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CHAPTER 23

Estimation of the causal effects
of time-varying exposures

James M. Robins and Miguel A. Hernán
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23.1 Introduction

In this chapter we describe methods for the estimation of the causal effect of a time-
varying exposure on an outcome of interest from longitudinal data collected in an ob-
servational study. The terms “exposure” and “treatment” will be used synonymously and
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interchangeably. We assume a fixed study population, that is, a closed cohort with a well-
defined, known start of follow-up date for each subject. Time will refer to time since start
of follow-up, which we also refer to as time since baseline. We only consider estimation of
the effect of exposures occurring at or after the start of follow-up because the estimation
of the effects of pre-baseline exposures is not possible without making strong, untestable
assumptions. We refer to the exposure received at start of follow-up as the baseline exposure.
Baseline covariates refer to covariates, including pre-baseline exposure, that occur prior to
the baseline exposure. We classify exposures as either fixed or time-varying.

We define an exposure to be fixed if every subject’s baseline exposure level determines the
subject’s exposure level at all later times. Exposures can be fixed because they only occur at
the start of follow-up (e.g., a bomb explosion, a one-dose vaccine, a surgical intervention),
because they do not change over time (e.g., genotype), or because they evolve over time in
a deterministic way (e.g., time since baseline exposure).

Any exposure that is not fixed is said to be time-varying. Some examples of time-varying
exposures are a subject’s smoking status, a drug whose dose is readjusted according to the
patient’s clinical response, a surgical intervention that is administered to different study
patients at different times from start of follow-up, and the phenotypic expression (say,
mRNA level) of a genotype that responds to changing environmental factors.

We shall need to consider time-dependent confounders as well as time-varying exposures.
For present purposes, one may consider a time-varying covariate to be a time-dependent
confounder if a post-baseline value of the covariate is an independent predictor of (i.e., a
risk factor for) both subsequent exposure and the outcome within strata jointly determined
by baseline covariates and prior exposure. A more precise definition is given in Section 23.3.
For a fixed exposure, time-dependent confounding is absent because baseline exposure fully
determines later exposure. As a consequence, in the absence of confounding by unmeasured
baseline covariates or model misspecification, conventional methods to adjust for confound-
ing by baseline covariates (e.g., stratification, matching, and/or regression) deliver consistent
estimators of the causal effect of a fixed exposure. In contrast, when interest focuses on the
causal effect of a time-varying exposure on an outcome, even when confounding by unmea-
sured factors and model misspecification are both absent, conventional analytic methods
may be biased and result in estimates of effect that may fail to have a causal interpretation,
regardless of whether or not one adjusts for the time-dependent confounders in the analysis
(Robins 1986; Hernán, Hernández-Dı́az, and Robins, 2004). In fact, if (i) time-dependent
confounding is present, and (ii) within strata of the baseline covariates, baseline exposure
predicts the subsequent evolution of the time-dependent confounders, then conventional an-
alytic methods can be biased and falsely find an exposure effect even under the sharp null
hypothesis of no net, direct, or indirect effect of exposure on the outcome of any subject
(see Section 23.4).

Nearly all exposures of epidemiologic interest are time-varying. However, because of the
greater complexity of analytic methods that appropriately control for time-dependent con-
founding, introductory treatments of causal inference often consider only the case of fixed
exposures.

This chapter provides an introduction to causal inference for time-varying exposures in
the presence of time-dependent confounding. We will discuss three different methods to
estimate the effect of time-varying exposures: the g-computation algorithm formula (the
“g-formula”), inverse probability of treatment weighting (IPTW) of marginal structural
models (MSMs), and g-estimation of structural nested models (SNMs). We refer to the
collection of these methods as “g-methods.” If we used only completely saturated (i.e., non-
parametric) models, all three methods would give identical estimates of the effect of treat-
ment. However, in realistic longitudinal studies, the data are sparse and high-dimensional.
Therefore, possibly misspecified, non-saturated models must be used. As a consequence, the
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three methods can provide different estimates. The method of choice will then depend both
on the causal contrast of primary substantive interest and on the method’s robustness to
model misspecification (see Section 23.5).

The chapter is organized as follows. First, we review causal inference with fixed exposures.
Second, we generalize to time-varying exposures. Third, we analyze a simple hypothetical
study of a time-varying exposure using saturated models to illustrate both the bias of con-
ventional analytic methods and the validity of and agreement between the three g-methods.
Fourth, we introduce general MSMs and SNMs in order to estimate optimal dynamic treat-
ment regimes. Finally, we examine the strengths and weaknesses of each of our three methods
in the analysis of realistic study data. In the interest of brevity, we limit ourselves to the case
where (i) covariate and exposure data are collected at fixed equal-spaced intervals (e.g., at
weekly clinic visits); (ii) censoring, missed visits, and measurement error are absent; (iii) the
outcome is a univariate continuous random variable Y measured at end of follow-up; and (iv)
there is no unmeasured confounding. Extensions to settings in which (i) through (iv) are vio-
lated can be found in prior work by Robins and collaborators. Violations of (i) are discussed
in Robins (1997a, 1998); of (ii) in Robins, Rotnitzky, and Zhao (1995), Robins (2003), and
van der Laan and Robins (2003); of (iii) in Robins (1994, 1997a) and Hernán, Brumback,
and Robins (2001, 2002); and of (iv) in Robins, Rotnitzky, and Scharfstein (1999) and
Brumback et al. (2004).

For consistency with the literature and ease of notation, in this chapter vectors are not
denoted by boldface type.

23.2 Fixed exposures

We observe on each of N study subjects a fixed, dichotomous exposure A that can take values
0 (unexposed) or 1 (exposed); an outcome Y measured at the end of follow-up; and a vector
L of baseline covariates. Capital letters such as Y or A will refer to random variables, that is,
variables that can take on different values for different study subjects. Small letters such as
y and a refer to the possible values of Y and A. Thus, the random variable A can take on the
two values a = 1 or a = 0. Let Ya denote the counterfactual or potential outcome for a given
subject under exposure level a. For a dichotomous A we have two counterfactual variables
Ya=1 and Ya=0. For example, for a subject whose outcome would be 3 under exposure and
1 under non-exposure, we would write Ya=1 = 3 and Ya=0 = 1 and Ya=1 − Ya=0 = 2. If, in
the actual study, this subject were exposed, then his observed Y would be 3. That is, Ya is
the random variable representing the outcome Y that would be observed for a given subject
were he or she to experience exposure level a. Furthermore, a subject’s observed outcome
Y is the counterfactual outcome Ya corresponding to the treatment A = a that the subject
actually received. Implicit in our definition of a potential outcome is the assumption that
a given subject’s response is not affected by other subjects’ treatment. This assumption
cannot always be taken for granted. For example, it often fails in vaccine efficacy trials
conducted within a single city because the vaccine exposure of other subjects can affect
the outcome (infection status) of an unvaccinated subject through the mechanism of herd
immunity. Standard statistical summaries of uncertainty due to sampling variability (e.g., a
confidence interval for a proportion) only have meaning if we assume the N study subjects
have been randomly sampled from a large source population of size M , such that N/M
is very small. Because we plan to discuss sampling variability, we make this assumption,
although we recognize that the assumed source population is ill defined, even hypothetical.
Probability statements and expected values will refer to proportions and averages in the
source population.

The contrast Ya=1 − Ya=0 is said to be the individual causal effect of exposure on a
subject. The average or mean causal effect in the population is then E(Ya=1 − Ya=0) =
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E(Ya=1)−E(Ya=0). We say that the exposure A has a causal effect (protective or harmful)
on the mean of the outcome Y if E(Ya=1)−E(Ya=0) �= 0. When Y is a dichotomous outcome
variable, then the mean of Ya equals the risk of Ya, that is, E(Ya) = Pr(Ya = 1), and we
refer to E(Ya=1) − E(Ya=0), E(Ya=1)/E(Ya=0), and

E(Ya=1)/{1 − E(Ya=1)}
E(Ya=0)/{1 − E(Ya=0)}

as the causal risk difference, causal risk ratio, and causal odds ratio, respectively. Some
equivalent statements that denote an average causal effect are: the causal risk difference
differs from 0, the causal risk ratio differs from 1, and the causal odds ratio differs from 1.

We now provide conditions, which we refer to as identifiability conditions, under which
it is possible to obtain, from observational data, consistent estimators of counterfactual
quantities such as E(Ya) and thus the causal risk difference and the causal risk and odds
ratio for binary Y . First, we define some notation. For any random variables, B � C|L = l
means B and C are statistically independent within the stratum of subjects in the source
population with L = l. Thus, if B and C are dichotomous, B � C|L = l says the B–C
odds ratio is 1 in the l-stratum-specific 2 × 2 table of B versus C. B � C|L means B and
C are statistically independent in every stratum of L. Thus, if L takes on four possible
values, B � C|L implies that the four l-stratum-specific odds ratios are all 1. The three
identifiability conditions are (Rosenbaum and Rubin, 1983):

1. Consistency. If A = a for a given subject, then Ya = Y for that subject.
2. Conditional exchangeability or, equivalently, no unmeasured confounding given data on

baseline covariates L, that is,

Ya �A|L = l for each possible value a of A and l of L.

3. Positivity. If fL(l) �= 0, then fA|L(a|l) > 0 for all a , where fL(l) = Pr(L = l) is the
population marginal probability that L takes the value l, and fA|L(a|l) = Pr(A = a|L = l)
is the conditional probability that A takes the value a among subjects in the population
with L equal to l. (The above assumes L and A are discrete variables. If L and/or A
were continuous variables, we would interpret fL(l) and/or fA|L(a|l) as the marginal
density of L and/or the conditional density of A given L, and drop Pr(L = l) and/or
Pr(A = a|L = l) from the definition of positivity.)

These three conditions generally hold in an ideal two-armed randomized experiment with
full compliance. Consistency states that, for a subject who was exposed (i.e., A = 1), her
potential outcome Ya=1 is equal to her observed outcome Y and thus is known (although
her outcome Ya=0 remains unknown). Analogously, for an unexposed subject (i.e., A = 0),
her potential outcome Ya=0 would equal her observed outcome Y, but Ya=1 would remain
unknown. Positivity means that the exposure was not deterministically allocated within any
level l of the covariates L. That is, not all source population subjects with a given value
l of L were assigned to be exposed or unexposed. Note that, even under positivity, all study
subjects with L = l could, by chance, be exposed because the study population is a small
sample of the source population.

Before explaining conditional exchangeability, we discuss unconditional exchangeability.
Unconditional or marginal exchangeability of the exposed and unexposed subgroups of the
source population, written as Ya=1�A and Ya=0�A, implies that the exposed, had they been
unexposed, would have experienced the same distribution of outcomes as the unexposed did.
Exchangeability also implies that the previous sentence holds true if one swaps the words
“exposed” and “unexposed”. Unconditional randomization ensures unconditional exchange-
ability because the distributions of risk factors in the exposed and unexposed groups are
guaranteed to be the same. Conditional exchangeability only requires that exchangeability
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Figure 23.1 DAGs for fixed exposure scenarios.

is achieved within levels of the measured variables in L. For example, conditional — but not
unconditional — exchangeability would hold in a randomized experiment in which (i) expo-
sure was randomly assigned within levels l of a baseline covariate L that is an independent
risk factor for Y , and (ii) the randomization probabilities Pr(A = 1|L = l) vary with l.

Unconditional exchangeability and conditional exchangeability can be translated into the
language of causal directed acyclic graphs or DAGs (Spirtes, Glymour, and Scheines, 1993;
Pearl, 1995). Section 23.7 contains the requisite background material on the representation of
counterfactual causal models by causal DAGs. Consider the three causal DAGs of Figure 23.1
(Robins, Hernán, and Brumback, 2000), in which L and U represent vectors of measured
and unmeasured baseline causes of Y , respectively. The causal DAG in Figure 23.1a can rep-
resent a randomized experiment in which each subject is randomized to exposure with the
same probability Pr(A = 1). Therefore, the conditional probability of exposure does not de-
pend on L or U , that is, Pr(A = 1|L = l, U = u) = Pr(A = 1). We then say that there is no
confounding by measured variables L or unmeasured variables U . Equivalently, the exposed
and the unexposed are unconditionally exchangeable (i.e., Ya �A) because the exposure A
and the outcome Y do not share any common causes. When unconditional exchangeability
holds, association is causation. That is, the mean outcome had, contrary to fact, all study
subjects been exposed to level a (i.e., E(Ya)), equals the mean E(Y |A = a) among the
subset of the study population actually treated with a. Hence, for binary Y, the crude risk
difference E(Y |A = 1) − E(Y |A = 0) is the causal risk difference E(Ya=1) − E(Ya=0), so
consistent estimation of the average causal effect is possible, even without data on L.

The causal DAG in Figure 23.1b can represent a randomized experiment in which each
subject is randomized to exposure with probability Pr(A = 1|L = l) that depends on the
subject’s value of L but not on U, that is, Pr(A = 1|L = l, U = u) = Pr(A = 1|L = l). We
then say that there is confounding but the measured covariates are sufficient to adjust for
it, so there is no unmeasured confounding. Equivalently, the exposed and the unexposed are
conditionally exchangeable given L because, even though the exposure A and the outcome
Y share some common causes U, the non-causal association between exposure and outcome
can be blocked by conditioning on the measured covariates L. In this setting, marginal
association is not causation, that is, E(Ya) �= E(Y |A = a). However, within a stratum l of
L, association is causation, E(Ya|L = l) = E(Y |A = a, L = l). Furthermore, by using data
on L, E(Ya) can still be consistently estimated.

The causal DAG in Figure 23.1c represents a study in which the conditional probability
of exposure Pr(A = 1|L = l, U = u) depends on the unmeasured variables U as well as the
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measured variables L and thus cannot possibly represent a randomized experiment. We say
that there is unmeasured confounding. Equivalently, the exposed and the unexposed are
not conditionally exchangeable given L because we cannot block all non-causal associations
between exposure and outcome by conditioning on the measured covariates L. In this set-
ting, neither E(Ya|L = l) nor E(Ya) can be consistently estimated, at least without further
strong assumptions.

When the (three) identifiability conditions hold, one can use any of the three analytic
methods discussed below — g-formula, inverse probability weighting (see Chapter 20), or
g-estimation — to consistently estimate E(Ya). We first describe the g-formula and IPTW.
A description of SNMs will be deferred to Section 23.4.

For a given value a of a fixed exposure A and vector L of baseline covariates, the g-formula
(based on covariates L) for E(Ya) is defined to be the weighted sum of the l-stratum-specific
means of Y among those exposed to level a in the population with weights equal to the
frequency of the L strata. That is,∑

l

E(Y |A = a, L = l) Pr(L = l),

where the sum is over all values l of L in the population. Epidemiologists refer to the
g-formula for E(Ya=1) as the standardized mean of Y in the exposed (A = 1). Note that the
g-formula depends on the distribution in the population of the observed variables (A,L, Y ).
In practice, this distribution will be estimated from the study data.

When L takes values on a continuous scale, then the sum is replaced by an integral, and
the g-formula becomes ∫

E(Y |A = a, L = l) dFL(l).

The IPTW formulae for E(Ya=1) and E(Ya=0) based on L are the mean of Y among the
exposed (A = 1) and unexposed (A = 0), respectively, in a pseudo-population constructed
by weighting each subject in the population by their subject-specific inverse probability of
treatment weight

SW =
f(A)
f(A|L)

,

where f(A) and f(A|L) are the probability densities fA(a) and fA|L(a|l) evaluated at the
subject’s data A, and A and L, respectively. In a randomized experiment, f(A|L) is known
by design. In an observational study, it must be estimated from the study data. Consider a
subject with A = 0 and L equal to a particular value l∗, say. Suppose that two thirds of the
population with L = l∗ but one third of the total population is exposed. Then, although
in the true population each subject counts equally, in the pseudo-population our subject
has weight 2 and thus counts as two subjects since f(A) = Pr(A = 0) = 1 − 1/3 = 2/3,
f(A|L) = 1− 2/3 = 1/3, and SW = 2. In contrast, a second subject with A = 1 and L = l∗

has SW = (1/3)/(2/3) = 1/2 and so only counts as one half of a person.
We refer to the subject-specific SW as stabilized weights and to the pseudo-population

created by these weights as a stabilized pseudo-population. In fact, as shown in the next
paragraph, the IPTW formula for E(Ya) does not actually depend on the numerator of SW .
Thus, we could alternatively create an unstabilized pseudo-population by weighting each
subject by their unstabilized weight

W =
1

f(A|L)
.

However, as discussed in later sections, there are other settings in which stabilized or un-
stabilized weights cannot be used interchangeably.
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Mathematically, the respective IPTW formulae for E(Ya) in the stabilized and unstabi-
lized populations are

E

{
I(A = a)f(A)

f(A|L)
Y

}/
E

{
I(A = a)F (A)

f(A|L)

}
and

E

{
I(A = a)
f(A|L)

Y

}/
E

{
I(A = a)
f(A|L)

}
,

as

E

{
N

I(A = a)f(A)
f(A|L)

}
and E

{
N

I(A = a)
f(A|L)

}
are the numbers of subjects in the stabilized and unstabilized pseudo-populations with
A = a, and

E

{
N

I(A = a)f(A)
f(A|L)

Y

}
and E

{
N

I(A = a)
f(A|L)

Y

}
are the sums of their Y values. Here, I(·) is the indicator function such that I(B) = 1 if
B is true, and I(B) = 0 otherwise. Hernán and Robins (2006a) discuss the mathematical
equivalence between the g-formula/standardization and IPTW (based on either stabilized
or unstabilized weights) for fixed exposures under positivity. This equivalence extends to
time-varying exposures as discussed in Section 23.3. The equivalence for fixed exposures is
based on the mathematical identities

E

{
I(A = a)f(A)

f(A|L)
Y

}/
E

{
I(A = a)f(A)

f(A|L)

}
=E

{
I(A = a)
f(A|L)

Y

}/
E

{
I(A = a)
f(A|L)

}
=
∫

E(Y |A = a, L = l) dFL(l).

When exposure is unconditionally randomized (Figure 23.1a), both the g-formula and the
IPTW formula for E(Ya) are equal to the unadjusted (i.e., crude) mean E(Y |A = a) of
Y among those with exposure level a in the population because the exposure A and the
covariate L are independent, which implies F (l) = F (l|a) in the g-formula, and f(A|L) =
f(A) for IPTW.

On the other hand, when the randomization is conditional on L (Figure 23.1b), then
the average causal effect differs from the crude risk difference E(Y |A = 1) − E(Y |A = 0),
and data on L are needed to consistently estimate E(Ya). The g-formula estimates E(Ya)
by effectively simulating the joint distribution of the variables L, A, and Y that would
have been observed in a hypothetical study in which every subject received exposure a.
The IPTW method effectively simulates the data that would have been observed had, con-
trary to fact, exposure been unconditionally randomized. Specifically, both stabilized and
unstabilized IPTW create pseudo-populations in which (i) the mean of Ya is identical to
that in the actual study population but (ii) the exposure A is independent of L so that,
if the causal graph in Figure 23.1b holds in the actual population, the causal graph in
Figure 23.1a with no arrow from L to A will hold in the pseudo-population. The only
difference between stabilized and unstabilized IPTW is that, in the unstabilized pseudo-
population, Pr(A = 1) = 1/2, while in the stabilized pseudo-population, Pr(A = 1) is as
in the actual population. Thus, E(Ya) in the actual population is Eps(Y |A = a), where
the subscript ps is to remind us that we are taking the average of Y among subjects with
A = a in either pseudo-population. For example, suppose in the actual population there are
three exposed subjects with SW equal to 1/3, 2, 1/2 and Y equal to 3, 6, 4, respectively.
Then

E(Ya) = Eps(Y |A = 1) =
3 × 1/3 + 6 × 2 + 4 × 1/2

1/3 + 2 + 1/2
= 5.3,
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while
E(Y |A = 1) =

3 × 1 + 6 × 1 + 4 × 1
3

= 4.

In summary, when the three identifiability conditions hold, the average causal effect
E(Ya=1) −E(Ya=0) in the population is the crude risk difference Eps(Y |A = 1) − Eps(Y |A
= 0) in the pseudo-population.

What about observational studies? Imagine for a moment that the three identifiability
conditions — consistency, conditional exchangeability, positivity — are met in a particular
observational study. Then there is no conceptual difference between such an observational
study and a randomized experiment. Taken together, the three conditions imply that the
observational study can be conceptualized as a randomized experiment and hence that the
g-formula, IPTW, or g-estimation can also be used to estimate counterfactual quantities like
E(Ya) from the observational data. A difference between randomized experiments and obser-
vational studies is that the conditional probability of exposure is not known in the latter and
thus needs to be estimated from the data. We discuss this issue in detail in the next section.

The major weakness of observational studies is that, unlike in randomized experiments
with full compliance, the three identifiability conditions are not guaranteed by design. Pos-
itivity may not hold if subjects with certain baseline characteristics are always exposed (or
unexposed) because of prevailing treatment practices in the community. In that case, sub-
jects with those baseline characteristics are often excluded from the study population for
purposes of causal inference. Conditional exchangeability will not hold if the exposed and
the unexposed differ with respect to unmeasured risk factors as in Figure 23.1(c), that is, if
there is unmeasured confounding. Unfortunately, the presence of conditional exchangeability
cannot be empirically tested. Even consistency cannot always be taken for granted in ob-
servational studies because the counterfactual outcomes themselves are sometimes not well
defined, which renders causal inferences ambiguous (Robins and Greenland, 2000; Hernán,
2005). Thus, in observational studies, an investigator who assumes that these conditions
hold may be mistaken; hence, causal inference from observational data is a risky business.
When the consistency and conditional exchangeability conditions fail to hold, the IPTW
and g-formula for E(Ya) based on L are still well defined and can be estimated from the
observed data; however, the formulae no longer equal E(Ya) and thus do not have the causal
interpretation as the mean of Y had all subjects received treatment a. When positivity fails
to hold for treatment level a, the IPTW formula remains well defined but fails to equal
E(Ya), while the g-formula is undefined (Hernán and Robins, 2006a).

In summary, causal inference from observational data relies on the strong assumption
that the observational study can be likened to a randomized experiment with randomization
probabilities that depend on the measured covariates. Often this assumption is not explicit.
Although investigators cannot prove that the observational–randomized analogy is 100%
correct for any particular study, they can use their subject-matter knowledge to collect
data on many relevant covariates and hope to increase the likelihood that the analogy
is approximately correct. We next describe how to conceptualize observational studies as
randomized experiments when the exposure changes over time.

23.3 Time-varying exposures

To develop methods for the estimation of the causal effects of time-varying exposures, we
need to generalize the definition of causal effect and the three identifiability conditions of
the previous section. For simplicity, we consider a study of the effect of a time-dependent
dichotomous exposure A(t) on a continuous outcome Y measured at end of follow-up at time
K+1 from study entry. (A(t) is identical to At used in Chapter 20 and Chapter 22.) Subjects
change exposure only at weekly clinic visits, so A(t) is recorded at fixed times t = 0, 1, . . . ,K,
in weeks from baseline. We use overbars to denote history; thus, the exposure history through
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time (i.e., week) t is A(t) = {A(0), A(1), . . . , A(t)}. The possible change in exposure at week
t occurs after data are available on the history L(t) = {L(0), L(1), . . . , L(t)} of a vector
of possibly time-dependent covariates. We denote a subject’s total exposure and covariate
history by A = A(K) and L = L(K).

23.3.1 Non-dynamic regimes

To describe causal contrasts for time-varying exposures, we first need to define exposure
regimes or plans. For simplicity, we temporarily restrict our description to static (non-
dynamic) treatment regimes a = {a(0), a(1), . . . , a(K)}, where a(t) is 1 if the regime speci-
fies that the subject is to be exposed at time t, and 0 otherwise; and a(t) represents exposure
history under regime a through week t. Note that a(K) = a. Associated with each of the
2K regimes a is the subject’s counterfactual outcome Yā under exposure regime a. Some
examples of regimes a are continuous exposure {1, 1, . . . , 1}, no exposure {0, 0, . . . , 0}, ex-
posure during the first two periods only {1, 1, 0, 0 . . . , 0}, and exposure every other period
{1, 0, 1, 0, . . . }.

We say that the time-varying exposure A(t) has a causal effect on the average value
of Y if E(Yā) − E(Yā′) �= 0 for at least two regimes a and a′. The g-formula, IPTW, and
g-estimation can provide consistent estimators of counterfactual quantities like E(Yā) under
generalizations of our previous definitions of consistency, conditional exchangeability, and
positivity. Specifically, the generalized identifiability conditions are:

1. Consistency. If A = a for a given subject, then Yā = Y for that subject.
2. Conditional exchangeability. Yā � A(t)|A(t − 1) = a(t − 1), L(t) = l(t) for all regimes a

and all l(t).
3. Positivity. If fA(t−1),L(t){a(t − 1), l̄(t)} �= 0, then fA(t)|A(t−1),L(t){a(t)|a(t − 1), l(t)} > 0

for all a(t).

The three conditions generally hold in ideal sequentially randomized experiments with full
compliance. A sequentially randomized experiment is a randomized experiment in which the
exposure value at each successive visit t is randomly assigned with known randomization
probabilities (bounded away from 0 and 1) that, by design, may depend on a subject’s
past exposure A(t− 1) and covariate history L(t) through t. In the setting of time-varying
exposures, the assumption of conditional exchangeability is sometimes referred to as the
assumption of sequential randomization or the assumption of no unmeasured confounders.

As for fixed exposures, exchangeability and conditional exchangeability can be repre-
sented by causal DAGs. The DAGs in Figures 23.2a,b,c are the time-varying analogs of
those in Figures 23.1a,b,c, respectively (Robins, Hernán, and Brumback, 2000). Figure 23.2a
represents a sequentially randomized experiment in which the randomization probabilities
at each time t depend at most on a subject’s past exposure history, which is the proper
generalization of “no confounding by measured or unmeasured variables” to a sequentially
randomized experiment. In particular, the causal DAG in Figure 23.2a implies unconditional
or marginal exchangeability, which we write in two different but mathematically equivalent
ways: for all t and a, Yā � A(t)|A(t − 1) = a(t − 1) or Yā � A. As with fixed exposures,
unconditional exchangeability means that association is causation, E(Yā) = E(Y |A = a)
and E(Yā) − E(Yā′) = E(Y |A = a) − E(Y |A = a′), so data on the measured covariates L
need not be used to estimate average causal effects.

Figure 23.2b represents a sequentially randomized experiment in which the randomiza-
tion probabilities at each time t depend on past exposure and measured covariate history
but not further on unmeasured covariates, that is, there is confounding by measured co-
variates but no unmeasured confounding. Thus, the three identifiability conditions hold. In
this setting, there is time-dependent confounding by L, and association is not causation;
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L(0) A(0) A(1) YL(1)

U(0) U(1)

L(0) A(0) A(1) YL(1)

U(0) U(1)

L(0) A(0) A(1) YL(1)

U(0) U(1)

(a)

(b)

(c)

Figure 23.2 DAGs for time-varying exposure scenarios.

however, by using data on L, E(Yā) can still be consistently estimated by using g-methods
as described below.

Figure 23.2b also motivates the following precise definition of time-dependent confounding
due to measured covariates. We say there is confounding for E(Yā) if E(Yā) (the mean
outcome had, contrary to fact, all study subjects followed regime a) differs from the mean
E(Y |A = a) of Y (equivalently, Yā) among the subset of subjects who followed regime a in
the actual study. We say the confounding is solely time-independent (i.e., wholly attributable
to baseline covariates) if E{Yā|L(0)} = E{Y |A = a, L(0)}, as would be the case if the only
arrows pointing into A(1) in Figure 23.2(b) were from A(0) and L(0). In contrast, if the
identifiability conditions hold, but E{Yā|L(0)} �= E{Y |A = a, L(0)}, we say that time-
dependent confounding is present.

Figure 23.2c represents a study in which the probability of exposure depends on variables
U that cause Y and are unmeasured and thus cannot possibly represent a sequentially
randomized experiment. In Figure 23.2c there is unmeasured confounding, and thus causal
effects cannot be consistently estimated.

The expressions for the g-formula and IPTW presented above for fixed exposures need to
be generalized for time-varying exposures. For example, with L(t) discrete, the g-formula
based on L for the counterfactual mean E(Yā∗) is∑

l

E(Y |A = a∗, L = l)
K∏

k=0

f{l(k)|A(k − 1) = a∗(k − 1), L(k − 1) = l(k − 1)}, (23.1)
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where the sum is over all possible l-histories and l(k−1) is the history l = l(K) through time
k − 1. Experience with this formula will be developed in Section 23.4 by working through
an example.

Note that the g-formula for E(Yā∗) is simply the mean of Y under a joint density fg=ā∗(o)
that differs from the observed density

fobs(o) = f{y|A(k) = a(k), L(k) = l(k)}

×
K∏

k=0

f{l(k)|A(k − 1) = a(k − 1), L(k − 1) = l(k − 1)}

×
K∏

k=0

f{a(k)|A(k − 1) = ā(k − 1), L(k) = l(k)}

for O = (A,L, Y ) only in that each f{a(k)|A(k−1) = a(k−1), L(k) = l̄(k)} is replaced by a
degenerate distribution that takes value a∗(k) specified by the regime a∗ with probability 1.

When applied to data from a sequentially randomized experiment like the one represented
in the causal DAG of Figure 23.2b, the g-formula estimates E(Yā) by effectively simulating
the joint distribution of the variables L, A, and Y that would have been observed in a
hypothetical study where every subject received exposure a. However, even in a sequentially
randomized experiment, E(Y |A = a, L = l̄) and f{l(k)|a(k−1), l(k−1)} will not be known,
so estimates Ê(Y |A = ā, L = l) and f̂{l(k)|a(k−1), l(k−1)} have to be used in the g-formula
(23.1). In realistic experiments, these estimates must come from fitting parsimonious non-
saturated models. Model misspecification will result in biased estimators of E(Yā), even
though the identifiability conditions hold. Robins and Wasserman (1997) showed that, if
the sharp null hypothesis of no effect of exposure on Y is true, that is,

Yā − Yā′ = 0 with probability 1 for all a′ and a,

then standard non-saturated models E(Y |A = a, L = l; υ) and f{l(k)|a(k − 1), l̄(k − 1);ω}
based on distinct (i.e., variation-independent) parameters υ and ω cannot all be correct
whenever L(k) has any discrete components. As a consequence, in large studies, inference
based on the estimated g-formula will result in the sharp null hypothesis being falsely
rejected, whenever it is true, even in a sequentially randomized experiment. This phe-
nomenon is referred to as the null paradox of the estimated g-formula. Fortunately, neither
IPTW estimation nor g-estimation suffers from the null paradox, and thus both are more
robust methodologies. Furthermore, even in a fixed exposure randomized trial, E(Y |A =
a, L = l) is unknown and must be estimated by fitting a non-saturated model when L
is high-dimensional. The estimated g-formula will generally be biased when the model for
E(Y |A = a, L = l) is misspecified and the known randomization probabilities depend on L.
However, the null paradox exists only with time-varying exposures.

The IPTW formula based on L for the counterfactual mean E(Yā) is the average of Y
among subjects with A = a in a stabilized or unstabilized pseudo-population constructed
by weighting each subject by their subject-specific stabilized IPTW

SW =
K∏

k=0

f{A(k)|A(k − 1)}
f{A(k)|A(k − 1), L(k)}

,

or their unstabilized IPTW

W =
K∏

k=0

1
f{A(k)|A(k − 1), L(k)}

,

each a product over time-specific weights. When the three identifiability conditions hold,
each IPTW method creates a pseudo-population in which (i) the mean of Yā is identical to
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that in the actual population but (ii) like on the DAG in Figure 23.2(a), the randomization
probabilities at each time t depend at most on past exposure history. The only difference is
that in the unstabilized pseudo-population Prps{A(k) = 1|A(k − 1), L̄(k)} = 1/2, while in
the stabilized pseudo-population Prps{A(k) = 1|A(k − 1), L(k)} is Pr{A(k) = 1|A(k − 1)}
from the actual population. Thus, E(Yā) in the actual population is Eps(Y |A = a), where
the subscript ps refers to either pseudo-population. Hence, the average causal effect E(Yā)−
E(Yā′) is Eps(Y |A = a) − Eps(Y |A = a′).

One can estimate Eps(Y |A = a) from the observed study data by the average of Y among
subjects with A = a in a stabilized or unstabilized pseudo-study population constructed by
weighting each study subject by SW or W .

If f{A(k)|A(k−1), L(k)} in SW or W is replaced by an estimator f̂{A(k)|A(k−1), L(k)}
based on a misspecified logistic model for the Pr{A(k) = 1|A(k − 1), L(k}, the resulting
estimators of E(Yā) and E(Yā)−E(Yā′) will be biased. In contrast, replacing the numerator
of SW with an estimator f̂{A(k)|A(k − 1)} based on a misspecified model does not result
in bias. These remarks apply also to the IPTW estimation of marginal structural models
considered in the following subsection. Now, in a sequentially randomized experiment, the
denominators of the weights are known by design and so need not be estimated. As a con-
sequence, in contrast to the estimated g-formula, in a sequentially randomized experiment,
IPTW estimation unbiasedly estimates Eps(Y |A = ā) − Eps(Y |A = a′) and so is never
misleading.

When the three identifiability conditions hold in an observational study with a time-
varying exposure, the observational study can be conceptualized as a sequentially random-
ized experiment, except that the probabilities f{A(k)|A(k − 1), L(k)} are unknown and
must be estimated. However, the validity of these conditions is not guaranteed by design
and is not subject to empirical verification. The best one can do is to use subject-matter
knowledge to collect data on many potential time-dependent confounders. Furthermore,
even if the identifiability conditions hold, bias in estimation of E(Yā) and E(Yā) − E(Yā′)
can occur (i) when using IPTW estimation due to misspecification of models for Pr{A(k) =
1|A(k − 1), L(k)} and (ii) when using the estimated g-formula due to misspecification of
models for E{Y |A = ā, L = l} and f{l(k)|a(k − 1), l̄(k − 1)}. However, the robustness of
IPTW methods to model mispecification can be increased by using doubly robust estimators
as described in Bang and Robins (2005); see Chapter 20 for a discussion of doubly robust
estimators.

23.3.2 Marginal structural models

If, as is not infrequent in practice, K is of the order of 100 and the number of study subjects
is of order 1000, then the 2100 unknown quantities E(Yā) far exceeds the sample size. Thus,
very few subjects in the observed study population follow any given regime, so we need to
specify a non-saturated model for the E(Yā) that combines information from many regimes
to help estimate a given E(Yā). The price paid for modeling E(Yā) is yet another threat to
the validity of the estimators due to possible model misspecification.

Suppose for a continuous response Y it is hypothesized that the effect of treatment history
a on the mean outcome increases linearly as a function of the cumulative exposure cum(a) =∑K

t=0 a(t) under regime a. This hypothesis is encoded in the marginal structural mean
model

E(Yā) = η0 + η1cum(a) (23.2)

for all a. The model is referred to as a marginal structural model because it models the
marginal mean of the counterfactuals Yā, and models for counterfactuals are often referred
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to as structural models. There are 2K different unknown quantities on the left-hand side of
model (23.2), one for each of the 2K different regimes a, but only two unknown parameters
η0 and η1 on the right-hand side. It follows that the MSM (23.2) is not a saturated (i.e.,
non-parametric) model because saturated models must have an equal number of unknowns
on both sides of their defining equation. Any unsaturated model may be misspecified. For
example, MSM (23.2) would be misspecified if E(Yā) either depended on some function of the
regime a other than cumulative exposure (say, cumulative exposure only in the final 5 weeks
cum−5(ā) =

∑K
K−5 a(t)) or depended non-linearly (say, quadratically) on cumulative expo-

sure. It follows that we need methods both to test whether MSM (23.2) is correctly specified
and to estimate the parameters η0 and η1. It is important to note that, under the null hy-
pothesis, the MSM is correctly specified with η1 = 0. Thus, MSMs are not subject to the
null paradox.

MSMs are fit by IPTW as described, for example, by Robins, Hernán, and Brumback
(2000). Specifically, Robins (1998) has shown that if we fit the ordinary linear regression
model

E(Y |A) = γ0 + γ1cum(A) (23.3)

to the observed data by weighted least squares with weights SW or W , then, under the three
identifiability conditions, the weighted least-squares estimators of γ0 and γ1 are consistent
for the causal parameters η0 and η1 of the MSM (23.2) (but are inconsistent for the asso-
ciation parameters γ0 and γ1 of model [23.3]) because weighted least squares with weights
SW or W is equivalent to ordinary least squares (OLS) in the stabilized or unstabilized
unconfounded pseudo-population, respectively. In these populations, the association being
estimated with OLS is causation.

A robust variance estimator (e.g., as used for GEE models; see Chapter 3) can be used
to set confidence intervals for η0 and η1 and thus for any E(Yā) of interest. These intervals
remain valid (i.e., are conservative) even when estimates are substituted for the numerator
and/or denominator weights, provided the model for the denominator weights is correctly
specified. For a non-saturated model like MSM (23.2) the length of the intervals will typi-
cally be much narrower when the model is fit with the weights SW than with the weights
W , so the SW weights are preferred.

Further, if we fit the model

E(Y |A) = γ0 + γ1cum(A) + γ2cum−5(A) + γ3{cum(A)}2

by weighted least squares with weights SW or W , a Wald test on two degrees of freedom
of the joint hypothesis γ2 = γ3 = 0 is a test of the null hypothesis that MSM (23.2)
is correctly specified with high power against the particular directions of misspecification
mentioned above, especially if the weights SW are used.

Suppose it is further hypothesized that, for a particular dichotomous component V of
the vector of baseline covariates L(0), there might exist a qualitative V -exposure effect
modification, with the result that exposure might be harmful to subjects with V = 0 and
beneficial to those with V = 1, or vice versa. To examine this hypothesis, we would elaborate
MSM (23.2) as

E(Yā|V ) = η0 + η1cum(a) + η2V + η3cum(a)V,

an MSM conditional on the baseline covariate V . Qualitative effect modification is present
if η1 and η1 + η3 are of opposite signs. We can estimate the model parameters by fitting
the ordinary linear regression model E(Y |A, V ) = γ0 + γ1cum(A) + γ2V + γ3V cum(A) by
weighted least squares with model weights SW or W . However, Robins (1998) showed that
for an MSM defined conditional on a baseline covariate V , confidence intervals will still be
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valid but narrower if, rather than using weights SW or W, we use the weights

SW (V ) =
K∏

k=0

f{A(k)|A(k − 1), V }
f{A(k)|A(k − 1), L(k)}

,

which differ from SW by adding V to the conditioning event in the numerator.

23.3.3 Dynamic regimes

So far we have only considered estimation of the mean outcome E(Yā) under the 2K static
or non-dynamic regimes a. However, to characterize the optimal treatment strategy, it is
usually necessary to consider dynamic regimes as well.

A non-random dynamic regime is a treatment strategy or rule in which the treatment
a(t) at time t depends in a deterministic manner on the evolution of a subject’s measured
time-dependent covariates L̄(t) and, possibly, treatments A(t − 1) up to t. An example
would be the dynamic regime “take the treatment methotrexate at week t if and only if the
neutrophil count has been greater than 1000 for three consecutive weeks and the patient
was not on treatment at week t − 1.” Mathematically, when A(t) is a binary treatment, a
non-random dynamic regime g is a collection of functions {gk{a(k−1), l(k)}; k = 0, . . . ,K},
each with range the two-point set {0, 1}, where gk{a(k− 1), l(k)} specifies the treatment to
be taken at k for a subject with past history {a(k− 1), l(k)}. In our methotrexate example,
gk{a(k − 1), l(k)} is 1 if a subject’s a(k − 1) is zero and his l(k) implies that his neutrophil
count has been greater than 1000 at weeks k, k − 1, and k − 2 (so k must be at least 2);
otherwise gk{a(k − 1), l(k)} is 0.

A random dynamic regime is a treatment strategy where the treatment a(t) at time t
depends in a probabilistic way on l(t) and possibly a(t − 1). An example would be “if the
neutrophil count has been greater than 1000 for three consecutive weeks, randomize the
subject to take methotrexate at week t with randomization probability 0.80, otherwise use
randomization probability 0.10.” Thus, a random dynamic regime is precisely a sequentially
randomized experiment.

Now let g represent a regime — dynamic or non-dynamic, deterministic or random —
and let Yg denote the counterfactual outcome had regime g been followed. If high values of
the outcome are considered beneficial, then the optimal regime gopt maximizes the average
outcome E(Yg) over all regimes. In fact, we need only try to find the optimal regime among
the deterministic regimes as no random strategy can ever be preferred to the optimal deter-
ministic strategy. Furthermore, the above example indicates that this optimal deterministic
treatment strategy must be a dynamic regime whenever the treatment is a potentially toxic
prescription drug such as methotrexate, as it is essential to temporarily discontinue the drug
when a severe toxicity such as neutropenia develops. Random regimes (i.e., ordinary ran-
domized trials and sequentially randomized trials) remain scientifically necessary because,
before the trial, it is unknown which deterministic regime is optimal.

Under a slight strengthening of the identifiability conditions, E(Yg) for a deterministic
dynamic regime g can be estimated from the data collected in a sequentially randomized trial
by the average of Y among subjects in the unstabilized (but not in the stabilized) pseudo-
study population who followed the regime g, that is, subjects whose observed covariate and
treatment history is consistent with following regime g. Note that this is our first example
of a result that is true for the unstabilized but not the stabilized IPTW estimation. The
required strengthening is that we need the “strengthened” identifiability conditions:

1. “Strengthened” consistency. For any regime g, if, for a given subject, we have A(k) =
gk{A(k − 1), L(k)} at each time k, then Yg = Y and Lg(K) = L(K) for that subject,
where Lg(k) is the counterfactual L-history through time k under regime g.
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Remark: For any regime g for which the treatment at each k does not depend on past
treatment history so gk{a(k − 1), l̄(k)} = gk{l(k)}, we can write the “strengthened”
consistency condition as follows: If A = gK{L(K)} for a given subject, then Yg = Y and
Lg(K) = L̄(K) for that subject, where gk{L(k)} is the treatment through time k of a
subject following regime g with covariate history L(k).

2. “Strengthened” conditional exchangeability. For any t, l(t) and regime g,

Yg �A(t)|L(t) = l(t), A(k) = gk{A(k − 1), L(k)} for k = 0, . . . , t− 1.

Remark: For any regime g for which the treatment at each k does not depend on
past treatment history, so gk{a(k − 1), l̄(k)} = gk{l(k)}, we can write “strengthened”
conditional exchangeability as follows: For all t, l(t), and regimes g,

Yg �A(t)|L(t) = l(t), A(t− 1) = gt−1{l(t− 1)}.

3. Positivity. This assumption remains unchanged.

Strengthened conditions 1 and 2 will hold on any causal DAG, such as that corresponding
to a sequentially randomized trial, in which all parents of treatment variables A(m) are
measured variables. This implication follows from two facts. First, any such causal DAG
satisfies both of the following conditions:

1. “Full” consistency: Yā = Yā∗ if a∗ = a; Y = Yā if A = a; Lā(m) = L̄ā∗(m) if a∗(m− 1) =
a(m − 1); Lā(m) = L(m) if A(m − 1) = a(m − 1), where Lā(m) is the counterfactual
L-history through time m under regime a.

2. “Full” conditional exchangeability

(YA, LA) �A(t)|A(t− 1), L(t),

where A denotes the set of all 2K regimes ā, YA denotes the set of all 2K counterfactuals
Yā, and LA denotes the set of all 2K counterfactual covariate histories Lā through the
end of the study.

Second, the “full” consistency and “full” conditional exchangeability conditions imply
both the strengthened conditions, even though the “full” conditions only refer to non-
dynamic regimes (Robins, 1986).

Remark: Associated with each regime g with treatment gk{a(k− 1), l(k)} depending on
past treatment and covariate history is another regime g� with treatment g�k {l(k)} depend-
ing only on past covariate history such that if “full” consistency holds, any subject following
regime g from time zero will have the same treatment, covariate, and outcome history as
when following regime g� from time zero. In particular, Yg = Yg� and Lg(K) = L̄g�(K).
Specifically, g� is defined in terms of g recursively by g�0 {l(0)} = g0{a(−1) = 0, l(0)}
(by convention, a(−1) can only take the value zero) and g�k {l(k)} = gk[g

�
k−1{l(k − 1)},

l(k)]. For the dynamic methotrexate regime g described earlier, g� is the regime “take
methotrexate at k if and only if your l(k) implies your neutrophil count has been greater
than 1000 for m consecutive weeks and m is an odd number greater than or equal to 3.”
Requiring m to be odd guarantees that no subject will ever take methotrexate for two
consecutive weeks, as specified by regime g. For any regime g for which treatment at each
k already does not depend on past treatment history, g and g� are the identical set of
functions. The above definition of g� in terms of g guarantees that a subject has followed
regime g through time t in the observed data (i.e., A(k) = gk{A(k − 1), L(k)} for k ≤ t)
if and only if the subject has followed regime g� through t (i.e., A(k) = g�k {L(k)} for
k ≤ t).
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“Full” consistency is a natural assumption that we will always make. Therefore, in view of
the last remark, unless stated otherwise, we will henceforth use the term “dynamic regime”
to refer to dynamic regimes for which the treatment at each k depends on past covariates
but not on past treatment history.

The above discussion raises the question of whether or not it is substantively plausible
that E(Yg) is identifiable by the g-formula for non-dynamic g but not for dynamic g, because
conditional exchangeability, but neither “full” nor “strengthened” conditional exchangeabil-
ity holds. Robins (1986) showed that this state of affairs is indeed substantively plausible.
For example, it can occur when there exist unmeasured common causes U of treatment
A(k) and a covariate L(t), k < t, but there do not exist unmeasured common causes of the
A(k) and Y . In Section 23.7 we provide a general graphical criterion due to Robins (1997b)
that can be used to determine the subset of all regimes g (dynamic and non-dynamic) for
which either of the above exchangeability conditions continue to hold. For g in the subset,
E(Yg) remains unidentifiable by the unstabilized IPTW formula.

Of course, very few subjects in the observed study population follow any given regime, so,
in practice, we need to combine information from many different regimes to estimate a given
E(Yg). In Section 23.4 and Section 23.5 we show that this combination can be accomplished
through g-estimation of nested structural models or IPTW estimation of dynamic MSMs
(as defined in Section 23.5). Finally, we note that we can also estimate E(Yg) under the
strengthened identifiability conditions using the g-formula (23.1), modified by replacing
a(k − 1) by g{l(k − 1)} and a by g{l(K)}. However, as discussed above, the estimated
g-formula, in contrast to g-estimation of nested structural models, suffers from the null
paradox, and thus is less robust.

Under the strengthened identifiability conditions, we will see in Section 23.5 that g-
methods can be used to estimate not only E(Yg) but also the optimal (deterministic) treat-
ment regime from observational data, even though, in most observational studies, subjects
are not following any particular deterministic regime. The reason why this strategy succeeds
is that we may conceptualize the subjects in such an observational study as following a ran-
dom dynamic regime, with unknown randomization probabilities that must be estimated
from the data.

23.4 Analysis of a hypothetical study

23.4.1 The study

Table 23.1 contains data from a hypothetical study of the effect of antiretroviral therapy on
a global health score Y measured at the end of follow-up in 32,000 HIV-infected subjects.
Y is a function of CD4 cell count, serum HIV RNA, and certain biochemical measures of
possible drug toxicity, with higher values of Y signifying better health. The variables A(0)
and A(1) are 1 if a subject received antiretroviral therapy at times t = 0 and t = 1, respec-
tively, and 0 otherwise. The binary variable L(1) is temporally prior to A(1) and takes on
the value 1 if the subject’s CD4 cell count was greater than 200 cells/μL at time t = 1,
and is 0 otherwise. To save space, the table displays one row per combination of values
of A(0), L(1), and A(1), rather than one row per subject. For each of the eight combi-
nations, the table provides the number of subjects and the average value of the outcome
E{Y |A(0), L(1), A(1)}. Thus, in row 1 of Table 23.1, E{Y |A(0), L(1), A(1)} = 200 means
E{Y |A(0) = 0, L(1) = 1, A(1) = 0} = 200. We suppose that sampling variability is absent,
and we assume consistency. Further, by inspection of Table 23.1, we can conclude that the
positivity condition is satisfied, because otherwise one or more of the eight rows would have
had zero subjects.

For the present, we suppose that the data arose from a sequentially randomized trial in
which treatment at time 1 is randomly assigned with probability that depends on prior
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Table 23.1 The Hypothetical Study Data

Row A(0) L(1) A(1) N E{Y |A(0), L(1), A(1)}
1 0 1 0 2000 200
2 0 1 1 6000 220
3 0 0 0 6000 50
4 0 0 1 2000 70
5 1 1 0 3000 130
6 1 1 1 9000 110
7 1 0 0 3000 230
8 1 0 1 1000 250

covariate history but not on prior exposure. Because our interest is in the implications
of time-dependent confounding by L(1), we did not bother to include a measured baseline
covariate L(0). Alternatively, one can assume that a measured baseline covariate L(0) exists
but that the data in Table 23.1 are from a single stratum l(0) of L(0).

23.4.2 A priori causal assumptions

We assume Figure 23.3 is the causal DAG corresponding to this study. In Figure 23.3, U
denotes a subject’s baseline immunological function, an unmeasured variable that therefore
does not appear in Table 23.1. The dotted arrows from A(0) to Y, L to Y, and A(1) to Y
emphasize that we do not know, based on prior subject-matter knowledge, whether or not
these causal arrows are present; in fact, our goal will be to use the data in Table 23.1 to
determine, as far as possible, which of these arrows are present. We will later see that the
data from Table 23.1 imply that (i) the arrow from A(1) to Y is present and that (ii) the
arrow from A(0) to Y, or the arrow from L to Y, or both are present.

We now describe how, before observing the data, we used our subject-matter knowledge
to decide that Figure 23.3 was an appropriate causal DAG. First, note the causal DAG in
Figure 23.3, like that in Figure 23.2(b), is not a complete DAG because there do not exist
direct arrows from U into either treatment. This is justified by our assumption that the
study was a sequentially randomized trial. The absence of these arrows implies strengthened
conditional exchangeability, that is, Yg�A(0) and Yg�A(1)|A(0) = a(0), L(1) = l(1) for all
regimes g, whether static or dynamic. The arrows from U to Y and from U to CD4 cell count
L(1) are justified on subject-matter grounds by the well-known effects of immunosuppression
on viral load and CD4 cell count. The arrow from A(0) to L(1) is justified by prior knowledge
of the effect of antiretroviral therapy on CD4 cell count. The presence of the arrow from L(1)
into A(1) and the absence of an arrow from A(0) into A(1) are justified by our knowledge
that treatment at time 1 was randomly assigned with probability that depended only on
prior covariate history.

A(0)

U

L(1) A(1) Y 

Figure 23.3 Causal DAG in the hypothetical study population.
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23.4.3 Testing our causal assumptions

Assumptions concerning causal relations based on subject-matter knowledge can sometimes
be mistaken. However, under the sole assumption that the study satisfies conditional ex-
changeability (implied by the assumption of no arrows from U into either treatment), we
can use the data in Table 23.1 to confirm or refute empirically whether or not the arrows
argued for on subject-matter grounds are actually present. To carry this out, we assume
that the dashed arrows are actually present until we can prove otherwise. If the causal arrow
from A(0) to L(1) were not present in Figure 23.3, A(0) and L(1) would be d-separated and
thus independent by the causal Markov assumption (see the definitions in Section 23.7).
But the data refute independence because Pr{L(1) = 1|A(0) = 1} = 0.75 differs from
Pr{L(1) = 1|A(0) = 0} = 0.50.

Here is an alternative but closely related argument that results in the same conclu-
sion. A causal arrow from A(0) to L(1) exists if the average causal effect E{La(0)=1(1)} −
E{La(0)=0(1)} of the fixed exposure A(0) on the outcome L(1) is non-zero. Because there
is no confounding for the effect of A(0) on L(1), association is causation, and thus

E{La(0)=1(1)} − E{La(0)=0(1)} = E{L(1)|A(0) = 1} − E{L(1)|A(0) = 0},
which is non-zero.

Next, the absence of a causal arrow from A(0) to A(1) in Figure 23.3 implies A(1) and
A(0) d-separated, and thus independent, given L(1), which is confirmed by the data in
Table 23.1. If the causal arrow from L(1) to A(1) was not present in Figure 23.3, A(1) and
L(1) would be d-separated, and thus independent, given A(0), which is refuted by the data
in Table 23.1.

23.4.4 Determining which dotted arrows are present

23.4.4.1 A fixed exposure analysis at time 1

We can use the data in Table 23.1 to try to determine which of the dotted arrows in
Figure 23.3 are present. In Figure 23.3, if the causal arrow from A(1) to Y was not present,
A(1) and Y would be d-separated, and thus independent, given L(1) and A(0), which is
refuted by the data in Table 23.1 because, for example, E{Y |A(0) = 0, L(1) = 0, A(1) =
1} = 70 and E{Y |A(0) = 0, L(1) = 0, A(1) = 0} = 50. Thus, we conclude that A(1) has a
causal effect on Y.

Here is another way to think about this. View the effect of A(1) as that of a fixed base-
line exposure in a study beginning at time 1 with baseline covariates {A(0), L(1)}. Then a
causal arrow from A(1) to Y exists if the average causal effect E{Ya(1)=1|A(0), L(1)} −
E{Ya(1)=0|A(0), L(1)} is non-zero in any of the four strata determined by joint levels
of {A(0), L(1)}. But because, by sequential randomization, there is no confounding for
the effect of A(1) on Y within levels of {A(0), L(1)} (equivalently, all non-causal paths
from A(1) to Y are blocked when we condition on {A(0), L(1)}), conditional association
is causation and E{Ya(1)=1|A(0), L(1)} − E{Ya(1)=0|A(0), L(1)} = E{Y |A(1) = 1, A(0),
L(1)}−E{Y (1)|A(1) = 0, A(0), L(1)}, which, for example, is non-zero in the stratum where
A(0) = 0, L(1) = 0.

We were able to use standard analytic methods (e.g., stratification) to prove the existence
of the arrows from A(1) to Y or from A(0) to L(1) because these causal questions were
reducible to questions about the effects of fixed treatments.

Our analysis of the effect of A(1) on Y raises alternative interesting points about con-
founding. Suppose the arrow from L(1) to Y does not exist. Then L(1) would not be a direct
cause of Y and thus the only source of confounding for the effect of A(1) on Y (i.e., the
causal confounder) would be the unmeasured common cause U ; nonetheless data on L(1) still
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suffice to block backdoor (i.e., non-causal; see Section 23.7) paths from A(1) to Y and thus
to control confounding. Further, even were the data in Table 23.1 not available, we would ex-
pect (i) L(1) to be associated with exposure A(1) within strata of A(0) (i.e., L(1)�A(1)|A(0)
is false) because the path L(1) −→ A(1) is not blocked by conditioning on A(0); and (ii)
L(1) to be an independent risk factor for Y within one or more of the four joint strata of
{A(1), A(0)} (i.e., L(1)�Y |A(1), A(0) is false or, equivalently, E{Y |L(1) = 1, A(1), A(0)} �=
E{Y |L(1) = 0, A(1), A(0)}), because the path L(1) ←− U −→ Y is not blocked by con-
ditioning on A(1) and A(0). In this setting, we follow common practice and refer to L(1)
as a confounder for the effect of A(1) on Y (although not as a causal confounder) given
data on A(0), because, within levels of A(0), L(1) is the measured risk factor for Y that
is used to control confounding. We can empirically confirm that L(1) � Y |A(1), A(0) and
L(1) �A(1)|A(0) are both false using the data in Table 23.1.

23.4.4.2 Joint effects, direct effects, and g-methods

Conventional methods, however, may fail to identify the presence (or absence) of causal
arrows that correspond to a joint effect of the time-varying exposure {A(0), A(1)}. A class
of joint effects often of interest in epidemiology are the (controlled) direct effects of A(0)
on Y not mediated through A(1). With dichotomous exposures, there exist two such direct
effects. First, the direct effect of the baseline exposure A(0) when the later exposure A(1)
is set (i.e., forced) to be 0 is, by definition, the counterfactual contrast

E(Yā={1,0}) − E(Yā={0,0}) = E(Yā={1,0} − Yā={0,0}),

which is the average of the individual causal effects Yā={1,0} − Yā={0,0} that quantify the
effect of baseline exposure when later exposure is withheld. Note this formal definition for
the direct effect of A(0) with A(1) set to zero makes clear that the question of whether A(0)
directly affects Y not through A(1) is a question about the effect of joint intervention on
A(0) and A(1). The second direct effect is the direct effect of A(0) when the exposure A(1)
is set to 1, which, by definition, is the counterfactual contrast

E(Yā={1,1}) − E(Yā={0,1}) = E(Yā={1,1} − Yā={0,1})

that quantifies the effect of the baseline exposure when exposure at time 1 is always given.
When, on the causal DAG in Figure 23.3, the dotted arrows from A(0) to Y and L(1) to Y

are both absent, the direct effects E(Yā={1,0})−E(Yā={0,0}) and E(Yā={1,1})−E(Yā={0,1})
will both be zero, as then the only sequence of directed arrows from A(0) to Y would go
through A(1). If one or both of the direct effects are non-zero, then a sequence of directed
arrows from A(0) to Y that avoids A(1) must exist and, thus, one or both of the dotted
arrows from A(0) to Y and L(1) to Y must be present. However, to determine from the
data in Table 23.1 whether either or both direct effects are non-zero requires appropriate
use of methods for causal inference with time-varying exposures like the g-formula, IPTW,
or g-estimation, because, as we demonstrate below, conventional methods fail, even when
the three identifiability conditions hold.

23.4.4.3 G-formula

If we can estimate the counterfactual means E(Yā={0,0}), E(Yā={1,0}), E(Yā={0,1}), and
E(Yā={1,1}) under the four possible static regimes, we can estimate both direct effects. All
four means can be consistently estimated by the g-formula because the three identifiability
conditions hold in a sequentially randomized trial. Because the confounder L(1) is a binary
variable, the g-formula can be written explicitly as

E(Yā) =E{Y |A(0) = a(0), A(1) = a(1), L(1) = 0} Pr{L(1) = 0|A(0) = a(0)}
+ E{Y |A(0) = a(0), A(1) = a(1), L(1) = 1} Pr{L(1) = 1|A(0) = a(0)}
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for a = {a(0), a(1)}. Using this formula, the four means under each of the regimes are

E(Yā={0,0}) = 200 × 8000
16,000

+ 50 × 8000
16,000

= 125,

E(Yā={0,1}) = 145, E(Yā={1,0}) = 155, E(Yā={1,1}) = 145.
We conclude that there is a direct effect of A(0) on the mean of Y when A(1) is set to

0 but not when A(1) is set to 1. As a consequence, we know that one or both of the A(0)
to Y and L(1) to Y arrows must be present. However, we cannot determine whether or
not the causal arrow from L(1) to Y is present, as the causal effect of L(1) on Y cannot
be consistently estimated because of the unblockable backdoor path L(1) ←− U −→ Y. As
a consequence of our inability to determine the causal effect of L(1) on Y, we also cannot
determine in general whether none (corresponding to no arrow from A(0) to Y ), some, or
all of the non-zero direct effect of A(0) on Y when A(1) is withheld is due to a direct causal
effect of A(0) on Y not through L(1).

23.4.5 Why standard methods fail

We will show that when there exists, as in our study, a post-baseline covariate L(1) that
(i) is caused by (or shares a common cause with) baseline exposure A(0) and (ii) is a
confounder for the effect of a subsequent exposure A(1) on a response Y, standard analytic
methods that use stratification, regression, or matching for covariate adjustment cannot
be used to estimate causal contrasts that depend on the joint effects of both the baseline
and subsequent exposures. We will see that the difficulty with standard methods is that, to
estimate the joint effects of A(0) and A(1), we must adjust for the confounding effect of L(1)
to estimate consistently the effect of A(1) on Y ; however, if we adjust for the confounding
by stratification, regression, or matching on L(1), we cannot consistently estimate the effect
of A(0) because the association of L(1) with A(0) results in selection bias, even under the
null hypothesis of no causal effect (direct, indirect, or net) of A(0) on Y.

As a specific example, we consider the causal contrast E(Yā={1,1}) − E(Yā={0,1}) repre-
senting the direct effect of A(0) on Y when treated with A(1), which we have shown to
take the value 0 in our study. If one did not know about g-methods, a natural, but naive,
attempt to estimate E(Yā={1,1}) − E(Yā={0,1}) from the data in Table 23.1 would be to
calculate the associational contrast E{Y |A(0) = 1, A(1) = 1} − E{Y |A(0) = 0, A(1) = 1}.
From Table 23.1, we obtain

E{Y |A(0) = 1, A(1) = 1} =
1

10,000
(110 × 9000 + 250 × 1000) = 124,

E{Y |A(0) = 0, A(1) = 1} =
1

8000
(220 × 6000 + 70 × 2000) = 182.5.

Because this analysis fails to adjust for the confounder L(1) of A(1)’s effect on Y, the
associational contrast E{Y |A(0) = 1, A(1) = 1} − E{Y |A(0) = 0, A(1) = 1} = −58.5 is
non-causal and biased as an estimator of the causal contrast E(Yā={1,1})−E(Yā={0,1}) = 0.
Had the causal DAG in Figure 23.3 not had the arrow from L(1) to A(1), there would have
then been no confounding by either the measured factors L(1) or the unmeasured factors U
for either of the exposures, and we would have found that association was causation, that
is, that E{Y |A(0) = 1, A(1) = 1} − E{Y |A(0) = 0, A(1) = 1} was equal to E(Yā={1,1}) −
E(Yā={0,1}).

It will prove useful later for us to consider the saturated conditional association model

E{Y |A(0) = a(0), A(1) = a(1)} = γ0 + γ1a(0) + γ2a(1) + γ3a(0)a(1). (23.4)
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Table 23.2 The Hypothetical Study Population
Collapsed over L(1)

A(0) A(1) N E{Y |A(0), A(1)}
0 0 8000 87.5 = γ0

0 1 8000 182.5 = γ0 + γ2

1 0 6000 180 = γ0 + γ1

1 1 10000 124 = γ0 + γ1 + γ2 + γ3

We can estimate the model parameters by collapsing the population data over L(1), as
shown in Table 23.2. We can then calculate the parameter values from the equations

E{Y |A(0) = 0, A(1) = 0} = γ0,

E{Y |A(0) = 0, A(1) = 1} = γ0 + γ2,

E{Y |A(0) = 1, A(1) = 0} = γ0 + γ1,

E{Y |A(0) = 1, A(1) = 1} = γ0 + γ1 + γ2 + γ3,

and the values of E{Y |A(0) = a(0), A(1) = a(1)} in Table 23.2. We find γ0 = 87.5, γ1 =
92.5, γ2 = 95, and γ3 = −151. These parameter estimates are precisely those that result
from fitting, by ordinary least squares, a linear model for the outcome Y that contains, as
regressors, an intercept, A(0), A(1), and the product A(0) × A(1). Note that, if we were
given the values of the γ-parameters, we could use the above equations in the other direction
to calculate the conditional means E{Y |A(0) = a(0), A(1) = a(1)}.

Upon recognizing that the above associational contrast is biased for E{Yā={1,1}}−
E{Yā={0,1}} due to uncontrolled confounding by L(1), it is natural to try to adjust for
confounding by computing the two l-stratum-specific associations

E{Y |A(0) = 1, L(1) = 0, A(1) = 1} − E{Y |A(0) = 0, L(1) = 0, A(1) = 1}
= 250 − 70 = 180,

E{Y |A(0) = 1, L(1) = 1, A(1) = 1} − E{Y |A(0) = 0, L(1) = 1, A(1) = 1}
= 110 − 220 = −110,

or their weighted average

−110 × 20
32

+ 180 × 12
32

= 69.75,

with weights determined by the distribution of L in the study population of 32,000. Note
that Pr(L = 1) = 20/32. Neither of the l-stratum-specific associations nor their population
weighted average is a valid, unbiased estimator of the actual causal contrast E(Yā={1,1}) −
E(Yā={0,1}) = 0. The biases in the l-stratum-specific associations reflect the selection bias
that is induced when one conditions on a covariate L(1) that is a predictor of Y given A(0)
and A(1) and is caused by treatment A(0) (Rosenbaum, 1984; Robins, 1986).

This selection bias can be understood with the help of causal graphs (Hernán, Hernández-
Dı́az, and Robins, 2004). To do so, consider another study whose causal graph is also given
by Figure 23.3, but modified so that all three dotted arrows are absent. The modified
graph implies that neither A(0) nor A(1) has a direct, indirect, or net effect on Y. Yet,
even in this setting, we would expect that the two l-stratum-specific associations would still
remain non-zero and therefore biased for E(Yā={1,1})−E(Yā={0,1}) = 0. To see why, note the
associational l-stratum-specific associations are zero only when Y and A(0) are conditionally
independent given A(1) = 1 and L. But we would not expect such conditional independence
because, on the modified graph, the path A(0) −→ L(1) ←− U −→ Y connecting Y



June 3, 2008 10:39 C6587 C6587˙C023

574 ESTIMATION OF THE CAUSAL EFFECTS OF TIME-VARYING EXPOSURES

and A(0) is opened when we condition (i.e., stratify) on the collider L(1) and/or L(1)’s
descendant A(1) (see definitions in Section 23.7). In our study, conditioning on A(1) = 1
and L(1) similarly results in selection bias; however, the presence of the arrow from A(1) to
Y and of one or both of the arrows from A(0) to Y and L(1) to Y makes a purely graphical
demonstration of the bias less clear.

23.4.6 IPTW and marginal structural models

We now describe how to use IPTW for estimating the counterfactual means E(Yā) under the
four static regimes a = {a(0), a(1)}. The first step is to create a stabilized pseudo-population
by weighting the subjects in each row in Table 23.1 by the stabilized weights

SW =
f{A(0)}f{A(1)|A(0)}

f{A(0)}f{A(1)|A(0), L(1)} =
f{A(1)|A(0)}

f{A(1)|A(0), L(1)} .

Note that the factor f{A(0)} cancels because in our study the potential confounder L(0)
is absent. Table 23.3 records the values of f{A(1)|A(0)}, f{A(1)|A(0), L(1)}, SW , and the
number of subjects in the pseudo-population.

For example, for the first row,

f{A(1)|A(0)} = Pr{A(1) = 0|A(0) = 0} = 8000/16,000 = 0.5,

f{A(1)|A(0), L(1)} = Pr{A(1) = 0|A(0) = 0, L(1) = 1} = 2000/8000 = 0.25.

Each of the 2000 subjects in the first row therefore receives the weight SW = 0.5/0.25 = 2.
Hence, the row contributes 4000 = 2× 2000 subjects to the pseudo-population. The IPTW
weights eliminate the arrow between L(1) and A(1) in the pseudo-population as shown
in Figure 23.4. The absence of the arrow can be easily confirmed by checking whether or
not A(1)�ps L(1)|A(0), where �ps represents independence in the pseudo-population. This
conditional independence holds in the pseudo-population of our example because

Prps{A(1) = 1|A(0) = 1, L(1) = 0} = Prps{A(1) = 1|A(0) = 1, L(1) = 1} = 3/8,
Prps{A(1) = 1|A(0) = 0, L(1) = 0} = Prps{A(1) = 1|A(0) = 0, L(1) = 1} = 1/2.

Therefore, the causal DAG corresponding to the pseudo-population lacks the arrow L(1)
to A(1). The absence of this arrow signifies that there is no confounding by L(1) in the
pseudo-population and hence that adjustment by stratification is not necessary. That is,
Eps{Y |A(0) = a(0), A(1) = a(1)} = Eps(Yā={a(0),a(1)}) in the pseudo-population. Thus,
as shown in Table 23.4, we can collapse the pseudo-population data over L(1), obtain
Eps{Y |A(0), A(1)} for each of the four combinations of values of A(0) and A(1), and conduct
an unadjusted analysis.

Table 23.3 The Stabilized Pseudo-Population

A(0) L(1) A(1) N Exp. f{A(1)|A(0)} f{A(1)|A(0), L(1)} SW N Pseudo-Pop.

0 1 0 2000 200 0.50 0.25 2 4000
0 1 1 6000 220 0.50 0.75 2/3 4000
0 0 0 6000 50 0.50 0.75 2/3 4000
0 0 1 2000 70 0.50 0.25 2 4000
1 1 0 3000 130 0.375 0.25 3/2 4500
1 1 1 9000 110 0.625 0.75 5/6 7500
1 0 0 3000 230 0.375 0.75 1/2 1500
1 0 1 1000 250 0.625 0.25 5/2 2500

Note: The column heading Exp. refers to E{Y |A(0), L(1), A(1)}.
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Figure 23.4 Causal DAG in the pseudo-population simulated by IPTW.

For example, the direct effect of A(0) on the mean of Y when A(1) is set to 0 is
Eps{Y |A(0) = 1, A(1) = 0} − E{Y |A(0) = 0, A(1) = 0} = 155 − 125 = 30. As expected,
the values of E(Yā) obtained by IPTW (i.e., the values of Eps{Y |A(0), A(1)} in the pseudo-
population) are equal to those obtained by the g-formula.

In this oversimplified example, we do not need to use models to estimate the inverse
probability weights because they can be calculated easily by hand from the data. Also,
we do not need models for the counterfactual means E{Yā} because these means can be
calculated by hand. However, for pedagogic purposes, let us consider the saturated marginal
structural mean model

E(Yā) = η0 + η1a(0) + η2a(1) + η3a(0)a(1).

We can use the pseudo-population data to calculate the parameters η0, η1, η2, and η3 because

E{Yā={0,0}} = η0,

E{Yā={0,1}} = η0 + η2,

E{Yā={1,0}} = η0 + η1,

E{Yā={1,1}} = η0 + η1 + η2 + η3,

and, therefore, using the estimates for E(Yā={a(0),a(1)}) in Table 23.4, η0 = 125, η1 = 30,
η2 = 20, and η3 = −30. This estimation procedure is equivalent to fitting linear model (23.4)
to the observed study data by weighted least squares with each subject weighted by SW
(e.g., proc reg with a weight statement in SAS). Because of confounding, the parameters
η of the marginal structural mean model differ from the parameters γ of the associational
mean model (23.4).

The parameters η can be used to test hypotheses about the joint effect of exposures
A(0), A(1). For example, the hypothesis that A(0) has no direct effect on the mean of Y
when A(1) is set to 1, that is, E(Yā={1,1}) = E(Yā={0,1}), implies η0 +η1 +η2 +η3 = η0 +η2.
This would be true only if η1 +η3 = 0, which is the case. Similarly, the hypothesis that A(0)
has no direct effect on the mean of Y when A(1) is set to 0, E(Yā={1,0}) = E(Yā={0,0}),
implies η0 + η1 = η0. This would be true only if η1 = 0, which is not the case. Suppose that

Table 23.4 The Stabilized Pseudo-Population
Collapsed over L(1)

A(0) A(1) N E{Y |A(0), A(1)}
0 0 8000 125 = θ0

0 1 8000 145 = θ0 + θ2

1 0 6000 155 = θ0 + θ1

1 1 10000 145 = θ0 + θ1 + θ2 + θ3
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we had fit the non-saturated misspecified marginal structural model

E(Yā) = η0 + η1a(0) + η2a(1)

by weighted least squares with weights SW and then used the parameter estimates to
estimate the counterfactual means E(Yā). Because of misspecification bias, these estimated
means would have differed from those obtained from the saturated model and from the
g-formula.

23.4.7 Methods for dynamic regimes

23.4.7.1 G-formula

The four regimes g = {a(0), a(1)} that we have compared constitute all possible combina-
tions of fixed values of a(0) and a(1) and thus all possible static regimes in our example. We
next consider dynamic regimes such as g = {1, L(1)}, which is the regime “always treat at
time 0, treat at time 1 only if L(1) = 1.” Note the same dynamic regime applied to different
people may result in different exposure values. For example, the regime g = {1, L(1)} will
be the regime {1, 1} for those subjects with L(1) = 1 under a(0) = 1, and g = {1, 0} for
those with L(1) = 0 under a(0) = 1. The g-formula for the dynamic regime g = {1, L(1)} is
the generalization of the g-formula for static regimes in which the exposure A(1) is set to 1
when L(1) = 1 and A(1) is set to 0 when L(1) = 0. In our example,

E(Yg={1,L(1)}) =E{Y |A(0) = 1, A(1) = 1, L(1) = 1} Pr{L(1) = 1|A(0) = 1}
+ E{Y |A(0) = 1, A(1) = 0, L(1) = 0} Pr{L(1) = 0|A(0) = 1}

=110 × 12
16

+ 230 × 4
16

= 140.

The above formula can be written more succinctly as

E(Yg={1,L(1)}) =
∑
l(1)

E{Y |A(0) = 1, A(1) = l(1), L(1) = l(1)} Pr{L(1) = l(1)|A(0) = 1}.

23.4.7.2 IPTW

We now describe how to use IPTW for estimating the counterfactual means E(Yg={1,L(1)}).
The first step is to create an unstabilized pseudo-population by weighting the subjects in
each row in Table 23.1 by the unstabilized weights W = 1/[f{A(0)}f{A(1)|A(0), L(1)}].
Note we use f{A(0)} rather than f{A(0)|L(0)} because in our study no potential confounder
L(0) is present. Table 23.5 records the values of f{A(0)}, f{A(1)|A(0), L(1)}, W , and the
number of subjects in the unstabilized pseudo-population.

Table 23.5 The Unstabilized Pseudo-Population

A(0) L(1) A(1) N Exp. f{A(0)} f{A(1)|A(0), L(1)} W N Pseudo-Pop.

0 1 0 2000 200 0.50 0.25 8 16000
0 1 1 6000 220 0.50 0.75 8/3 16000
0 0 0 6000 50 0.50 0.75 8/3 16000
0 0 1 2000 70 0.50 0.25 8 16000
1 1 0 3000 130 0.50 0.25 8 24000
1 1 1 9000 110 0.50 0.75 8/3 24000
1 0 0 3000 230 0.50 0.75 8/3 8000
1 0 1 1000 250 0.50 0.25 8/3 8000

Note: Shorthand column headings are as in Table 23.3.
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The IPTW estimate of E(Yg={1,L(1)}) is the average of Y among the subjects in the
unstabilized pseudo-population who followed regime g = {1, L(1)}. Only the subjects with
A(0) = 1, L(1) = 1, A(1) = 1 and A(0) = 1, L(1) = 0, A(1) = 0 followed g = {1, L(1)}. Thus,

E(Yg={1,L(1)}) =
24,000 × 110 + 8000 × 230

32,000
= 140,

as was also obtained with the g-formula.

23.4.7.3 G-estimation

G-estimation of structural nested models is a third method for estimation of counterfactual
means. The “g-” indicates that g-estimation, like the g-formula, is a general method that
can be further used to estimate counterfactual means E(Yg) under any static or dynamic
regime g. We begin with a saturated locally rank-preserving SNM for our example. The
model has one equation for each treatment time with one unknown parameter β∗

0 in the
time 0 equation and a vector β∗

1 of four unknown parameters in the time 1 equation:

Yg={a(0),0} = Yg={0,0} + β∗
0a(0) (23.5)

Yg={a(0),a(1)} = Yg={a(0),0} + β∗
1,1a(1) + β∗

1,2a(1)Lg={a(0)}(1) + β∗
1,3a(1)a(0)

+β∗
1,4a(1)a(0)Lg={a(0)}(1) (23.6)

By evaluating Equation (23.5) at a(0) = 1, we see the parameter β∗
0 = Yg={1,0} − Yg={0,0}

represents the subject-specific direct effect of treatment a(0) on the outcome when treatment
a(1) is withheld (i.e., set to zero). Under our model, this direct effect β∗

0 is exactly the same
for every subject. Thus, if Yg={0,0} for subject i exceeds Yg={0,0} for subject j, the same
ranking of i and j will hold for Yg={1,0}; the model preserves ranks across regimes, and we
therefore refer to Equation (23.5) as a rank-preserving model.

The four parameters β∗
1 in (23.6) parameterize the effect of an a(1) on Y within the four

possible levels of past treatment and covariate history. For example, β∗
1,1 and β∗

1,1 +β∗
1,2 are,

respectively, the effect of a(1) on Y when a(0) is withheld among the subset of subjects with
Lg={0}(1) = 0 and the subset with Lg={0}(1) = 1. Here, Lg={0}(1) is the counterfactual
value of L(1) when a(0) is withheld. If β∗

1,1 and β∗
1,1 +β∗

1,2 are of opposite sign, then there is
a qualitative modification by L(1) of the effect a(1) on Y when a(0) is withheld. Similarly
β∗

1,1 + β∗
1,3 and β∗

1,1 + β∗
1,3 + β∗

1,4 are the effect of a(1) when a(0) is taken among the subset
of subjects with Lg={1}(1) = 0 and the subset with Lg={1}(1) = 1, respectively. If they
are of different sign, there is a qualitative modification by L(1) of the effect of a(1) on Y
when a(0) is taken. Thus, an SNM models the degree to which the effect of current treat-
ment is modified by past treatment and past time-dependent covariate history. In contrast,
non-dynamic MSMs can only model effect modification by baseline covariates V , a subset
of L(0).

Finally, we note that if Yg={1,0} for subject i exceeds Yg={1,0} for subject j, we can only
be certain that Yg={1,1} for subject i also exceeds Yg={1,1} for subject j, if both have the
same values of Lg=(1). Because the preservation of the ranking on the counterfactual Y
depends on local factors (i.e., the value Lg=(1)), we refer to Equation (23.6) as a locally
rank-preserving model.

We next describe how we can estimate the parameters under the assumption of con-
ditional exchangeability. We then show how to use our parameter estimates to estimate
E(Yg={1,L(1)}).

G-estimation of the parameters under conditional exchangeability. We begin by estimating
the parameter vector β∗

1 . To do so, in Table 23.6 we first use the SNM to calculate the
mean of Y{A(0),0} in terms of the unknown parameter vector β∗

1 . To help understand these
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Table 23.6 The g-estimation procedure

A(0) L(1) A(1) N Y Y{A(0),0} Y{0,0}

0 1 0 2000 200 200 200
0 1 1 6000 220 220−β∗

1,1 − β∗
1,2 220−β∗

1,1 − β∗
1,2

0 0 0 6000 50 50 50
0 0 1 2000 70 70−β∗

1,1 70−β∗
1,1

1 1 0 3000 130 130 130−β∗
0

1 1 1 9000 110 110−β∗
1,1 − β∗

1,2 110−β∗
0 − β∗

1,1 − β∗
1,2

−β∗
1,3 − β∗

1,4 −β∗
1,3 − β∗

1,4

1 0 0 3000 230 230 230−β∗
0

1 0 1 1000 250 250−β∗
1,1 − β∗

1,3 250−β∗
0 − β∗

1,1 − β∗
1,3

calculations, consider the expression 220 − β∗
1,1 − β∗

1,2 for the mean of Y{A(0),0} = Y{0,0}
among subjects with A(0) = 0, L(1) = 1, A(1) = 1 in the second data row of Table 23.6.
By consistency, the observed L(1) of 1 equals Lg={0}(1) and the observed mean 220 of Y is
the mean of Yg={0,1}. By solving (23.6) for Yg={0,0} after substituting {0, 1} for {a(0), a(1)}
and 1 for Lg={a(0)}(1), we obtain 220 − β∗

1,1 − β∗
1,2 upon taking means.

We now estimate β∗
1 under the assumption of conditional exchangeability. Conditional

exchangeability implies that (i) Yg={0,0}�A(0) and (ii) Y{a(0),0}�A(1)|A(0) = a(0), L(1) =
l(1). Now condition (ii) implies that, within any of the four joint strata of {A(0), L(1)},
the mean of Y{A(0),0} among subjects with A(1) = 1 is equal to the mean among subjects
with A(1) = 0. Consider first the stratum {A(0), L(1)} = (0, 0). From data rows 3 and 4
in Table 23.6, we find that the mean when A(1) = 0 is 50 and when A(1) = 1 is 70 − β∗

1,1.
Hence, β∗

1,1 = 20. Next we equate the means of Y{A(0),0} in data rows 1 and 2 corresponding
to stratum {A(0), L(1)} = (0, 1) to obtain 200 = 220 − β∗

1,1 − β∗
1,2. Since β∗

1,1 = 20, we
conclude β∗

1,2 = 0.
Continuing, we equate the means of Y{A(0),0} in data rows 7 and 8 to obtain 230 =

250 − β∗
1,1 − β∗

1,3. Because β∗
1,1 = 20, we conclude β∗

1,3 = 0. Finally, equating the means
of Y{A(0),0} in data rows 5 and 6, we obtain 130 = 110 − β∗

1,1 − β∗
1,2 − β∗

1,3 − β∗
1,4, so

130 = 110 − 20 − β∗
1,4. Thus, β∗

1,4 = −40.
To estimate β∗

0 , we first substitute β∗
1,1 = 20, β∗

1,2 = β∗
1,3 = 0, and β∗

1,4 = −40 into
the expressions for the mean of Y{A(0),0} in Table 23.6. We then use (23.5) to obtain the
mean of Y{0,0} for each data row in Table 23.6 by subtracting β∗

0A(0) from the mean of
Y{A(0),0}. Now our assumption Y{0,0} � A(0) implies that the means of Y{0,0} among the
16,000 subjects with A(0) = 1 and the 16,000 subjects with A(0) = 0 are identical. The
means among subjects with A(0) = 0 and those with A(0) = 1 are

200 × 8000
16,000

+ 50 × 8000
16,000

= 125 and 130 × 12,000
16,000

+ 230 × 4000
16,000

− β∗
0 = 155 − β∗

0 ,

respectively. Hence, β∗
0 = 30. This method of estimation is referred to as g-estimation.

Estimation of E(Yg) using locally rank-preserving nested structural models. We now use the
above results to estimate various counterfactual population means. Because 125 is the mean
of Yg={0,0} both in subjects with A(0) = 0 and A(0) = 1, we conclude that the population
mean E(Yg={0,0}) is 125. Further, by (23.5), we have E(Yg={1,0} − Yg={0,0}) = β∗

0 = 30.
Thus, E(Yg={1,0}) = E(Yg={0,0}) + β∗

0 = 125 + 30 = 155.
Next, by (23.6), we obtain E(Yg={0,1} − Yg={0,0}) = E{β∗

1,1 + β∗
1,2Lg={0}(1)} = β∗

1,1 +
β∗

1,2 E{Lg={0}(1)} = β∗
1,1 = 20, as β∗

1,2 = 0. Hence, E(Yg={0,1}) = 145. By (23.6), we
have E(Yg={1,1} − Yg={0,0}) = E{β∗

0 + β∗
1,1 + β∗

1,3 + (β∗
1,2 + β∗

1,4)Lg=(1)(1)} = 30 + 20 +
(−40)E{Lg=(1)(1)}. We conclude that knowledge of the parameters of our SNM is not
sufficient to estimate E(Yg={1,1} − Yg={0,0}). We also need to know E{Lg={1}(1)}. But, as
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noted previously, E{Lg={1}(1)} = E{L(1)|A(0) = 1} = 3/4, as association is causation for
the effect of A(0) on L(1). Thus, E(Yg={1,1} − Yg={0,0}) = 30 + 20 − 40 × 3/4 = 20, so
E(Yg={1,1}) = 145.

Finally, to obtain E(Yg={1,L(1)}), we note that Yg={1,L(1)} = Yg={1,1} if Lg={1}(1) = 1
and Yg={1,L(1)} = Yg={1,0} if Lg={1}(1) = 0. Thus, in the three quarters of subjects with
Lg={1}(1) = 1, Yg={1,L(1)}−Yg={0,0} = Yg={1,1}−Yg={0,0} = β∗

0 +β∗
1,1 +β∗

1,3 +β∗
1,2 +β∗

1,4 =
30+20−40 = 10. In the one quarter of subjects with Lg={1}(1) = 0, Yg={1,L(1)}−Yg={0,0} =
Yg={1,0}−Yg={0,0} = β∗

0 = 30. Thus, the mean of Yg={1,L(1)}−Yg={0,0} is 10×3/4+30×1/4 =
15. Hence, E(Yg={1,L(1)}) = 125 + 15 = 140.

All of these results agree with those obtained by the g-formula and by IPTW.

Estimation of E(Yg) without local rank preservation. We noted above that local rank-
preservation implies that the direct effect of treatment A(0) on the outcome when treat-
ment A(1) is withheld is the same for each subject. This assumption is clearly biologically
implausible in view of between-subject heterogeneity in unmeasured genetic and environ-
mental background risks. To overcome this limitation, we consider a saturated structural
nested mean model (SNMM) that assumes

E(Yg={a(0),0}) = E(Yg={0,0}) + β∗
0a(0) and

E{Yg={a0,a1}|L(1) = l(1), A(0) = a(0)} = E{Yg={a0,0}|L(1) = l(1), A(0) = a(0)}
+β∗

1,1a(1) + β∗
1,2a(1)l(1) + β∗

1,3a(1)a(0) + β∗
1,4a(1)a(0)l(1).

This is a model for unconditional and conditional average treatment effects and thus is
totally agnostic as to the question of whether or not there is between-subject heterogeneity
in the effect of treatment. Nonetheless, Robins (1994, 1997b) has proved that the previous
estimates of the parameters β∗

0 and β∗
1 and the means E(Yg) obtained with g-estimation

remain valid under the SNMM, provided the strengthened identifiability conditions hold.

23.5 G-estimation in practice and the choice among g-methods

23.5.1 G-estimation of unsaturated structural nested mean models

In practice, we need to combine information from many different regimes to estimate a given
E(Yg). To accomplish this goal, we shall fit an unsaturated additive SNMM by g-estimation.

The general form of an additive SNMM is as follows. Let 0(m) indicate giving treatment
0 at each treatment time m,m + 1 . . . ,K for any m = 0, . . . ,K. For each m = 0, . . . ,K,

E{Yg={a(m−1),a(m),0(m+1)}|La(m−1)(m) = l(m), A(m− 1) = a(m− 1)}
= E{Yg={a(m−1),0(m)}|Lā(m−1)(m) = l(m), A(m− 1) = a(m− 1)} (23.7)

+ a(m)γm{a(m− 1), l(m), β∗},
where (i) g = {a(m − 1), a(m), 0(m + 1)} and g = {a(m − 1), 0(m)} are non-dynamic
regimes that differ only in that the former has treatment a(m) at m while the latter has
treatment 0 at time m, while both have treatment a(m− 1) through m− 1 and treatment
0 from m + 1 to the end of follow-up K; (ii) β∗ is an unknown parameter vector; and (iii)
γm{a(m − 1), l(m), β} is a known function satisfying γm{a(m − 1), l(m), 0} = 0 so β∗ = 0
under the null hypothesis of no effect of treatment.

Thus, the SNMM γm{a(m−1), l(m), β∗} models the effect on the mean of Y of a last blip
of treatment of magnitude a(m) at m, as a function of (i.e., as modified by) past treatment
and covariate history {a(m − 1), l(m)}. Further, it follows from the consistency condition
that we could have replaced Lg={a(m−1)}(m) = l(m) by L(m) = l(m) in the conditioning
event.
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In the example of the previous section, we have K = 1, γ1{a(0), l(1), β∗} = β∗
1,1+β∗

1,2l(1)+
β∗

1,3a(0) + β∗
1,4a(0)l(1) and γ0{a(−1), l(0), β∗} = β∗

0 , because l(0) and a(−1) can both be
taken to be identically 0. Other possible choices of γm{a(m− 1), l(m), β} include (i) β, (ii)
β0 + β1m, and (iii) β0 + β1m + β2a(m− 1) + βT

3 l(m) + βT
4 l(m)a(m− 1).

In model (i), the effect of a last blip of treatment a(m) is the same for all m. Under model
(ii), the effect varies linearly with the time m of treatment. Under model (iii), the effect of
a last blip of treatment at m is modified by past treatment and covariate history.

We next describe the g-estimation algorithm for estimating the unknown parameter β∗

in an observational study under the assumptions of conditional exchangeability and con-
sistency. We note that, to fit an unsaturated SNMM by g-estimation, we do not require
positivity to hold.

Fit a pooled logistic regression model

logit[Pr{A(m) = 1|L(m), A(m− 1)}] = αTW (m) (23.8)

for the probability of treatment at time (i.e., week) m for m = 0, . . . ,K. Here, W (m) =
wm{L(m), A(m − 1)} is a vector of covariates calculated from a subject’s covariate and
treatment data {L(m), A(m − 1)}, αT is a row vector of unknown parameters, and each
person-week is treated as an independent observation so each person contributes K + 1 ob-
servations. An example of W (m) = wm{L(m), A(m−1)} would be the transpose of the row
vector m,A(m−1), LT (m), A(m−1)LT (m), A(m−2), LT (m−1), LT (m)A(m−1)A(m−2),
where L(m) is the vector of covariates measured at time m. Let α̂ be the maximum likelihood
estimator of α. (In a sequentially randomized experiment, the preceding step is not required
because Pr{A(m) = 1|L(m), A(m− 1)} is known and would not need to be estimated.)

Next, define

Ym(β) = Y −
K∑

j=m

A(j)γj{A(j − 1), L(j), β}.

Note that, for each β, Ym(β) can be computed from the observed data. For the moment,
assume, as in model (i) above, that β is one-dimensional. Let βlow and βup be much smaller
and larger, respectively, than any substantively plausible value of β∗.

Then, separately, for each β on a grid from βlow to βup, say βlow, βlow + 0.1, βlow +
0.2, . . . , βup, perform the score test of the hypothesis θ = 0 in the extended logistic model

logit[Pr{A(m) = 1|L(m), A(m− 1), Ym(β)}] = αTW (m) + θYm(β) (23.9)

that adds the covariate Ym(β) at each time m to the above pooled logistic model. A 95%
confidence interval for β∗ is the set of β for which an α = 0.05 two-sided score test of the
hypothesis θ = 0 does not reject. The g-estimate of β∗ is the value of β for which the score
test takes the value 0 (i.e., the p-value is 1).

A heuristic argument for the validity of the g-estimation algorithm is as follows. Under a
locally rank-preserving model, if β was equal to β∗, Ym(β) would equal the counterfactual
Yg={A(m−1),0(m)} in which a subject takes his actual treatment prior to m but no treatment
from time m onwards, as shown in the previous section. But, under conditional exchange-
ability, Yg={A(m−1),0(m)} and A(m) are conditionally independent given past covariate and
treatment history L(m), A(m−1). That is, Yg={A(m−1),0(m)} is not a predictor of A(m) given
{L(m), A(m− 1)}, which implies that the coefficient θ of Ym(β) must be zero in the model
(23.9) when β = β∗, provided the model logit[Pr{A(m) = 1|L(m), A(m − 1)}] = αTW (m)
is correctly specified.

Now, we do not know the true value of β. Therefore, any value β for which the data are
consistent with the parameter θ of the term θYm(β) being zero might be the true β∗, and
thus belongs in our confidence interval. If consistency with the data is defined at the 0.05
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level, then our confidence interval will have coverage of 95%. Furthermore, the g-estimate
β̂ of β∗ is that β for which adding the term θYm(β) does nothing to help to predict A(m)
whatsoever, which is the β for which the score test of θ = 0 is precisely zero. The g-estimate
β̂ is also the value of β for which the maximum likelihood estimate of θ in model (23.9) is
precisely zero.

It may appear peculiar that a function Ym(β) of the response Y measured at the end of
follow-up is being used to predict treatment A(m) at earlier times. However, this peculiarity
evaporates when one recalls that, for each β on our grid, we are testing the null hypothesis
that β = β∗ and, under this null and a rank-preserving model, Ym(β) is the counterfactual
Yg={A(m−1),0(m)}, which we can view as already existing at time m (although we cannot
observe its value until time K and then only if treatment in the actual study is withheld
from m onwards).

The above arguments are heuristic in the sense that their validity relies on the assumption
of local rank-preservation, which is biologically implausible. Nevertheless, Robins (1994,
1997b) proves that the g-estimation algorithm is valid even in the absence of local rank
preservation, provided that conditional exchangeability and consistency hold.

Suppose now that the parameter β is a vector. To be concrete, suppose we consider the
model with γm{a(m−1), l(m), β} = β0 +β1m+β2a(m−1)+β3l(m)+β4l(m)a(m−1), so β
is five-dimensional, l(m) is one-dimensional, and we would use a five-dimensional grid, one
dimension for each component of β. So if we had 20 grid points for each component, we would
have 205 different values of β on our five-dimensional grid. Now, to estimate five parameters,
one requires five additional covariates. Specifically, let Qm = qm{L(m), Ā(m − 1)} be a
five-dimensional vector of functions of L(m), A(m − 1), such as qTm{L(m), Ā(m − 1)} =
{1,m,A(m− 1), L(m), L(m)A(m− 1)}. We use an extended model that includes five linear
functions QmYm(β) of Ym(β) as covariates, such as

logit[Pr{A(m) = 1|L(m), A(m− 1), Ym(β)}] = αTW (m) + θTQmYm(β).

The particular choice of the functions Qm = qm{L(m), Ā(m − 1)} does not affect the
consistency of the point estimator, but it determines the width of its confidence interval.
See Robins (1994) for the optimal choice of Qm.

Our g-estimate β̂ is the β for which the five-degrees-of-freedom score test that all five
components of θ equal zero is precisely zero. A 95% joint confidence interval for β is the set
of β on our five-dimensional grid for which the five-degrees-of-freedom score test does not
reject at the 5% level. Such an interval is computationally demanding. A less demanding
approach is to use a Wald interval β̂j ± 1.96 SE(β̂j) for each component βj of β centered
at its g-estimate β̂j . This gives a univariate 95% large-sample confidence interval for each
βj . (A simultaneous, i.e., joint, 95% large-sample confidence interval for all βj requires a
constant greater than 1.96 in the Wald interval.)

When the dimension of β is greater than 2, finding β̂ by search over a grid is gen-
erally computationally prohibitive. However, when, as in all the examples we have dis-
cussed, γm{a(m − 1), l(m), β } = βTRm is linear in β with Rm = rm{L(m), A(m − 1)}
a vector of known functions, then, given the estimator of Pr{A(m) = 1|L(m), A(m − 1)}
expit{α̂TW (m)}, where expit(u) = exp(u)/{1 + exp(u)}, there is an explicit closed-form
expression for β̂ given by

β̂ =

⎧⎨⎩
i=N,m=K∑
i=1,m=0

Xim(α̂)QimST
im

⎫⎬⎭
−1 ⎧⎨⎩

i=N,m=K∑
i=1,m=0

YiXim(α̂)Qim

⎫⎬⎭ ,

where Xim(α̂) = {Ai(m) − expit{α̂TWi(m)}}, Sim =
∑j=K

j=m Ai(j)Rij , and the choice of
Qim = qm{Li(m), Ai(m − 1)} affects efficiency but not consistency. In fact, in the case
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where γm{a(m − 1), l(m), β } = βTRm is linear in β, we can obtain a closed-form doubly
robust estimator β̃ of β∗ by specifying a working model ςTDm = ςT dm{L(m), A(m − 1)}
for E{Ym(β∗)|L(m), Ā(m− 1)} = E{Yg={A(m−1),0(m)}|L(m), A(m− 1)} and defining

(
β̃
ς̃

)
=

⎧⎨⎩
i=N,m=K∑
i=1,m=0

(
Xim(α̂)Qim

Dim

)
(ST

im, DT
im)

⎫⎬⎭
−1

×

⎧⎨⎩
i=N,m=K∑
i=1,m=0

Yi

(
Xim(α̂)Qim

Dim

)⎫⎬⎭ .

Specifically, β̃ will be a consistent and asymptotically normal (CAN) estimator of β∗ if
either the model ςTDm for E{Yg={A(m−1),0(m)}|L(m), A(m − 1)} is correct or the model
αTW (m) for logit[Pr{A(m) = 1|L(m), A(m− 1)}] is correct.

23.5.2 Monte Carlo estimation of E(Yg) after g-estimation of an SNMM

Suppose the strengthened identifiability assumptions hold, one has obtained a doubly robust
g-estimator β̃ of an SNMM γm{a(m − 1), l(m), β}, and one wishes to estimate E(Yg) for
a given static or dynamic regime g. To do so, one can use the following steps of a Monte
Carlo algorithm:

1. Estimate the mean response E(Yg=0K
) had treatment always been withheld by the sample

average of Y0(β̃) over the N study subjects. Call the estimate Ê(Yg=0K
).

2. Fit a parametric model for f{l(k)|a(k − 1), l(k − 1)} to the data, pooled over persons
and times, and denote the estimate of f{l(k)|a(k − 1), l(k − 1)} under the model by
f̂{l(k)|a(k − 1), l(k − 1)}.

3. For v = 1, . . . , V , do the following:

(a) Draw lv(0) from f̂{l(0)}.
(b) Recursively for k = 1, . . . ,K, draw lv(k) from f̂{l(k)|av(k − 1), lv(k − 1)} with

av(k − 1) = gk−1{lv(k − 1)}, the treatment history corresponding to the regime g.

(c) Let Δ̂g,v =
∑K

j=0av(j)γj{av(j − 1), lv(j), β̃} be the vth Monte Carlo estimate of
Yg − Yg=0K

, where av(j) = gj{lv(j − 1)}.

4. Let Ê(Yg) = Ê(Yg=0K
) +

∑V
v=1Δ̂g,v/V be the estimate of Ê(Yg).

If the model for f{l(k)|a(k − 1), l(k − 1)}, the SNMM γm{a(m − 1), l(m), β}, and
either the treatment model logit[Pr{A(m) = 1|L(m), A(m − 1)}] = α∗TWm or the model
E{Yg={A(m−1),0(m)}|L(m), A(m− 1)} = ς∗TDm is correctly specified, then Ê(Yg) is consis-
tent for E(Yg). Confidence intervals can be obtained using the non-parametric bootstrap.

Our approach based on g-estimation does not suffer from the null paradox. In fact, under
the null hypothesis of no treatment effect, it is the case that misspecification of the model
for f{l(k)|a(k − 1), l(k − 1)} does not result in bias. To understand why, note that, under
the null, any SNMM γm{a(m − 1), l(m), β} is correctly specified with β∗ = 0 being the
true parameter and γm{a(m− 1), l(m), β∗} = 0. Thus, γm{a(m− 1), l(m), β̃} will converge
to 0 if β̃ is consistent for β∗ = 0, that is, if either the treatment model or the model for
E{Yg={A(m−1),0(m)}|L(m), A(m−1)} is correct. Thus, Δ̂g,v will converge to zero and Ê(Yg)

to Ê(Yg=0K
), even if the model for f{l(k)|ā(k− 1), l(k− 1)} is incorrect. We conclude that,
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under the null, all we require for valid inference is that the conditional exchangeability
and consistency assumptions hold and we either know (as in a sequentially randomized
experiment) Pr{A(m) = 1|L(m), A(m− 1)} or have a correct model for either Pr{A(m) =
1|L(m), A(m− 1)} or E{Yg={A(m−1),0(m)}|L(m), A(m− 1)}.

Suppose that there is no effect modification by past covariate history, as with the SNMM

γm{a(m− 1), l(m), β} = β0 + β1m + β2a(m− 1) + β3a(m− 2) + β4a(m− 1)a(m− 2).
(23.10)

Then we can write γm{a(m − 1), l(m), β} as γm{a(m − 1), β}. In that case, to estimate
E(Yg=(a)) for any non-dynamic regime a, we do not need to use the above Monte Carlo
algorithm to simulate the L(k). Rather

Ê(Yg=a) = Ê(Yg=0K
) +

K∑
k=0

a(k)γk{a(k − 1), β̃}.

However, if one wants to estimate E(Yg) for a dynamic regime, the previous Monte Carlo
algorithm is required.

In fact, an SNMM is an MSM if and only if for all a(m− 1), l(m), and β,

γm{a(m− 1), l(m), β] = γm[a(m− 1), β}. (23.11)

Specifically, it is a non-dynamic MSM with the functional form

E(Yg=a) = η∗0 +
K∑

k=0

a(k)γk{a(k − 1), β∗} does not depend on l(m), (23.12)

where E(Yg=0K
) = η∗0 . However, such an SNMM model is not simply an MSM because,

in addition to (23.12), it also imposes the additional strong assumption (23.11) that effect
modification by past covariate history is absent. In contrast, an MSM such as (23.12) is
agnostic as to whether or not there is effect modification by time-varying covariates.

If we specify an SNMM that assumes (23.11), then we can estimate β∗ either by g-
estimation or IPTW. However, the most efficient g-estimator will be more efficient than the
most efficient IPTW estimator when the SNMM (and thus the MSM) is correctly speci-
fied because g-estimation uses the additional assumption of no effect modification by past
covariates to increase efficiency.

In contrast, suppose the MSM (23.12) is correct but the SNMM (23.10) is incorrect
because assumption (23.11) does not hold. Then the g-estimators of β∗ and E(Yg=a) will be
biased, while the IPTW estimates remain unbiased. Thus, we have a classic variance–bias
trade-off. Given the MSM (23.12), g-estimation can increase efficiency if (23.11) is correct,
but introduces bias if (23.11) is incorrect.

23.5.3 Time-varying instrumental variables and g-estimation

Suppose that, at each week m, we obtain data both on whether a drug treatment of interest
was prescribed by a subject’s physician and on whether or not the subject actually took the
drug, based on a blood test, say. We assume that both variables are binary and let Ap(m) and
Ad(m), respectively, denote the treatment prescribed and taken in week m. We define
A(m) = {Ap(m), Ad(m)}. Now, in many settings it might be reasonable to assume that
we had conditional exchangeability with respect to the prescribed treatment but not with
respect to the actual treatment because the covariates influencing a physician’s prescriptions
have been recorded in the medical record, while the reasons why a given patient does or does
not comply with his physician’s advice may depend on unmeasured patient characteristics
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that also directly affect the outcome Y. Thus, we only assume that, for all a, l(t),

Yā �Ap(t)|A(t− 1) = a(t− 1), L(t) = l(t). (23.13)

If we had (joint) conditional exchangeability for both Ap(m) and Ad(m), the SNMM (23.7)
would be precisely equivalent to the SNMM

E{Yg={a(m−1),a(m),0(m+1)}|Lg={a(m−1)}(m) = l(m), A(m) = a(m)}
= E{Yg={a(m−1),0(m)}|Lg={a(m−1)}(m) = l(m), A(m) = a(m)} (23.14)

+ a(m)γm{a(m− 1), l(m), β∗}
that adds A(m) = a(m) to the conditioning event on both sides of (23.7). However, when
only conditional exchangeability for Ap(m) holds as in (23.13), the two models differ. It is
only model (23.14) whose parameters can remain identified under the sole restriction given
in (23.13). Specifically, given the SNMM (23.14), we can estimate the parameter β∗ by
g-estimation as above, except that, now, we replace the models for both logit [Pr{A(m) =
1|L(m), A(m − 1)}] and logit [Pr{A(m) = 1|L(m), A(m − 1), Ym(β)}] by, respectively,
models for logit [Pr{Ap(m) = 1|L(m), A(m−1)}] and logit [Pr{Ap(m) = 1|L(m), A(m−1),
Ym(β)}]. This choice reflects the fact that it is only Ap(m) that is conditionally independent
of the counterfactuals given {L(m), A(m − 1)}, and thus only Ap(m) that can be used as
the outcome variable in g-estimation.

Suppose we assume that the prescribed dose has no direct effect on the response Y except
through the actual dose, that is, the counterfactual outcome Yā = Yāp,ād

only depends on ad.
In this case, we can simply write Yā as Yād

. This assumption is referred to as the exclusion
restriction for ap relative to the effect of ad on Y. A variable such as ap that satisfies (23.13)
and the exclusion restriction relative to the effect of ad on Y is said to be a time-dependent
instrumental variable for the effect of treatment ad on Y. Under this assumption, we can
replace a(m)γm{a(m − 1), l(m), β∗} by ad(m)γm{a(m − 1), l(m), β∗} in (23.14). However,
when conditional exchangeability with respect to the actual treatment Ad(m) does not
hold, Ap(m) can still be a non-causal effect modifier; as a consequence, we cannot replace
a(m)γm{a(m − 1), l(m), β∗} by ad(m)γm{ad(m − 1), l(m), β∗} in (23.14). In fact, Ap(m)
can still be a non-causal effect modifier even if ap satisfies the stronger exclusion restriction
of no direct effect of āp on either Y or L (except through actual dose ad), so both Yā and
Lā only depend on ad. For example, in the SNMM

a(m)γm{a(m− 1), l(m), β∗} = ad(m){β∗
0 + β∗

1ap(m− 1) + β∗T
2 ap(m− 1)l(m)},

it may still be the case that neither β∗
1 nor β∗T

2 is zero (Hernán and Robins, 2006b).
Furthermore, when conditional exchangeability with respect to the actual treatment

Ad(m) does not hold, although the sample average of Y0(β̃) still is consistent for E(Yg=0K
),

it is not possible to consistently estimate E(Yg) for any other regime g, static or dynamic,
without further untestable assumptions such as those in Theorems 8.8 and 8.10 of Robins,
Rotnitzky, and Scharfstein (1999) and in Section 7 of Robins (2004).

23.5.4 Dynamic and general SNMMs and MSMs

Both MSMs and SNMMs are models for non-dynamic regimes. Henceforth, we refer to
them as non-dynamic MSMs and SNMMs. With the aid of a model for f{l(k)|a(k − 1),
l(k− 1)} and Monte Carlo simulation, we have seen that non-dynamic SNMMs can be used
to estimate E(Yg) for any regime, static or dynamic. Analogously, Robins (1999) shows
that with the aid of a model for particular aspects of f{y|a(K), l(K)}∏K

k=0f{l(k)|a(k− 1),
l(k− 1)} and simulation, non-dynamic MSMs can also be used to estimate the mean E(Yg)
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of any dynamic regime. However, for non-dynamic MSMs, this calculation is exceedingly
difficult, requiring, as an intermediate step, that one solve many integral equations.

Modified versions of both SNMMs and MSMs, which we shall refer to as dynamic regime
SNMMs and MSMs, can be used to directly estimate the means E(Yg) of specific dynamic
regimes without requiring the aid of alternative models or simulation. A special case of a
dynamic SNMM was considered by Murphy (2003). Robins (2004) built upon her work and
introduced a comprehensive class of dynamic SNMMs. A simple dynamic MSM comparing
two regimes was considered by Hernán et al. (2006). Dynamic MSMs in full generality
were first introduced by Orellana, Rotnitzky, and Robins (2006) and, shortly thereafter,
independently by van der Laan and Petersen (2007). Both built on earlier work by Robins
(1993) and Murphy, van der Laan, and Robins (2001).

For pedagogic purposes, we shall be ahistorical and first discuss dynamic MSMs.

23.5.4.1 Dynamic and general MSMs

We begin with a simplified version of an example considered by Orellana, Rotnitzky, and
Robins (2006) and Robins et al. (2008). We consider an observational study of treatment-
naive subjects recently infected with HIV. Subjects return to clinic weekly to have various
clinical and laboratory measurements made. Let L(t) be the vector of measurements made at
week t, including CD4 cell count. We let A(t) denote the indicator of whether antiretroviral
therapy is taken during week t. For simplicity, we assume that, once antiretroviral therapy
is begun, it is never stopped. Let Y be a composite health outcome measured at the end
of the study at time K + 1, higher values of which are preferable. Let g = x denote the
dynamic regime “begin antiretroviral therapy the first time t the measured CD4 count falls
below x,” where x is measured in whole numbers less than 1000. Let X ={0, 1, . . . , 999}.
Then {g = x;x ∈ X} denotes the set of all such regimes. Consider the dynamic regime MSM

E(Yg=x|V ) = h(x, V, β∗) (23.15)

for the conditional mean of the counterfactual Yg=x given a subset V of the baseline covari-
ates L(0), where

h(x, V, β) = h1(x, V, β1) + h2(V, β2), (23.16)

h1(x, V, 0) = 0, (23.17)

so that β∗
1 = 0 is the null hypothesis that all regimes in {g = x;x ∈ X} have the same mean

given V .
As an example, for V binary, we might choose h1(x, V, β1) = βT

1 r(x, v), where βT
1 r(x, v) =

β1,1(x−350)+β1,2(x−350)2 +β1,3(x−350)3 +β1,4(x−350)V and h2(V, β2) = β2,1 +β2,2V.
Before describing how β∗ can be estimated using standard weighted least-squares software,
we require the following observations.

Consider a subject who started antiretroviral therapy at a CD4 cell count of 250 in week t
whose lowest prior CD4 count was 300. Then this subject’s observed data is consistent with
having followed regime g = x for x = 251, 252, . . . , 300. In fact the subject followed all of
these regimes. Consider a subject who never started therapy and whose lowest CD4 count
was 225. Then this subject followed regimes g = x for x = 0, 1, . . . , 225. Finally, consider a
subject who started antiretroviral therapy at a CD4 cell count of 250 in week t whose lowest
previous CD4 count was less than 250. Then this subject failed to follow any regime in the set
{g = x;x ∈ X}. In contrast, for the non-dynamic MSM E(Ya|V ) = h(a, V, β∗), each subject
follows one and only one of the regimes whose means are being modeled — the regime a
corresponding to the subject’s actual treatment history A. It is this difference that makes
estimation of a dynamic MSM a bit more involved than estimation of a non-dynamic MSM.
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We are now ready to describe our fitting procedure. Let Γi be the number of regimes fol-
lowed by subject i. We create an artificial data set of size Γ =

∑N
i=1 Γi, with each subject i =

1, . . . , N contributing Γi artificial observations (Yi, Vi, xi1), (Yi, Vi, xi2), . . . , (Yi, Vi, xiΓi
),

where the xik denote the regimes followed by subject i. We then fit by weighted least
squares with an independence working covariance matrix the regression model

E(Y |x, V ) = h(x, V, γ)

to the artificial data set using estimates of the weights

SW (x, V ) =
K∏

k=0

f∗(x|V )
f{A(k)|A(k − 1), L̄(k)}

,

where f∗(x|V ) is any user-supplied conditional density given V . For example, it could be an
estimate of the density of x given V based on the artificial data set. Orellana, Rotnitzky, and
Robins (2006) show that this IPTW estimator, β̂, say, of γ based on the artificial data set
converges to the parameter β∗ of our dynamic MSM under the strengthened identifiability
conditions. Orellana, Rotnitzky, and Robins (2006) also discuss how to construct more
efficient estimators and doubly robust estimators. The optimal treatment regime in the
class {g = x;x ∈ X} for a subject with V = v is estimated as the value of x that maximizes
h(x, v, β̂) or, equivalently, h1(x, v, β̂1) over x ∈ X .

The general case can be treated using the same notation. Specifically, given any set of
regimes {g = x;x ∈ X} (whether static, dynamic, or both) indexed by x taking values in a
(possibly infinite) set X and an MSM (23.15) satisfying (23.16) and (23.17), we can proceed
as above, except that, now, the index x need not be a real number, and a different calculation
will be required to determine which regimes in {g = x;x ∈ X} each study subject followed.
For example, consider another HIV study where now subjects may repeatedly start and stop
therapy, and consider the regimes “take therapy at t if and only if the current white blood
count exceeds w and a certain liver function test has value less than b.” Here, b and w are
non-negative integers in the range 0 to 10,000. Then x = (w, b). An example of a choice for
h1(x, V, β1) is β1,1(b−100)+β1,2(b−100)2+β1,3(b−100)3+β1,4(w−1000)+β1,5(w−1000)2+
β1,6(b−100)V +β1,7(w−1000)V +β1,8(w−1000)(b−100). Note that, from the perspective
presented in this paragraph, the general case includes non-dynamic MSMs as a special case.
Thus, we henceforth refer to model (23.15) as a general MSM, subsuming all previous MSM
categories. However, we have only discussed examples where the number of regimes followed
by any subject is finite. Orellana, Rotnitzky, and Robins (2006) extend these dynamic MSM
methods to the case where that number is uncountable rather than finite.

MSMs and the positivity condition. Specifying a general MSM can also allow us to weaken
positivity requirements. We say that the positivity assumption holds for a regime g if, for
all t,

fA(t−1),L(t)[gt{l(t− 1)}, l(t)] �= 0 implies fA(t)|A(t−1),L(t)[gt{l(t)}|gt{l(t− 1)}, l(t)] > 0.

Then, for any regime g = x∗ for which the positivity assumption fails, we simply remove
any observation (Y, V, x∗) from the artificial data. We can then either interpret our MSM
model as a model for E(Yg=x|V ), x ∈ Xpos ⊂ X , where x ∈ Xpos if g = x satisfies positivity,
or as a model for E(Yg=x|V ), x ∈ X . In the latter case, one is identifying E(Yg=x∗ |V ) for
non-positive regimes g = x∗ by model-based extrapolation.

Semi-linear MSMs. Recall that an SNMM was guaranteed to be correctly specified under
the sharp null hypothesis of no treatment effect with true parameter value β∗ = 0; as a
consequence, g-estimation of an SNMM always provides valid inferences in a sequentially
randomized experiment when the sharp null holds. In contrast, the MSM (23.15) satisfying
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(23.16) and (23.17) is not guaranteed to be correctly specified under the sharp null whenever
V is high-dimensional; under the sharp null, Yg=x = Y , β∗

1 = 0 so h1(x, V, β∗
1) = 0, and

thus the MSM reduces to E(Y |V ) = h2(V, β2). But the assumed functional form h2(V, β2)
may be incorrect. Furthermore, the IPTW estimates of β2 and β1 are generally correlated.
Thus, mispecification of the functional form h2(V, β2) can result in invalid inferences in a
sequentially randomized experiment, even under the sharp null. To overcome this difficulty,
we follow Robins (1999) and consider the semi-linear general MSM

E(Yg=x|V ) = h1(x, V, β∗
1) + h∗

2(V ),

with h∗
2(V ) allowed to be an arbitrary unknown function, so as to prevent bias in the esti-

mation of h1(x, V, β∗
1) from misspecification of a parametric model for h∗

2(V ). The estimator
β̃1 that sets to zero the sample average of

SW (x, V ){Y − h1(x, V, β∗
1)}{q(x, V ) −

∫
q(x, V )dF ∗(x|V )}

over the Γ artificial data vectors (Y, V, x) can be shown to be a CAN estimator of β∗
1 when

the model h1(x, V, β∗
1) is correct, guaranteeing valid inferences in a sequentially randomized

experiment. Robins (1998, 1999) proved this result for non-dynamic MSMs, and Orellana,
Rotnitzky, and Robins (2006) showed it for general MSMs. Orellana, Rotnitzky, and Robins
(2006) also constructed locally efficient, doubly robust estimators of β∗

1 in semilinear general
MSMs.

In fact, when h1(x, V, β1) = βT
1 r(x, V ) is linear in β1, it is simple to trick standard

weighted least-squares software into computing a CAN estimator of β∗
1 . Specifically, we

consider the model h(x, V, β) = βT
1 r(x, V ) + h2(V, β2), with h2(V, β2) = βT

2 R, where R =∑
x r(x, V )f∗(x|V ). The first component β̂1 of the aforementioned weighted least-squares

estimator β̂ = (β̂1, β̂2) with estimated weights

ŜW (x, V ) =
K∏

k=0

f∗(x|V )
f{A(k)|A(k − 1), L̄(k); α̂}

applied to the artificial data is a CAN estimator of β∗
1 when the model αTW (k) for

logit[Pr{A(k) = 1|A(k − 1), L(k)}] is correct even when the model h2(V, β2) = βT
2 R for

h∗
2(V ) is incorrect.
In summary, following Robins (1999), we suggest, when possible, semi-linear general

MSMs be substituted for general MSMs.

23.5.4.2 General SNMMs and optimal regime SNMMs

In this section, for reasons discussed below, we need to explicitly consider regimes g in which
the treatment gm{a(m− 1), l(m)} specified by the regime g at time m is allowed to depend
on both past treatment history and past covariate history. Suppose we are interested in
a particular such regime g∗. Then we define a g∗-SNMM to be a model for the effect
of treatment a(m) versus treatment 0 at each time m (as a function of treatment and
covariate history up to m) when treatment g∗ is followed beginning at time m + 1. Let
Yg={a(m−1),a(m),g∗(m+1)} be the outcome Y under the regime that follows the non-dynamic
regime {a(m− 1), a(m)} through week (time) m and then the regime g∗ from m+ 1. Then
a g∗-SNMM is defined exactly like the SNMM (23.7), except that Yg={a(m−1),a(m),g∗(m+1)}
replaces Yg={a(m−1),a(m),0(m+1)} and Yg={a(m−1),0,g∗(m+1)} replaces Yg={a(m−1),0(m)}. Also,
we write the known function γm{a(m− 1), l(m), β} as γg∗

m {a(m− 1), l(m), β} to remind us
we are now estimating a g∗-SNMM for a given regime g∗. Note that a g∗-SNMM with g∗

the regime where treatment is always withheld is precisely the SNMM (23.7).
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To estimate the parameter β∗ of γg∗
m {a(m−1), l(m), β∗}, we use g-estimation as described

previously except that we redefine Ym(β) to be

Ym(β) = Y +
K∑

j=m

[g∗j {A(j − 1), L(j)} −A(j)]γg∗

j {A(j − 1), L(j), β}. (23.18)

Again we can motivate this modification by considering a locally rank-preserving version of
the model. We say a g∗-SNMM model is locally rank-preserving if Yg={a(m−1),0,g∗(m+1)} =
Yg={a(m),g∗(m+1)} − a(m)γg∗

m {a(m − 1), l(m), β} with probability 1 for each m. In that
case, Ym(β∗) = Yg={A(m−1),g∗(m)} and, in particular, Y0(β∗) = Yg∗. This reflects the
fact that, at each time j ≥ m, Ym(β∗) subtracts from the subject’s observed Y the effect
A(j)γg∗

j {A(j−1), L(j), β∗} of the subject’s observed treatment A(j) and replaces it with the

effect g∗j{A(j − 1), L(j)}γg∗

j {A(j − 1), L(j), β∗} of the treatment g∗j{A(j − 1), L(j)} that the
subject would have had at j had she, possibly contrary to fact, begun to follow regime g∗ at
time j.

Even without local rank preservation, it can be proved that, in the absence of model
misspecification, under the strengthened identifiability conditions, (i) the g-estimator β̂,
now based on (23.18), is consistent for the parameter β∗ of γg∗

m {a(m − 1), l(m), β∗}; (ii)
the sample average Ê(Yg∗) = N−1

∑N
i=1Y0,i(β̂) of Y0(β̂) is consistent for E(Yg∗); and

(iii) for any other regime g, Ê(Yg) = Ê(Yg∗) +
∑V

v=1Δ̂
g∗
g,v/V is consistent for Ê(Yg) as

V → ∞, where the quantity Δ̂g∗
g,v is defined exactly like Δ̂g,v given above except that

av(j)γj{av(j − 1), lv(j), β̂}av(j)γj{av(j − 1), lv(j), β̂} is replaced by the quantity [av(j) −
g∗j {av(j − 1), lv(j)}]γg∗

j {av(j − 1), lv(j), β̂}, with β̂ based on (23.18). When γg∗

j {A(j − 1),
L(j), β} = βTRj , we have the closed-form expression

β̂ =

⎛⎝i=N,m=K∑
i=1,m=0

Xim(α̂)QimST
im

⎞⎠−1

×

⎧⎨⎩
i=N,m=K∑
i=1,m=0

YiXim(α̂)Qim

⎫⎬⎭with ST
im redefined as

∑j=K
j=m{Ai(j)− g∗j (Ai(j− 1), Li(j))}RT

ij .

Optimal-regime SNMMs. A primary use of g∗-SNMMs is in attempting to estimate the op-
timal treatment strategy gopt that maximizes E(Yg) over all treatment regimes g, including
non-dynamic and dynamic regimes in which treatment depends on past covariate history
alone, and dynamic regimes in which treatment depends on past covariate and treatment
history. To do so, we specify an optimal treatment SNMM, gopt-SNMM, based on a function
γ
gopt
m {a(m− 1), l(m), β}. As an example, we might specify that

γgopt
m {a(m− 1), l(m), β} = β0 + β1m + β2a(m− 1) (23.19)

+ βT
3 l(m) + βT

4 l(m)a(m− 1) + βT
5 l(m− 1) + βT

6 l(m− 1)a(m− 1).

If the gopt-SNMM were correctly specified, and we knew the true β∗, then we would know
the optimal treatment regime. Specifically, the optimal treatment gopt,m{a(m−1), l(m)} at
time m given past treatment and covariate history {a(m − 1), l(m)} is to take treatment
if and only if γ

gopt
m {a(m − 1), l(m), β∗} exceeds zero. That is, gopt,m{a(m − 1), l(m)} =

I[γgopt
m {a(m− 1), l(m), β∗} > 0].
To understand heuristically why this is the case, assume a locally rank-preserving model,

and suppose that, at the last treatment time K, a subject has past history a(K − 1), l(K).
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If the subject does not take treatment at K, her outcome will be Yg={a(K−1),0K}, while if
she takes treatment it will be Yg={a(K−1),1K}. Now, according to a locally rank-preserving
gopt-SNMM, Yg={a(K−1),0K} = Yg={a(K−1),1K} − γ

gopt
K {a(K − 1), l(K), β∗}. Because high

values of Y are desirable, the optimal treatment choice is to take treatment if and only
if γ

gopt
K {a(K − 1), l(K), β∗} exceeds zero. (If γ

gopt
K {a(K − 1), l(K), β∗} is precisely zero,

then it does not matter whether treatment is taken; in such cases, we choose not to
treat simply to break the “tie.”) We continue by backward induction. Specifically, sup-
pose we know the optimal regime from m + 1 onwards. Consider a subject at time m
with past history a(m − 1), l(m). Such a subject will follow the known optimal regime
from m + 1 onwards. But she must decide what treatment to take at m. If she does
not take treatment at m, her outcome will be Yg={a(m−1),0,g

opt
(m+1)}, while if she takes

treatment at m, her outcome will be Yg={a(m−1),1,g
opt

(m+1)}. But according to the model,

Yg={a(m−1),0,g
opt

(m+1)} = Yg={a(m−1),1,g
opt

(m+1)} − γ
gopt
m {a(m− 1), l(m), β∗}, so she should

take treatment if and only if γgopt
m {a(m − 1), l(m), β∗} exceeds zero. Even in the absence

of local rank preservation, it can be proved that, under the strengthened exchangeability
conditions, the optimal decision is to treat if and only if γgopt

m {a(m − 1), l(m), β∗} exceeds
zero.

Now, if we knew γ
gopt
m {a(m−1), l(m), β∗} and thus we knew the optimal regime, we would

simply have each subject in the population follow the optimal regime beginning at time 0,
where at each time m the covariates L(m) must be measured and recorded, so the evolving
covariate data necessary to follow the optimal regime will be available.

Thus, it only remains to estimate β∗ by g-estimation based on (23.18) in order to obtain an
estimate ĝopt,m{a(m−1), l(m)} = I[γgopt

m {a(m−1), l(m), β̂} > 0] of the optimal regime and
an estimate Ê(Ygopt) = N−1

∑N
i=1 Y0,i(β̂) of the mean E(Ygopt) of Y when the population

is treated optimally. When specialized to the regime gopt, (23.18) becomes

Ym(β) = Y +
K∑

j=m

[gopt,j{A(j − 1), L(j)} −A(j)]γgopt
j {A(j − 1), L(j), β} (23.20)

= Y +
K∑

j=m

(I[γgopt
j {A(j − 1), L(j), β} > 0] −A(j))γgopt

j {A(j − 1), L(j), β};

this differs from the earlier expression in that the regime gopt itself is a function of the
parameter β and thus unknown. Nonetheless, one can use g-estimation based on Ym(β) to
estimate β and set confidence intervals by searching over a grid of β values. However, when
the dimension of β is moderate, so that finding β̂ by search is computationally prohibitive,
there is no longer an explicit closed-form expression for the g-estimate β̂ based on (23.20),
even when γ

gopt
m {a(m − 1), l(m), β } is linear in β, because β now also occurs within an

indicator function. In fact, the g-estimate β̂ is exceedingly difficult to compute. However, the
following different, computationally tractable, approach can be used when γ

gopt
m {A(m− 1),

L(m), β} is linear in β, that is, γgopt
m {A(m − 1), L(m), β} = RT

mβ, where Rm is a known
vector function of {A(m− 1), L(m)}.

A closed-form estimator of the optimal regime. Suppose for the moment that we have
γ
gopt
m {a(m−1), l(m), β} = RT

mβm linear in β with a separate, variation-independent param-
eter vector at each time m, so that βT = (βT

0 , . . . , β
T
K). Define Pm(α̂) = expit{α̂TW (m)}

to be the estimate of Pr{A(m) = 1|L(m), A(m − 1)} based on the fit of the model (23.8).
Specify a working model ςTmDm = ςTmdm{L(m), A(m− 1)} for E{Ym(β∗)|L(m), A(m− 1)}.
Now, beginning with βK , we recursively obtain the closed-form, doubly robust estimates
β̃m of the βm, with (β̃m, η̃m, ς̃m) the OLS estimator of (βm, ηm, ςm) in the regression model
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Ym+1(β̃m+1
) = A(m)RT

mβm + Pm(α̂)RT
mηm + DT

mςm + ε. Here, YK+1(β̃K+1
) = Y and

Ym+1(β̃m+1
) = Y +

K∑
j=m+1

{
I
(
RT

j β̃j > 0
)
−A(j)

}
RT

j β̃j .

The β̃m are CAN for the β∗
m if either all the models ςTmDm are correct or the model (23.8)

is correct.
Remark: The β̃m are possibly inefficient members of the following general class of es-

timators. Beginning with m = K, we recursively obtain consistent closed-form estimators
β̃m(s, q) of the βm, indexed by vectors of functions s, q

β̃m(s, q) =

{
N∑
i=1

Ai(m)Xim(α̂)QimRT
im

}−1 [ N∑
i=1

{Ym+1(β̃m+1
)j − Sim}Xim(α̂)Qim

]
,

where Xm(α̂) = {A(m) − P̂m(α̂)}, and the choice of the Sm = sm{L (m), A (m − 1)} and
Qm = qm{L(m), A(m− 1)} affects efficiency but not consistency when the model (23.8) is
correct.

Now suppose that in our gopt-SNMM the same parameter vector β applies to each time
m. To be concrete, consider the gopt-SNMM (23.19). In that case, we first estimate a larger
model that has a separate, variation-independent parameter vector βm at each time m;
model (23.19) is then the submodel that imposes βm = β for all m. Let Ω̃−1 be a non-
parametric bootstrap estimate of the covariance matrix of (β̃0, . . . , β̃K). We then estimate
β by an inverse covariance weighted average β̂ = 1TK+1Ω̃

−1(β̃0, . . . , β̃K)T /(1TK+1Ω̃
−11K+1)

of the β̃m, where 1K+1 is a (K + 1)-vector with all components equal to 1.
Note that the gopt-SNMM (23.19) is a non-saturated model. For example, it assumes

that the optimal regime does not depend on covariate values two weeks in the past or
treatment values three weeks in the past, which may be incorrect. If the gopt-SNMM is
badly misspecified, then the estimated optimal regime ĝopt,m{a(m − 1), l(m)} may be a
poor estimate of the actual optimal regime. Because in realistic studies highly non-saturated
gopt-SNMMs must be employed, misspecification can be a serious problem.

We note that, in using a gopt-SNMM to find the optimal regime, it was necessary for us
to estimate the treatment strategy

gopt = [gopt,0{l(0)}, gopt,1{a(0), l(1)}, . . . , gopt,K{a(K − 1), l(K)}]

that maximized E(Yg) over all treatment regimes g, including regimes in which treatment
depends on past treatment as well as covariate history. However, as discussed earlier, one
can always construct a regime gΔ

opt = [gΔ
opt,1{l(0)}, gΔ

opt,1{l(1)}, . . . , gΔ
opt,K{l(K)}] in which

treatment depends only on past covariate history such that following regime gΔ
opt from

time 0 onwards is precisely equivalent to following gopt from time 0. Nonetheless, it can
be important to know gopt rather than only gΔ

opt, as the following example shows. Suppose
that a (random) member of the source population has observed history {A(m−1), L(m)} =
{a(m − 1), l(m)} (under standard care) that is not consistent with following the optimal
regime gopt and comes to our attention only at time m. We wish to intervene beginning at
m and give the subject the optimal treatment strategy from time m onwards. Under the
strengthened exchangeability conditions, the optimal treatment strategy for such a subject
is [gopt,m{a(m − 1), l(m)}, . . . , gopt,K{a(K − 1), l(K)}]. This strategy can be implemented
only if we know (or have a good estimate of) gopt; knowledge of gΔ

opt does not suffice.
Finally, we return to our hypothetical study of Section 23.4 in order to provide a worked

example of optimal regime estimation.
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Table 23.7 An Intuitive Approach to Estimate
the Optimal Regime

A(0) L(1) A(1) N Y Y1(β
∗
1 ) Y0(β

∗
1 )

0 1 0 2000 200 220 235
0 1 1 6000 220 220 235
0 0 0 6000 50 70 85
0 0 1 2000 70 70 85
1 1 0 3000 130 130 130
1 1 1 9000 110 130 130
1 0 0 3000 230 250 250
1 0 1 1000 250 250 250

Estimation of the optimal regime in our hypothetical study. We estimate the optimal regime
twice. First, we use a very intuitive approach that unfortunately does not generalize beyond
our simple toy example. Second, we use our closed-form optimal regime estimator to estimate
a saturated optimal regime SNMM.

An intuitive approach. Assume local rank-preservation. Then, by defination, Y1(β∗
1) is the

value of Y had subjects followed their observed A(0) and then followed the optimal regime
at time 1. Because the subjects in rows 1 and 2 of Table 23.7 are exchangeable, and their
treatments only differ at time 1, it is immediate that the mean of Y1(β∗

1) for the subjects in
rows 1 and 2 is the greater of 200 and 220. Arguing similarly for rows 3 and 4, 5 and 6, and
7 and 8, we can immediately fill in the Y1(β∗

1) column in Table 23.7 without even explicitly
estimating β∗

1 . By comparing the Y1(β∗
1) column to the Y column in rows 5 through 8, we

discover that, if treatment was taken at time 0, it is optimal to take treatment at time 1 if and
only if L(1) = 0. Comparing the Y1(β∗

1) and the Y columns in rows 1 through 4, we discover
that, if treatment was not taken at time 0, it should be taken at time 1, regardless of L(1). We
conclude that the only remaining possibilities for gopt are g1 = “take treatment at time 0 and
then take treatment at time 1 only if L(1) is 0” and g2 = “do not take treatment at time 0 but
take treatment at time 1.” Because subjects in rows 1 through 4 are exchangeable with those
in rows 5 through 8 and Y1(β∗

1) equals Yg2 for subjects in rows 1 through 4 and equals Yg1 for
subjects in rows 5 through 8, we can determine the optimal regime by comparing the mean of
Y1(β∗

1) in rows 1 through 4 to that in rows 5 through 8. Now the mean in rows 1 through 4 is

220 × 8000
16,000

+ 70 × 8000
16,000

= 145

while that in rows 5 through 8 is

130 × 12,000
16,000

+ 250 × 4000
16,000

= 160.

We conclude that the regime g1 is optimal and E(Yg1
) = 160. That 160 is the mean of Yg1

can
be confirmed using the g-computation algorithm, unstabilized IPTW, or using calculations
based on the ordinary SNMM as in Section 23.4.

Closed-form optimal regime estimator. We now repeat the analysis, but this time using the
closed-form optimal regime estimator of a saturated optimal regime SNMM. With the model
saturated and no baseline L(0) in our example, we have, with K = 1, γgopt

1 {a(0), l(1), β∗} =
β∗

1,1 + β∗
1,2l(1) + β∗

1,3a(0) + β∗
1,4a(0)l(1) and γ

gopt
0 {a(−1), l(0), β∗} = β∗

0 . We note that, at
the last time K, γg∗

K {a(0), l(1), β∗} is the same for all g∗-SNMM so, with K = 1, β∗
1,1 = 20,

β∗
1,2 = β∗

1,3 = 0, β∗
1,4 = −40 as in Section 23.4. (The reader can verify that the OLS esti-

mator of β∗
1 described above also returns these values.) Thus, γ

gopt
1 {a(0), l(1), β∗} takes
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the four values γ
gopt
1 (0, 0) = β∗

1,1 = 20, γ
gopt
1 (1, 0) = β∗

1,1 = 20, γ
gopt
1 (0, 1) = β∗

1,1 +
β∗

1,3 = 20, γ
gopt
1 (1, 1) = β∗

1,1 + β∗
1,2 + β∗

1,3 + β∗
1,4 = −20. Further, gopt,1{a(0), l(1)} =

I[γgopt
1 {a(0), l(1), β∗} > 0] takes the values

gopt,1(0, 0) = gopt,1(0, 1) = gopt,1(1, 0) = 1, gopt,1(1, 1) = 0. (23.21)

Now, by (23.20) Y1(β∗
1) = Y +

∑1
j=1[gopt,j{A(j−1), L(j)}−A(j)]γgopt

j {A(j−1), L(j), β}, so we
have that Y1(β∗

1) = Y if gopt,1{A(0), L(1)} = A(1). Consequently, Y1(β∗
1) = Y if {A(1) = 1

and (A(0), L(1)) �= (1, 1)} or if {A(1) = 0 and (A(0), L(1)) = (1, 1)}. If {A(0), L(1)} = (1, 1)
and A(1) = 1, Y1(β∗

1) = Y − (−20) = Y + 20. If {A(0), L(1)} �= (1, 1), A(1) = 0, Y1(β∗
1) =

Y + 20.
Using the row-specific means of Y given in Table 23.7, we obtain again the same re-

sults for the Y1(β∗
1) column as above. Next, in order to estimate the parameter β∗

0 of
γ
gopt
0 {a(−1), l(0), β∗

0}, we fit by OLS the regression model Y1(β∗
1) = β0A(0)R0 +η0P0R0 + ε,

with R0 = 1 and P0 = Pr{A(0) = 1} = 1/2. That is, we fit the model Y1(β∗
1) =

β0A(0) + ν0 + ε by OLS, where ν0 = η0/2. The OLS estimate of β0 is just the contrast
E{Y1(β∗

1)|A(0) = 1}−E{Y1(β∗
1)|A(0) = 0}. Above, we calculated the mean of Y1(β∗

1) to be
145 among subjects with A(0) = 1 (rows 1 through 4 of Table 23.7) and 160 among subjects
with A(0) = 0 (rows 5 through 8). Thus, β∗

0 = 15. Hence, gopt,0 = I[γgopt
0 {a(−1), l(0), β∗

0} >
0] = I(β∗

0 > 0) = 1. We conclude that the optimal treatment gopt,0 = 1 at time 0 is to “take
treatment.” The optimal treatment at time 1 given that one followed the optimal treatment
at time 0 is, by (23.21), gopt,1(1, 0) = 1 if l(1) = 0 and gopt,1(1, 1) = 0 if l(1) = 1. Thus,
we again conclude that the optimal regime is g1 = “take treatment at time 0 and then take
treatment at time 1 only if L(1) is 0.” Finally, we compute Y0(β∗) for each subject by adding
{gopt,0 − A(0)}γgopt

0 {a(−1), l(0), β∗
0} = {1 − A(0)}15 to Y1(β∗

1). As expected, the mean of
Y0(β∗) is the mean of E(Yg1) = 160 both in rows 1 through 4 and rows 5 through 8.

23.6 Strengths and weaknesses

As mentioned previously, owing to the null paradox, methods based on the estimated g-
formula should be avoided whenever the null hypothesis of no treatment effect has not yet
been excluded. MSMs have the advantage that they are easy to understand and easy to
fit with standard, off-the-shelf software that allows for weights. These two points explain
their rapid adoption compared to SNMs. The usefulness of MSMs has been extended by the
introduction of dynamic MSMs.

However, IPTW estimation of MSMs has four drawbacks not shared by g-estimation of
SNMs. First, if the number of time periods is great, the product in the denominator of the
weights can become very small for some subjects who then receive inordinately large weights,
leading both to bias when the weights must be estimated (and to so-called pseudo-bias
[Scharfstein, Rotnitzky, and Robins, 1999] even when they are known) and to imprecision.
Problems with large or even truly infinite weights (when positivity does not hold) can be
somewhat ameliorated but not cured by using bounded doubly robust estimators (Robins
et al., 2008b), adjusting for baseline covariates and then using the covariates in the numera-
tor of the weights, downweighting regimes g = x associated with very small weights, using lo-
cally semi-parametric efficient estimators or bounded influence estimators for non-saturated
MSMs (as these estimators downweight regimes g = x that result in excessively large weights
in a near optimal fashion), and using diagnostics for the undue influence of large weights and
for the consequences of truncating large weights (Wang et al., 2006). Second, MSMs cannot
be used to estimate causal effects when treatment is confounded but an instrumental vari-
able is available. Third, although not discussed in this chapter, sensitivity analysis models
for MSMs are much more restrictive and less useful than those for SNMs. Fourth, SNMs, in
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contrast to MSMs, allow one to directly model interactions between treatment and evolving
time-dependent covariates and so to directly look for qualitative effect modification.

Disadvantages of SNMs compared with MSMs include the following:

1. SNMs cannot be easily used to compare non-dynamic regimes when there is effect mod-
ification by a time-dependent covariate.

2. Although SNMMs with a log link can be fit by g-estimation, logistic SNMMs cannot,
making SNMMs difficult to use for non-rare dichotomous responses.

3. SNM models for failure time data have had to be based on accelerated failure time-like
models that are difficult to fit in the presence of censoring because the objective function
is non-smooth.

Problems 2 and 3 may soon be resolved. In an unpublished report, Richardson and Robins
(2007) have recently developed methods for fitting risk ratio models to non-rare binary
responses that may resolve problem 2. An alternative approach is given in van der Laan,
Hubbard, and Jewell (2007). Page, Hernán, and Robins (2005) have developed cumulative
incidence structural nested failure time models to solve problem 3 under the rare disease
assumption.

In terms of estimation of optimal regimes, both MSMs and SNMs have their distinct
place. General MSMs are excellent for estimating the optimal regime in any rather small
prespecified classes of regimes (such as the optimal CD4 cell count at which to start therapy)
that still may include all logistically feasible regimes, particularly in settings with resource
constraints that preclude implementing complex regimes.

In contrast, the method of backward induction on which g-estimation of optimal regime
SNMs is based requires that the set of potential regimes from which the optimal is to be
selected include all functions of an increasing (in time) amount of information (i.e., of an
increasing sigma field). Thus, optimal regime SNMs are useful for estimating the optimal
regime in the huge class of dynamic regimes in which treatment at each m can depend on
any function of the entire measured past l(m), a(m− 1) (the case considered above) or, as
described in Robins (2004, Section 7), in the smaller, but still large, class in which treatment
at each m can depend on any function of w(m), a(m − 1) where W (m) is a subvector of
the covariates in L(m). Even if W (m) is just CD4 cell count at m, it is possible that the
optimal treatment decision at time m may be a complex function of CD4 cell counts at all
past times. Such a regime, though optimal, may be logistically impossible to implement,
in which case it may be necessary to choose among a smaller class of logistically feasible
regimes by fitting a general MSM.

23.7 Appendix: Causal directed acyclic graphs

We define a directed acyclic graph (DAG) G to be a graph whose nodes (vertices) are
random variables V = (V1, . . . , VM ) with directed edges (arrows) and no directed cycles.
We use PAm to denote the parents of Vm, that is, the set of nodes from which there is
a direct arrow into Vm. The variable Vj is a descendant of Vm if there is a sequence of
nodes connected by edges between Vm and Vj such that, following the direction indicated
by the arrows, one can reach Vj by starting at Vm. For example, consider the causal DAG
in Figure 23.1(b) that represents the causal structure of an observational study with no
unmeasured confounding or the effect of A on Y. In this DAG, M = 4 and we can choose
V1 = U, V2 = L, V3 = A, V4 = Y ; the parents PA4 of V4 = Y are (U,L,A) and the
non-descendants of A are (U,L).

Following Spirtes et al. (1993), a causal DAG is a DAG in which (i) the lack of an arrow
from node Vj to Vm can be interpreted as the absence of a direct causal effect of Vj on Vm

(relative to the other variables on the graph), and (ii) all common causes, even if unmeasured,
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of any pair of variables on the graph are themselves on the graph. In Figure 23.1(b) the lack
of a direct arrow between U and A indicates that unmeasured factors U do not have a direct
causal effect (causative or preventive) on the patient’s treatment. Also, the inclusion of the
measured variables (L,A, Y ) implies that the causal DAG must also include the unmeasured
common causes U . Note that a causal DAG model makes no reference to and is agnostic as
to the existence of counterfactuals.

Our causal DAG is of no practical use unless we make some assumption linking the causal
structure represented by the DAG to the statistical data obtained in an epidemiologic study,
which we do through the causal Markov assumption. First we give some definitions that
apply to any DAG, causal or not.

We say a DAG G represents the joint density of its node variables V if and only if f(v)
satisfies the Markov factorization

f(v) =
M∏
j=1

f(vj | paj). (23.22)

That is, the density f(v) can be factorized as the product of the probability of each variable
given its parents. This factorization is equivalent to the statement that the non-descendants
of a given variable Vj are independent of Vj conditional on the parents of Vj .

The causal Markov assumption (CMA) states that the joint distribution of the variables
on a causal graph satisfies the Markov factorization (23.22). Because of the causal meaning
of parents and descendants on a causal DAG, the CMA is equivalent to the statement
that, conditional on its direct causes (i.e., parents), a variable V is independent of any
variable it does not cause (i.e., any non-descendant of V ). The Markov factorization (23.22)
logically implies additional statistical independencies and, specifically, it implies that a set
of variables A is conditionally independent of another set of variables B given a third set
of variables Z if A is d-separated from B given Z on the graph G, written (A�d-sepB|Z)G,
where d-separation, described below, is a statement about the topology of the graph (Pearl,
1995). To check for unconditional (i.e., marginal) independence we make Z the empty set.
In the following a path between A and B is any sequence of nodes and edges (where the
direction of the arrows is ignored) that connects A to B. A variable C is a collider on a path
between variables A and B if the edges on the path that meet at C both have arrows pointing
at C.

Unconditional d-separation (A�d-sepB)G. A variable A is d-separated from variable B on
a DAG G if and only if all paths between them are blocked. The path is blocked if there
is a collider on the path. If a path is not blocked, we say it is unblocked, active, or open,
all of which are synonymous. We say that a set of variables A is d-separated from a set of
variables B if and only if each variable in A is d-separated from every variable in B. Thus,
(A�d-sepB)G if and only if every path from A to B is blocked. If even one path is unblocked,
we write (A � �d-sepB)G.

Conditional d-separation (A�d-sepB|Z)G. We say that two variables A and B are d-
separated given (or by) a set of variables Z = (Z1, . . . , Zk) if all paths between A and
B are blocked where, when we condition on Z, a path between A and B is blocked if (i)
there is any variable Zm ∈ Z on the path that is not a collider, or (ii) there is a collider on
the path such that neither the collider itself nor any of its descendants are in Z. A set of
variables A is d-separated from a set of variables B given Z if and only if each variable in
A is d-separated from every variable in B given Z.

The CMA allows one to deduce that d-separation implies statistical independence, but
does not allow one to deduce that d-connection (i.e., the absence of d-separation) implies
statistical dependence. However, d-connected variables will generally be independent only
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if there is an exact balancing of positive and negative causal effects. Because such precise
fortuitous balancing of effects is highly unlikely to occur, we shall henceforth assume that d-
connected variables are dependent. This is often referred to as the assumption of faithfulness
or stability.

A causal DAG model that includes counterfactuals is a non-parametric structural equation
model (NPSEM) (Pearl, 1995). First, some notation. For any random variable W , let W
denote the support (i.e., the set of possible values w) of W . For any w1, . . . , wm, define
wm = (w1, . . . , wm). Let R denote any subset of variables in V and let r be a value of R.
Then Vm(r) denotes the counterfactual value of Vm when R is set to r. We number the
variables in V so that for j < I, Vj is not a descendent of Vi.

An NPSEM represented by a DAG G with vertex set V assumes the existence of mutually
independent unobserved random variables (errors) εm and deterministic unknown functions
fm(pam, εm) such that V1 = f1(ε1) and the one-step ahead counterfactual Vm(vm−1) ≡
Vm(pam) is given by fm(pam, εm), and both Vm and the counterfactuals Vm(r) for any
R ⊂ V are obtained recursively from V1 and the Vm(vm−1), m > 1. For example, V3(v1) =
V3{v1, V2(v1)} and V3 = V3{V1, V2(V1)}.

In Figure 23.1b, Ya = V4(v3) = f4(V1, V2, v3, ε4) = fY (U,L, a, εY ) where we define fY =
f4, εY = ε4, since Y = V4. A DAG G representing an NPSEM is a causal DAG for which the
CMA holds because the independence of the error terms εm both implies the CMA holds
and is essentially equivalent to the requirement that all common causes of any variables on
the graph are themselves on the causal DAG. Although an NPSEM is a causal DAG, not all
causal DAG models are NPSEMs. Indeed, as mentioned above, a causal DAG model makes
no reference to and is agnostic about the existence of counterfactuals. In the main body of
this chapter, we use the term “causal DAG” to mean a causal DAG representing an NPSEM.
All the results for NPSEMs described in this chapter actually hold under the slightly weaker
assumptions encoded in the fully randomized, causally interpreted structured tree graph
(FRCISTG) models of Robins (1986; see Robins, 2003b, for an additional discussion). All
NPSEMs are FRCISTGs, but not all FRCISTGs are NPSEMs.

A graphical condition for g-identifiability. We have the following theorem and corollary
given by Robins (1997b) generalizing Pearl and Robins (1995). For consistency with the
original source, these are presented using the alternative notation that represents, for ex-
ample, A(t) as At, as described at the beginning of Section 23.3 and used in Chapter 20
and Chapter 22.

Theorem: Given a DAG G whose vertex set consists of the random variables that are
elements of the random vectors Y,Xm, Am,m = 0, . . . ,K, whose edges are consistent with
the (partial) ordering X0A0X1A1 . . . .XKAKY , in the sense that the earlier variables in the
ordering are non-descendants of later variables, suppose Xm = (Lm, Um). We observe Y
and, for each m, (Am, Lm). The Um are unobserved. Let L∗

m denote an arbitrary element
(vertex) in the set of vertices Lm. Consider a set of functions g = {gm;m = 0, . . . ,K} where
gm has domain the support Lm of Lm and range the support Am of Am. We say that Am is
g-unconnected to a node L∗

k, k ≤ m, if gm(l
(1)

m ) = gm(l
(2)

m ) whenever l
(1)

m and l
(2)

m differ only
in l∗k. Otherwise, Am is g-connected to L∗

k, k ≤ m. Define the g-formula bg,l and bg,x for g
based on l and x, respectively, to be

bg,l =
∑
l

E{Y |A = g(l), L = l}
K∏

k=0

f{lk|Ak−1 = gk−1(lk−1), Lk−1 = lk−1}

bg,x =
∑

x=(l,u)

E{Y |A = g(l), X = x}
K∏

k=0

f{xk|Ak−1 = gk−1(lk−1), Xk−1 = xk−1},
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A0

U0 U1

L1 A1 Y

Figure 23.5 Example of a causal DAG.

and note bg,l is a function of the joint distribution of the observables and thus always
identified assuming positivity.

(i) A sufficient condition for bg,x = bg,l is that for m = 0, . . . ,K, Am and Y are d-separated
given (Lm, Am−1) on the DAG Gg

m built from DAG G from the following three rules:

1. Remove all arrows out of Am on DAG G.

2. Remove all arrows into Am+1, . . . , AK on DAG G.

3. For s = m + 1, . . . ,K, add arrows from L∗
j to As if As is g-connected to L∗

j , j ≤ s.

(ii) If for m = 0, . . . ,K, Am and Y are d-separated given (Lm, Am−1) on the DAG Gg
m and

Yg �Am|Xm, Am−1, then Yg �Am|Lm, Am−1.

Corollary: If the DAG G in the above theorem is a causal DAG representing an NPSEM
or FRCISTG, and Am and Y are d-separated given (Lm, Am−1) on the DAG Gg

m for all m,
then Yg �Am|Lm, Am−1, and E(Yg) equals bg,l and so is identified by the g-formula based
on the observed data.

Proof: Robins (1986) proved that E(Yg) = bg,x and Yg �Am|Xm, Am−1 if G represents an
FRCISTG. Furthermore, Robins (1995) proved an NPSEM is an FRCISTG. The corollary
now follows from the preceding theorem.

As an example, consider the DAG G in Figure 23.5. We shall consider the non-dynamic
regime g = a = (a0, a1) and the dynamic regimes g = {a0, g1(l1} = l1) and g = {a0, g1(l1) =
1 − l1}.

Note that, for the regime g = a, we have g1(l1) = a1. Hence, A1 is g-unconnected to a
node L1 for g = a, but A1 is g-connected to node L1 for the two dynamic g.

Now the graph Gg
1 is G with the arrow out of A1 removed for all three g. Further,

A1 and Y are d-separated given (A0, L1) on Gg
1. For g non-dynamic, Gg

0 is G with all
arrows out of A0 removed and all arrows into A1 removed; moreover, A0 and Y are d-
separated on Gg

0. For g dynamic, Gg
0 is G with all arrows out of A0 removed and a single

arrow into A1 originating at L1; therefore, A0 and Y are not d-separated on Gg
0 because of

the unblocked path A0 ←− U0 −→ L1 ←− A1 −→ Y. We conclude that if DAG G in
Figure 23.5 represents an NPSEM, then, in the absence of data on U0 and U1, E(Yg=a) is
identified and equals bg=a,l. However, for g dynamic, E(Yg) does not equal bg,l, and in fact
E(Yg) is not identified.
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