

Genetic determinants of caffeine intake: instrumental variables or effect modifiers?

Marilyn Cornelis

Program of Molecular and Genetic Epidemiology April 27th, 2012

Background & Significance

Caffeine is the most widely consumed stimulant in the world

Widely available and socially acceptable

In North American and European countries >75% of caffeine consumed by adults daily comes from coffee

heterocyclic amines

pyrols

caffeine

furans

melanoidins

cafestol & kahweol

chlorogenic acid

Background & Significance

Coffee, caffeine a	and health	
Very strong evide	nce	
\downarrow risk of Parkinson's	: caffeine	
Strong evidence		
\downarrow risk of type 2 diab	etes	
\downarrow risk of Alzheimer's	3	
Pending		
CHD	stroke	bone health
hypertension	cancers	suicide
depression	obesity	reproductive health

Factors associated with coffee / caffeine intake

psychological effects (+ / -)

- smoking
- taste preferences
- personality
- demographics
- current health
- medication
- pregnancy
- other lifestyle factors

Heritability for caffeine use: 43-58%

Cornelis, Coffee Intake. In: Nutrigenetics and Nutrigenomics. Prog Mol Biol Transl Sci, in press

Caffeine GWAS: Meta-analysis

semi-quantitative food frequency questionnaires

Total N: 47, 341 Men and Women 50-60 years European Ancestry

Cornelis et al, PLoS Genet, 2011

rs4410790 : CC consumes ~44 mg/d more than TT

NEW: GWAS of caffeinated coffee intake Stage 1

WGHS♦	MESA	KORA3	
ARIC	FamHS	KORA4	
PLCO	Framingham 🔶	EGCUT	
NHS ♦	Rotterdam 1	Colaus	Caffeinated coffee:
HPFS	Rotterdam 2	NTR	cups/d: N ≤ 91,000
Health ABC	Fenland	NFBC66	extreme: N ≤ 47,000
CHS	EPIC	Good	
inCHIANTI	B58C	Busselton	
THISEAS	HBCS	ERF	
TwinGene	SHIP	SORBS	
DNBC			

Stage 1 Caffeinated Coffee (cups/d)

CHR	GENE	EA	EAF	cups/d 'drinkers'		High vs Low
				β	Р	Р
7	AHR	С	0.63	0.14	1.5e-57	1.8e-37
15	CYP1A2	Т	0.24	0.15	6.5e-47	1.6e-29
7	<u>POR</u>	А	0.29	0.07	9.1e-14	4.4e-09
7	<u>MLXIPL</u>	С	0.28	0.05	7.8e-09	7.8e-06
11	<u>BDNF</u>	С	0.81	0.05	3.4e-07	4.9e-08

Suhre et al

Human metabolic individuality in biomedical and pharmaceutical research

54 | NATURE | VOL 477 | 1 SEPTEMBER 2011

Table 1 | Thirty-seven loci that displayed genome-wide significance

Locus & SNP id	Metabolic trait	P value
AHR rs12670403	Caffeine/quinate	$4.8 imes 10^{-15}$

<u>NOTE</u>: all fasting, no data on habitual caffeine intake

rs12670403 A: \downarrow caffeine/quinate plasma levels

rs12670403 & rs4410790: r²=0.60

GWAS: rs12670403 A [↑] caffeinated coffee intake (*P*=3.3e-43)

CYP1A2, rs762551

Sachse et al, Br J Clin Pharmacol, 1999

NHGRI GWAS Catalogue

> AHR & POR: no other ass	ociated phenotypes	
≻ CYP1A2		
r ² =0.09: ↓ blood pressure	(4 GWAS)	Pleiotropy?
> MLXIPL		Confounded by caffeine intake?
r²=0.42 to 0.88: ↓ TG	(9 GWAS)	
r²=0.42: ↑ HDL	(1 GWAS)	Support a causal
r²=0.49 to 0.84: ↓ GGT	(2 GWAS)	role of
r ² =0.58: ↓ Protein C	(1 GWAS)	coffee/caffeine in
r²=0.40: ↓ CRP	(1 GWAS)	these traits?

> BDNF

 $r^2=1$: \uparrow risk of smoking initiation(1 GWAS) $r^2=1$: \uparrow weight, \uparrow BMI(1 GWAS) $r^2=0.08$ to 0.74: \uparrow weight, \uparrow BMI , \uparrow obesity(2 GWAS)

Direction of caffeine- 'consuming' allele

Journal of Alzheimer's Disease 20 (2010) S221–S238 DOI 10.3233/JAD-2010-091525 IOS Press

Caffeine Exposure and the Risk of Parkinson's Disease: A Systematic Review and Meta-Analysis of Observational Studiess

João Costa^{a,b,*}, Nuno Lunet^{c,d}, Catarina Santos^{c,d}, João Santos^a and António Vaz-Carneiro^a

~20% \downarrow risk for each 300 mg/d

Meta-Analysis of MR studies ideal scenario

Estimate	Study 1	Study 2	Study 3	Study 4	'Pooled'
genotype-phenotype	×	×	×	×	
genotype-disease	×	×	×	×	
phenotype-disease	×	×	×	×	×

Meta-Analysis of MR studies *realistic* scenario

Estimate	Study 1	Study 2	Study 3	Study 4	'Pooled'
genotype-phenotype	×	×			×
genotype-disease			×	×	×
phenotype-disease					×

G-P: includes cases of D?

Minelli et al, AJE, 2004

Discovery: 5,333 cases and 12,019 controls

Replication: 7,053 cases and 9,007 controls

Discussion

- We have genetic markers for caffeine intake *behavior* genotype A consumes, on average, <u>more</u> caffeine than genotype B
- Genetic markers *likely* play a role in caffeine *metabolism* (AHR, CYP1A2)
- Genetic markers *might* also reflect *biological exposure* to caffeine genotype A has, on average, <u>lower</u> plasma levels of caffeine than genotype B
- Are these genetic markers of *caffeine metabolism*?
 IV (for causal effect of caffeine) confounded by caffeine intake behavior.
 G×E studies more appropriate?

CYP1A2 rs762551 A variant: ↑ metabolism, ↑ intake

Breast Cancer

 $G \times E$: Coffee \downarrow risk only among C carriers only (Kotsopoulos, 2007) $G \times E$: Coffee \downarrow AOD \uparrow ER- among AA only (Bageman, 2008)

Ovarian Cancer Caffeine/coffee ↓ risk overall, especially among AA (Goodman, 2003)

Parkinson's disease Caffeine/coffee ↓ risk, *especially* among CC (Popat, 2011) C carriers ↑ risk among women only (Palacios, 2010)

Cardiovascular Disease G × E : Coffee ↑ risk of MI among C carriers only (Cornelis, 2006) C × E : Coffee ↑ risk of HTN and ↑ PR among C carriers only (Pall)

- $G \times E$: Coffee \uparrow risk of HTN and \uparrow BP among C carriers only (Palatini, 2009)
- Recurrent Pregnancy Loss
 G × E : caffeine ↑ risk among AA only (Sata, 2005)

Discussion

- We have genetic markers for caffeine intake *behavior* genotype A consumes, on average, <u>more</u> caffeine than genotype B
- Genetic markers *likely* play a role in caffeine *metabolism (AHR, CYP1A2)*
- Genetic markers *might* also reflect *biological exposure* to caffeine genotype A has, on average, <u>lower</u> plasma levels of caffeine than genotype B
- Are these genetic markers of *caffeine metabolism*?
 IV (for causal effect of caffeine) confounded by caffeine intake behavior.
 G×E studies more appropriate?
- Are these genetic markers of coffee intake/exposure, adjusted for caffeine? IV for testing causal effect of non-caffeine components of coffee. re: GWAS catalogue

Acknowledgments

Frank B Hu Peter Kraft Rob van Dam David J Hunter Gary Curhan Eric Rimm Lu Qi **Daniel Chasman Neil Caporaso** Michael Nalls Eric Tchetgen Tchetgen Maria Glymour

GENEVA CHARGE International Parkinson's Disease Genomics Consortium