replacing the RR with the square root of the OR
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(VanderWeele 2017). Note that when the outcome is rare, the
√

OR transformation
provides a poor approximation, and thus the calculations under the “rare” outcome
assumption should be used (by not specifying common). However, when the preva-
lence of the outcome is between 15% and 85%, the

√
OR approximation works quite

well (Ding and VanderWeele 2016).

level(#) specifies the confidence level, as a percentage, for the CI used for producing
RD estimates. The default is level(95).

grid(#) specifies the tolerance for the grid search of the E-value for an RD estimate.
The default is grid(0.0001).

figure
[

(twoway options)
]

produces a curve depicting the range of joint relationships
(exposure–confounder and exposure–disease) that may explain away the estimated
effect (and CI when applicable), with the computed E-values highlighted. A curve
for the E-value of the CI is also displayed in the figure under the following conditions:
1) for RR, OR, and HR models, the user must specify lcl(#) when the point estimate
is greater than 1.0 or ucl(#) when the estimate is lower than 1.0; 2) for an SMD

model, the user must specify se(#); 3) for an RD model, a CI curve is always
produced; and 4) the computed E-value for the CI does not equal 1. Specifying
figure without options uses the default graph settings.

4 Examples

evalue is designed similarly to an immediate command (see [U] 19 Immediate com-

mands) in that it obtains point estimates and CI typed as arguments, rather than from
data stored in memory. This allows an investigator to conduct sensitivity analyses on
results published in the literature (which typically include only a point estimate and
CI) and as a postestimation command using individual-level data. In the following
examples, we illustrate both scenarios.

4.1 E-value for a RR

In a population-based case–control study, Victora et al. (1987) examined associations
between breastfeeding and infant death by respiratory infection. After adjusting for age,
birthweight, social status, maternal education, and family income, the authors found
that infants fed only with formula were 3.9 (95% CI, 1.8 to 8.7) times more likely to die
of respiratory infections than those who were exclusively breastfed. The investigators
controlled for markers of socioeconomic status but not for smoking, and smoking may
reduce breastfeeding and increase risk for respiratory death.

To compute the E-value for this relative risk, we type in the point estimate (3.9)
and the lower and upper confidence limits (1.8 and 8.7, respectively). We also apply
the figure option.
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. evalue rr 3.9, lcl(1.8) ucl(8.7) figure
E-value (point estimate): 7.263
E-value (CI): 3.000

E−value (CI): (3, 3)

E−value: (7.26, 7.26)
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As shown in the output and figure, the E-value for the point estimate is 7.26. This
E-value can be interpreted as follows: “The observed risk ratio of 3.9 could be explained
away by an unmeasured confounder that was associated with both the treatment and the
outcome by a risk ratio of 7.2-fold each, above and beyond the measured confounders,
but weaker confounding could not do so” (VanderWeele and Ding 2017). Similarly,
the E-value for the lower confidence limit (that is, the confidence limit closest to the
null) is 3.0, which can be interpreted as “[a]n unmeasured confounder associated with
respiratory death and breastfeeding by a risk ratio of 3.0-fold each could explain away
the lower confidence limit, but weaker confounding could not” (VanderWeele and Ding
2017). The evidence for causality from these E-values thus looks reasonably strong
because substantial unmeasured confounding would be needed to reduce the observed
association or its CI to null (VanderWeele and Ding 2017).

4.2 E-value for an OR

In this example, we perform sensitivity analysis for a rare outcome rate (that is, < 15%
of cases) by not specifying the common option. We use estimates from a study by
Moorman et al. (2008) that indicated that in premenopausal women who breastfed for
6 to 12 months, the odds of developing ovarian cancer were 0.5 (95% CI: [0.3, 0.8]) times
lower than in women who did not breastfeed.
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. evalue or 0.5, lcl(0.3) ucl(0.8)
E-value (point estimate): 3.414
E-value (CI): 1.809

As shown, the E-value for the point estimate is 3.41 and 1.81 for the CI. The point
estimate seems moderately robust, but confounder associations with breastfeeding and
ovarian cancer of this magnitude could potentially move the CI to the null.

4.3 E-value for a HR

In this example, we use the official Stata command stcox (see [ST] stcox) to estimate
an HR and a CI using Cox regression and then pass on these estimates to evalue hr.
The data are supplied with stcox and are for 48 participants in a cancer drug trial
during which 64.6% of the patients died (a common outcome). Of these 48, 28 received
treatment and 20 received a placebo. The participants ranged in age from 47 to 67
years. We fit a model to assess treatment effects, adjusting for patient age.

. webuse drugtr, clear
(Patient Survival in Drug Trial)

. stcox drug age

(output omitted )

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age 1.120325 .0417711 3.05 0.002 1.041375 1.20526

. evalue hr .1048772, lcl(.0430057) ucl(.2557622) common
E-value (point estimate): 8.245
E-value (CI): 4.483

We see from the stcox output that the drug results in a much lower hazard (HR =
0.105; 95% CI: [0.04, 0.26])—and therefore a longer survivor time—than for those on
the placebo (P < 0.001). The E-value for the HR is 8.25 and 4.48 for the upper
confidence limit, suggesting that the evidence for causality is reasonably strong even
when considering that existing confounding control was relatively poor.

4.4 E-value for a SMD

In this example, we illustrate how to convert a treatment-effects estimate derived from a
linear regression model fit with a binary exposure to an SMD and how to then pass that
estimate (and its standard error) to evalue smd. We begin by implementing regress

(see [R] regress) to evaluate the effect of a mother’s smoking status during pregnancy
on infant birthweight, using a subset of data by Cattaneo (2010). As covariates, we use
mother’s age, education level, marital status, and whether this baby was the mother’s
first birth.
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. webuse cattaneo2, clear
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. regress bweight mbsmoke mage medu mmarried fbaby

(output omitted )

bweight Coef. Std. Err. t P>|t| [95% Conf. Interval]

mbsmoke -224.422 22.07908 -10.16 0.000 -267.7075 -181.1365
mage .4146478 1.821294 0.23 0.820 -3.155956 3.985252
medu 7.914262 3.753915 2.11 0.035 .5548011 15.27372

mmarried 159.1408 20.92324 7.61 0.000 118.1213 200.1603
fbaby -52.95197 17.8149 -2.97 0.003 -87.87765 -18.0263
_cons 3203.872 53.88544 59.46 0.000 3098.231 3309.513

We see that the average birthweight of babies born to mothers who smoked is 224
grams less than babies whose mothers had not smoked. To convert this point estimate
into an SMD, we implement the community-contributed command esizeregi (Linden
2019). To compute the SMD, we also need to retrieve the SD of the dependent variable
(bweight) and get the number of observations in each group (mbsmoke).

. summarize bweight

(output omitted )

. tabulate mbsmoke

(output omitted )

. esizeregi -224.422, sdy(578.8196) n1(864) n2(3778)

(output omitted )

Effect Size Estimate Std. Err. [95% Conf. Interval]

Cohen´s d -0.383382 0.037920 -0.457704 -0.309060

Next, we plug the estimate and standard error into evalue smd to compute the
E-values.

. evalue smd -0.383382, se(0.037920)
E-value (point estimate): 2.187
E-value (CI): 1.981

4.5 E-value for an RD

In this example, we illustrate how to compute the E-value for an RD of a binary outcome.
Unlike the other evalue subcommands, where the user types in the point estimate and
CI postmodel estimation, users of evalue rd enter the four values as they would for
a 2 × 2 table (see epitab cs and csi), where #a is the number of exposed, diseased
individuals (E = 1, D = 1); #b is the number of exposed, nondiseased individuals
(E = 1, D = 0); #c is the number of unexposed, diseased individuals (E = 0, D = 1);
and #d is the number of unexposed, nondiseased individuals (E = 0, D = 0).
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Hammond and Horn (1958a,b) report associations between smoking and lung cancer
deaths from a cohort study of 187,783 men, of which 42% were classified as having
a history of regular cigarette smoking (exposed) versus others (no smoking or only
occasional smoking). We could compute the RD and CI using csi, which gives us the
RD estimate and CI of 0.00456 (95% CI: [0.00405, 0.00507]).

. csi 397 51 78557 108778

(output omitted )

Using evalue rd, we enter these data as follows to compute the E-value:

. evalue rd 397 78557 51 108778
E-value (point estimate): 20.947
E-value (CI): 15.957

These results can be interpreted as follows: “With an observed risk difference of RD =
0.00456, an unmeasured confounder that was associated with both regular smoking and
lung cancer death by a risk ratio of 20.95-fold each, above and beyond the measured
confounders, could explain away the estimate, but weaker confounding could not; to
move the CI to include the null, an unmeasured confounder that was associated with
both regular smoking and lung cancer death by a risk ratio of 15.96-fold each could do
so, but weaker confounding could not” (VanderWeele and Ding 2017).

4.6 E-values for nonnull hypotheses

To this point, we described how to calculate E-values to assess the minimum strength of
the association an unmeasured confounder would need to have with both the treatment
and the outcome to move the point estimate, or one limit of the CI, to the null. However,
we can use a similar procedure to assess the minimum magnitude of both confounder
associations that would be needed to move an estimate to some other value of the RR.
In evalue, we do this by specifying a desired value in the true() option.

As an example, a study by the Agency for Healthcare Research and Quality (Ip et al.
2007) reported an RR between breastfeeding and childhood leukemia as 0.80 (95% CI:
[0.71, 0.91]). Computing E-values for the null effect gives us 1.81 and 1.43 for the point
estimate and CI, respectively.

. evalue rr 0.80, lcl(0.71) ucl(0.91)
E-value (point estimate): 1.809
E-value (CI): 1.429

Assume that we were interested in assessing how large both unmeasured confounding
associations would need to be to shift the RR estimate from 0.80 to 0.90. We simply
specify true(0.90).

. evalue rr 0.80, lcl(0.71) ucl(0.91) true(0.90)
E-value (point estimate): 1.500
E-value (CI): 1.000
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As shown, we obtain an E-value for the point estimate of 1.50, which describes
the magnitude of the associations an unmeasured confounder would need to have with
breastfeeding and childhood leukemia to move the observed RR from 0.80 to 0.90. The
interpretation of this nonnull E-value is that “for an unmeasured confounder to shift the
observed estimate of RR = 0.80 to an estimate of RRT = 0.90, an unmeasured confounder
that was associated with both breastfeeding and childhood leukemia by a risk ratio of
1.5-fold each could do so, but weaker confounding could not” (VanderWeele and Ding
2017). Because the CI already includes the value of 0.90, no additional unmeasured
confounding is needed for the interval to include that value, and thus the E-value for
the CI to include 0.90 is just E-value = 1.0.

We may also calculate E-values for the values of the RR on the other side of the
null hypothesis. Thus, if we wanted to assess the minimum strength of both confounder
associations that would be needed to move the RR estimate of 0.80 to an RR estimate
of 1.20, we would simply specify true(1.20).

. evalue rr 0.80, lcl(0.71) u(0.91) true(1.20)
E-value (point estimate): 2.366
E-value (CI): 1.967

As shown, to shift estimates to an RR of 1.20, we obtain an E-value of 2.37 for the
point and an E-value of 1.97 for the upper limit of the CI. The interpretation of these
nonnull E-values would then be that for an unmeasured confounder to shift the observed
RR estimate of 0.80 to an RR of 1.20, an unmeasured confounder that was associated
with both breastfeeding and childhood leukemia by an RR of 2.37-fold each could do
so, but a weaker confounder could not. Similarly, to shift the upper confidence limit
of 0.91 to 1.20, an unmeasured confounder that was associated with both breastfeeding
and leukemia by an RR of 1.97-fold each could do so, but a weaker confounder could
not (VanderWeele and Ding 2017).

5 Discussion

In this article, we introduced the evalue package, which performs sensitivity analyses
for unmeasured confounding in observational studies using the methodology proposed
by VanderWeele and Ding (2017). A key advantage of this approach over other meth-
ods is its ease of use following common treatment-effects analyses. Investigators fit
their adjusted models in the usual manner (for example, regression with covariates)
and then simply apply evalue to the coefficient for the treatment variable and its CI.
Similarly, evalue can readily compute E-values for treatment-effects estimates typically
reported in published studies, thereby allowing readers to assess whether the confounder
associations of that magnitude are plausible.

In conclusion, we have provided a convenient package for conducting sensitivity
analysis following treatment-effects estimation in observational studies. We advocate
the reporting of E-values in such studies to assist investigators and others in weighing
the evidence for robustness to confounding and thus ultimately for causality.
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7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 20-1

. net install st0593 (to install program files, if available)

. net get st0593 (to install ancillary files, if available)
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