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1. Introduction
We thank Xihong Lin for the opportunity to discuss Ross
Prentice and collaborators’ interesting paper. The Women’s
Health Initiative (WHI) randomized hormone trials evaluated
the effect of postmenopausal hormone therapy on the risk
of various diseases (WHI Study Group, 1998). In the first
WHI trial, women were randomly assigned to either estrogen
plus progestin or placebo. The rate of coronary heart disease
(CHD) in the hormone group was 1.24 times (95% CI: 0.97,
1.60) that in the placebo group (Manson et al., 2003). This
result was surprising because large observational studies had
previously suggested a reduced risk of CHD among hormone
users. Among the largest of these studies were the Nurses’
Health Study (NHS) in the United States (Stampfer et al.,
1991; Grodstein et al., 1996, 2000; Grodstein, Manson, and
Stampfer, 2001) and a study based on the General Practice
Research Database (GPRD) in the United Kingdom (Varas-
Lorenzo et al., 2000).

We investigate possible sources of the discrepancy by rean-
alyzing the observational study data using an approach that
mimics as closely as possible the published analyses of the
WHI randomized trial. We then compare our approach with
Prentice and collaborators’. Originally we had planned to pro-
vide reanalyses of both the NHS and GPRD data. Unfortu-
nately, our reanalysis of the NHS data is not yet complete, so
we report only the GPRD results. The GPRD is a research-
oriented database that covers over 3 million residents in the
United Kingdom. These individuals’ general practitioners reg-
ister health-care and medical information about their patients
in a standardized manner. The registered information includes
demographic data, all medical diagnoses, consultant and hos-
pital referrals, and a record of all prescriptions issued. Practi-
tioners generate prescriptions directly from the computer, en-
suring its automatic recording. Validation studies have shown
that 90% of information present in the patients’ paper medi-
cal records, and 95% of newly prescribed drugs, are recorded
in the database (Garćıa Rodŕıguez and Pérez Gutthann, 1998;
Jick et al., 2003).

Several biologic and methodologic explanations for the dis-
crepancy between the CHD results of the WHI random-
ized trial and the observational studies have been proposed
(Grodstein, Clarkson, and Manson, 2003; Mendelsohn and
Karas, 2005). We will focus this discussion on the impact of

the following methodologic limitations of the observational
studies (Grodstein et al., 2003):

1. Lack of comparability between women who initiated and
did not initiate hormone therapy (healthy user bias or
confounding by “indication”)

In the observational studies, women who started hor-
mone therapy may not be comparable with those who
did not start hormone therapy. On average, women who
decide to initiate hormone therapy may have fewer risk
factors for CHD than noninitiators. Under this hypoth-
esis, initiation of hormone therapy would be associated
with a lower risk of CHD even if hormone therapy it-
self has no preventive effect on the risk of CHD. That is,
there would be confounding for the effect of treatment
initiation.

The WHI result cannot be explained by confounding
for treatment initiation because therapy initiation was
assigned at random, and thus initiators are on average
comparable with noninitiators.

2. Lack of comparability between women who continued
and discontinued hormone therapy (“noncompliance”
bias)

Even if there were no confounding for the effect of
treatment initiation, participants in observational stud-
ies who stayed on hormone therapy for extended periods
may be different from those who discontinued hormone
therapy shortly after initiation. For example, women who
stayed on therapy may be more health conscious than the
others. Under this hypothesis, a longer duration of use of
hormone therapy would be associated with a lower risk
of CHD even if hormone therapy itself has no preven-
tive effect on the risk of CHD. That is, there would be
confounding for the effect of treatment discontinuation.

Similarly, WHI hormone users who stayed on hormone
therapy for extended periods and those who discontinued
hormone therapy shortly after initiation may not be com-
parable because treatment discontinuation was not ran-
domized. The nonnull WHI results, however, cannot be
explained by confounding for treatment discontinuation
because the analysis was conducted under the intention-
to-treat (ITT) principle. That is, the effect of hor-
mone therapy was estimated by comparing the CHD
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risk of those randomly assigned to hormone therapy and
placebo, regardless of whether they complied with their
assigned treatment. The ITT effect will generally be
closer to the null than the effect had all women fully
complied with their assigned treatment.

3. Imprecise ascertainment of the time of hormone therapy
initiation

In some observational studies (e.g., the NHS), data on
hormone use was collected by questionnaires mailed ev-
ery 2 years and the time of therapy initiation within the
2-year interval is largely unknown. This uncertainty in-
troduces bias in the effect estimates over any fixed (say,
2-year) interval after treatment initiation. For example,
in previous analyses, women in the NHS were assigned to
the hormone use group that they reported in the ques-
tionnaire returned at the onset of the 2-year interval.
Thus women who initiated therapy during the interval
were systematically misclassified as nonusers until the
next questionnaire. If hormone therapy initiation causes
a short-term increase in risk, then this misclassification
would downwardly bias the effect estimate. In the WHI
there is no uncertainty regarding the time of randomized
therapy initiation.

In this article, we provide reanalyses of the GPRD that
only suffer from limitation 1. Limitation 3 is not present in
the GPRD study because exact dates of treatment initia-
tion are recorded. We remove limitation 2 by reanalyzing the
GPRD study using an ITT principle. This reanalysis requires
conceptualizing the observational GPRD study as if it were
a sequence of randomized trials in which the randomization
probabilities are unknown. Our ITT effect estimates from the
GPRD study are then compared to the ITT estimates from
the WHI randomized trial.

In Section 2, we describe a study protocol for the GPRD
trials that mimics as closely as possible that of the WHI trial.
In Sections 3 and 4, we reanalyze the GPRD trials and obtain
(i) estimates of the ITT effect of hormone therapy and (ii) es-
timates of the effect of continuous hormone therapy (i.e., in
the absence of noncompliance). In the last section, we com-
pare our approach with Prentice and collaborators’.

2. Study Protocol of the GPRD Trials
2.1 Eligibility Criteria
We defined inclusion and exclusion criteria in our GPRD tri-
als to mimic the WHI criteria. Like the WHI trial, the GPRD
trials include only women aged 50 years or more and with an
intact uterus. We mimicked the WHI exclusion criteria (WHI,
1998) as closely as we could by excluding GPRD women with
a past diagnosis of cancer (except nonmelanoma skin cancer),
cardiovascular disease, and cerebrovascular disease (Varas-
Lorenzo et al., 2000).

2.2 Baseline and Follow-Up
In the WHI, women were followed from the time of random-
ized treatment assignment (baseline) to the diagnosis of a
CHD endpoint, death from causes other than CHD, loss to
follow-up, or administrative end of follow-up, whichever came
first.

In the GPRD cohort, we need to define the time of
“randomized” treatment assignment (baseline). Because the
follow-up of our cohort started in January 1991, we can de-
fine baseline as January 1991, apply the eligibility criteria to
women in the cohort in January 1991, and compare the CHD
risk of eligible women who reported treatment initiation with
that of eligible women who did not report treatment initi-
ation during January 1991. Alternatively, we can define the
baseline as February 1991, or as any other subsequent time
before the end of follow-up in December 2001. For each pos-
sible baseline time, we can apply the eligibility criteria to
women in the cohort at that time so women participating in
the trial starting in January 1991 would not necessarily be
the same women participating in the trial starting in, say,
December 1994.

But rather than fixing a single baseline month for our
GPRD trial, we can conduct all possible trials, pool the data,
and obtain an estimate of effect with a narrower confidence
interval (which appropriately accounts for correlations that
may arise from using the same individuals in several trials).
Let m denote month with m = 0, 1, . . . , 131 representing Jan-
uary 1991, February 1991, . . . , December 2001. We started a
separate GPRD trial at each month m. Each woman may par-
ticipate in a maximum of 132 trials. For each trial, follow-up
started in month m (baseline) and ended at diagnosis of a
CHD endpoint, death from causes other than CHD, loss to
follow-up, or administrative end of follow-up (8 years like in
the WHI or December 2001), whichever came first. We index
trials by the month m in which they start.

2.3 Treatment Regimes
WHI participants were randomized to either oral estrogen
(conjugated equine estrogens 0.625 mg/day) plus progestin
(medroxyprogesterone acetate 2.5 mg/day) or placebo. There
was a wash-out interval of 3 months before randomization.

Our GPRD trials included women who either initiated oral
therapy with estrogens plus progesterone or were nonusers of
hormone therapy in month m. As an additional eligibility cri-
terion, in each trial m, women were required to have been
nonusers of any form of hormone therapy during the year be-
fore baseline (wash-out interval). (We choose a year rather
than 3 months to hopefully obtain a better match with the
WHI on the distribution of “time since last hormone ther-
apy.”) We refer to women eligible for trial m who did (did not)
initiate hormone therapy in month m as “initiators” (nonini-
tiators) in trial m.

2.4 Ascertainment of CHD Endpoints
and Confounding Variables

As in the original GPRD analysis (Varas-Lorenzo et al., 2000),
we defined the CHD endpoint in study m as the time of non-
fatal myocardial infarction or fatal coronary disease between
baseline (as defined above) and end of follow-up. The follow-
up in the original GPRD study ended in December 1995. Our
reanalyses extend follow-up to December 2001. In the original
study, over 90% of CHD endpoints ascertained after review of
computer records were confirmed by reviewing the patients’
paper medical records and using standardized diagnostic
criteria.
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In each trial m, we obtained at baseline (i.e., just prior to
month m) data on the following potential confounders: age,
calendar month, family history of CHD, high cholesterol, high
blood pressure, diabetes, body mass index, smoking, alcohol
intake, aspirin use, nonsteroidal anti-inflammatory drug use,
and previous use of hormone therapy. Data on additional po-
tential “lifestyle” confounders were unavailable.

3. Analytic Approach for the GPRD Trials
As discussed further below, our conceptualization of an obser-
vational study with a time-varying treatment as a sequence of
trials can be viewed as a special case of g-estimation of nested
structural models (Robins, 1989).

3.1 ITT Effect of Treatment
In each GPRD trial, we compared the CHD hazard rate
of initiators and noninitiators, regardless of whether these
women subsequently stopped or initiated therapy. Thus our
approach is the observational equivalent of the ITT principle
that guided the main analysis of the WHI trial. To the women
eligible for each GPRD trial m, we fit the Cox proportional
hazards model

λT

[
t |G(m) = 1, A(m), L̄(m)

]
= λ0

[
t
]

exp
[
αA(m) + ηL̄(m)

]
, (1)

where m indexes the trial (months from January 1991), T is
the time from baseline of trial m to CHD, G(m) is an indica-
tor for eligibility for trial m (1: yes, 0: no), A(m) is hormone
therapy initiation at m (1: yes, 0: no), L̄(m) is a vector rep-
resenting covariate history through baseline m,λT [t |G(m) =
1, L̄(m), A(m)] is the conditional hazard of CHD at time t,
λ0[t] is the baseline hazard at t, and exp[α] is the conditional
ITT hazard ratio for hormone therapy initiation versus non-
initiation at baseline m. We modeled L̄(m) by including the
potential confounders described in the previous section as co-
variates. All covariates were categorical except age, alcohol
intake, and calendar month. The age effect was modeled as
cubic splines with 3 knots and with product terms of the age
coefficients with diabetes and hypertension. To increase pre-
cision, we pooled all 132 GPRD trials in a single analysis.
Because many women participate in more than one trial, we
used the robust variance to account for within-person correla-
tion. In addition to our main analyses, we conducted subgroup
analyses by age (<60, ≥60 years) at baseline and investigated
how the rate ratio exp (α) was modified by the month m of
the trial and by time since initiation of therapy.

Under the assumption of no unmeasured confounders, our
Cox model estimates the conditional ITT hazard ratio exp[α]
within levels of L̄(m), that is, the (conditional) hazard had
everybody initiated treatment divided by the hazard had no-
body initiated treatment in each GPRD trial. Note that when
this analytic approach is applied to a closed cohort in which
noneligible women never become eligible at later times, each
trial is nested in the prior trial (Hernán et al., 2005) and we
refer to the Cox model (1) pooled over all trials as a nested
Cox model.

3.2 Effect of Continuous Treatment
The magnitude of the ITT hazard ratio in a study depends
not only on the effect of hormone therapy but also on the

degree of “compliance.” (In our GPRD trials, we defined the
time to noncompliance in trial m as the difference between m
and the month of first deviation from baseline treatment, i.e.,
discontinuation of hormone therapy for initiators, and initia-
tion of hormone therapy for noninitiators.) The WHI and the
GPRD differ markedly in their “time to noncompliance” dis-
tributions (see Section 5 below), which could cause their ITT
hazard ratios to differ substantially. To disaggregate the ef-
fect of noncompliance from the effect of hormone therapy, we
attempted to estimate for the GPRD trials the “continuous
treatment hazard ratio” that would be observed under full
compliance, that is, the hazard ratio comparing continuous
treatment in all initiators versus no treatment in all nonini-
tiators.

To do so, separately in each trial m, we censored women
when they discontinued their baseline treatment. Because
this censoring is potentially informative (i.e., noncompli-
ance is nonrandom) and may lead to selection bias (Hernán,
Hernández-Dı́az, and Robins, 2004), a women i at risk (and
thus uncensored) in month k > m was upweighted by the
inverse of her estimated probability of remaining uncensored
from month m through month k. Specifically, for each trial m
we fit logistic models

logit Pr
[
A(j) = a |G(m) = 1,

A(j − 1) = a,A(m) = a, L̄(j), T > j
]

= θa0 + θ′a1L̄(j) for j > m, (2)

for continuing compliance separately for initiators (a = 1) and
noninitiators (a = 0). The estimated probability of continuing
the baseline treatment through month k > m for subject i
is the product Πk

j=m+1P̂mi(j) where P̂mi(j) is the predicted
value

P̂mi(j) = Gi(m)P̂r
[
A(j) = a |G(m) = 1, A(j − 1) = a

A(m) = a, L̄i(j), T > j
]
|a=Ai(m)

,

from the logistic models. We then estimated the rate ra-
tio exp[α] by refitting Cox model (1) after censoring them
at the time of discontinuation of baseline treatment and
weighting their contributions to the partial likelihood at
time k by the inverse probability weights (IPW) Ŵm,i(k) =

[
∏k

j=m+1P̂mi(j)]
−1. Again, to increase precision we pooled all

132 GPRD trials in a single analysis. The assumptions re-
quired for the limit of exp[α̂] to be the “continuous treatment
hazard ratio” are discussed in Section 5. To examine whether
censoring due to noncompliance was “informative,” we re-
peated the above analysis without weights (i.e., we set all the
Ŵm,i(k) to 1).

For comparison purposes, we will also fit a standard time-
varying Cox model

λT ′
[
t |G(0) = 1, A(t), L̄(t)

]
= λ0[t] exp [βcAc (t) + βpAp (t) + γ ′L(t)] , (3)

where T ′ is the time from the first eligible trial (i.e., month)
to CHD, Ac is an indicator for being currently on treatment,
Ap is an indicator for being a past user at t (past treatment),
and L(t) are the updated covariate values at t. The hazard
ratios exp[βc] and exp[βp] compare the CHD incidence in



Discussion on Statistical Issues in the Women’s Health Initiative 925

Table 1
Number of participants, hormone therapy initiators, and CHD events in each GPRD trial (for illustration purposes, only trials

25–50 are shown)

Trial Month Participants CHD events Initiators CHD events in initiators

25 January 1993 68,026 1134 218 1
26 February 1993 67,774 1112 193 1
27 March 1993 67,669 1085 239 1
28 April 1993 67,338 1060 201 1
29 May 1993 66,972 1030 200 1
30 June 1993 66,893 1009 170 1
31 July 1993 66,720 985 168 0
32 August 1993 66,655 966 192 0
33 September 1993 66,354 947 134 1
34 October 1993 66,301 928 132 0
35 November 1993 66,165 908 155 1
36 December 1993 65,983 884 98 0
37 January 1994 69,729 871 149 2
38 February 1994 69,592 858 185 2
39 March 1994 69,262 833 196 3
40 April 1994 69,019 813 168 0
41 May 1994 68,919 801 141 0
42 June 1994 68,442 785 146 1
43 July 1994 68,245 751 135 0
44 August 1994 68,053 736 158 0
45 September 1994 67,769 718 137 2
46 October 1994 67,681 689 135 1
47 November 1994 67,413 661 145 1
48 December 1994 67,151 648 97 0
49 January 1995 69,901 626 178 1
50 February 1995 69,500 618 146 1

current and past users at t, respectively, with that of never
users within levels of the updated covariates L(t). We inves-
tigated how the rate ratio at t was modified by the duration
D(t) since the last reinitiation of hormone therapy (following
a period of at least a year of nonuse) at an eligible month
by adding, for example, β1Ac(t) I(5 > D(t) > 2) + β2Ac(t)
I(D(t) > 5) + β3Ac(t) N(t) to the model, where N(t) is one
if a subject never initiated therapy at an eligible month and
zero otherwise.

4. Results from the GPRD Trials
Our analyses included 99,072 women who met the eligibility
criteria for at least one GPRD trial. Of these women, 1889
had a CHD event and 606 died during the follow-up.

On average, each woman participated in 60.5 trials (stan-
dard deviation [SD]: 35.3, median: 59.0) and thus our analy-
ses include 5,997,824 (nondistinct) women, 10,566 initiators,
64,583 CHD endpoints, and 20,815 deaths when all trials are
pooled. The records of 16% of the initiators and 9% of the non-
initiators indicated use of hormone therapy more than 1 year
before baseline. Only 64 CHD endpoints occurred among ini-
tiators, thus limiting the precision of our analysis. As an ex-
ample, Table 1 shows the number of participants, initiators,
and CHD events in trials 25–50. The mean duration of follow-
up across all trials was 4.1 years (SD: 2.6, median: 3.8 years),
and the mean age at baseline was 54.6 years (SD: 4.5, median:
53.0) for the initiators and 62.0 years (SD: 6.7, median: 62.0)
for the noninitiators.

4.1 Estimates of the ITT Effect
The estimated ITT hazard ratio (95% CI) of CHD for hor-
mone therapy initiation versus no initiation from model (1)
was 0.92 (0.73, 1.17). When an interaction term between
treatment initiation at baseline A(m) and the month m that
the trial began was added, the term’s estimated coefficient
(95% CI) was 0.005 (−0.059, 0.158), indicating little evidence
of trial time–treatment interaction. The estimated ITT haz-
ard ratios (95% CI) were 0.97 (0.74, 1.27) for women younger
than 60 years and 0.73 (0.44, 1.22) for women 60 years and
older at baseline. Table 2 shows the estimates when we re-
stricted the analysis to various periods of follow-up. A further
breakdown shows hazard ratios of 0.82 (0.55, 1.21) in years
2–5, and 0.69 (0.38, 1.25) in years 5–10.

We also estimated the ITT effect of hormone therapy on
mortality after replacing “time to CHD” by “time to death” in
model (1). The estimated ITT hazard ratio (95% CI) of death
for hormone therapy initiation versus no initiation was 0.89
(0.55, 1.46). When we restricted the duration of the GPRD
trials, the respective estimated ITT hazard ratios (95% CI)
were 1.27 (0.66, 2.43) for 2 years, 1.09 (0.67, 1.77) for 5 years,
and 0.90 (0.75, 1.20) for 8 years.

4.2 Estimates of the Continuous Treatment Effect
and Standard Covariate-Updated Analyses

The proportion of noninitiators who initiated therapy
(Figure 1) and of initiators who discontinued therapy
(Figure 2) increased over the follow-up period. By 6 years
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Table 2
CHD hazard ratios and 95% confidence intervals for hormone therapy use in the GPRD trials

Initiators versus Continuous versus Current versus
noninitiators never users never users
Model (1) Model (1) Model (3)

Years of follow-up ITT IPW Unweighted Updated covariates

0–2 1.20 (0.84, 1.72) 1.33 (0.79, 2.22) 1.32 (0.82, 2.13) 1.02 (0.63, 1.65)
0–5 0.99 (0.76, 1.28) 0.83 (0.52, 1.32) 0.98 (0.65, 1.49) 0.80 (0.52, 1.21)
0–8 0.95 (0.75, 1.20) 0.95 (0.60, 1.51) 0.98 (0.67, 1.43) 0.88 (0.61, 1.28)
All 0.92 (0.73, 1.17) 0.87 (0.55, 1.39) 0.97 (0.66, 1.42) 0.87 (0.60, 1.27)

Figure 1. Probability of initiating hormone therapy among
noninitiators.

Figure 2. Probability of discontinuing hormone therapy
among initiators.

of follow-up, the proportion of noncompliance was 13% in
noninitiators and 79% in initiators. In the latter group, the
steepest drop in hormone therapy use occurred during the
first year after baseline (Figure 2). The high discontinuation
rate found in the GPRD reflects that of the general British
population (Bromley, de Vries, and Farmer, 2004).

Using IPW to adjust for informative censoring, the esti-
mated hazard ratio of CHD for continuous hormone therapy
versus no therapy using weighted model (1) was 0.87 (0.55,
1.39). When we did not weight, we obtained an estimated

hazard ratio of 0.97 (0.66, 1.42). Table 2 shows the weighted
and unweighted estimates when we restricted the analysis to
various periods of follow-up.

The standard updated-covariate analysis gave an estimated
hazard ratio 0.87 (0.60, 1.27) for current therapy was never
exposed since the first eligible visit. The last column of
Table 2 shows the corresponding covariate-updated estimates
as a function of duration of treatment (since the last eligi-
ble period). A further breakdown shows hazard ratios of 0.48
(0.21, 1.06) in years 2–5, and 1.34 (0.60, 3.01) in years 5–10.

5. Discussion and Comparison with Prentice et al.
Our ITT analysis of our GPRD trials suggest that initiation of
estrogen plus progestin does not have a substantial impact on
the risk of CHD although, when compared with noninitiators,
the CHD incidence of initiators was 20% greater during the
2-year period after initiation and 5% lower when averaged
over the 8-year period after initiation. Neither estimate ap-
proached statistical significance.

We did not find significant risk differences by age, but
power was limited because few younger women had a CHD
endpoint and few older women initiated therapy. We could not
stratify the analysis by time since menopause because time
of menopause is not systematically recorded in the GPRD.
When we further restricted eligibility in trial m by requiring
no prior recorded hormone use (rather than a year wash-out
period), 91% of the previously eligible women remained eli-
gible and the ITT estimates showed little change (data not
shown).

The ITT estimates from the GPRD trials are closer to the
null than those of the WHI trial (WHI overall hazard ratio:
1.24, 95% CI: 0.97, 1.60) (Manson et al., 2003). This atten-
uation may be a consequence of the presence of unmeasured
confounding for treatment initiation in the GPRD, a higher
proportion of noncompliance in the GPRD trials, random
variability in both studies, or a combination of these factors.
The GPRD-WHI ITT differences cannot be explained by any
uncertainty in time of therapy initiation or by confounding by
risk factors whose distribution differed in women who contin-
ued versus discontinued therapy.

Our approach provides unbiased estimates of the ITT ef-
fect only under the assumption of no unmeasured confounders
for treatment initiation. Although this assumption cannot be
directly tested in observational studies, comparison between
the adjusted and the unadjusted estimates can be useful in
assessing the hypothesis that substantial confounding by un-
measured factors remains. When we repeated our ITT analy-
sis without adjustment for baseline covariates (except age and
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calendar month), the estimated hazard ratio was 0.85 (95%
CI: 0.67, 1.08), which is only moderately less than the fully
adjusted estimate 0.92. Were sampling variability absent, it
would then follow that the magnitude of confounding due to
unmeasured variables would have to exceed the confounding
due to measured variables to explain the full GPRD-WHI
discrepancy. Given the breadth of the measured variables, we
believe this hypothesis seems unlikely, although a downward
bias of perhaps 0.1 or 0.2 in our hazard ratio estimate is still
plausible, especially in light of the large sampling variability.
Indeed large sampling variability is a major problem. For ex-
ample, the overall ITT hazard ratios from the GPRD and the
WHI trials were estimated with similarly low precision (width
of the 95% CIs on the log scale: about 0.46 in WHI and 0.47 in
GPRD) with point estimates close to the null. This relatively
low precision precludes drawing strong conclusions from ei-
ther study and produces overlapping confidence intervals for
the GPRD and the WHI estimates and a nonsignificant es-
timated difference in ITT effects. For the all-cause mortality
hazard our GPRD estimates were quite similar to the WHI
estimate of 0.98 (95% CI: 0.70, 1.37).

Both the WHI and our primary GPRD analysis estimated
the ITT effect of hormone therapy initiation rather than the
effect of continuing hormone therapy. Because the rate of non-
compliance differed between the GPRD and the WHI trials
(Writing Group for the WHI Investigators, 2002): 42% (WHI)
versus 79% (GPRD) in initiators, and 11% (WHI) versus
13% (GPRD) in noninitiators at 6 years of follow-up, our
GPRD estimates may not be directly comparable with the
WHI estimates. To eliminate the effect of noncompliance, we
attempted to estimate the “continuous treatment or full com-
pliance” hazard ratio (i.e., the ITT effect in the absence of
noncompliance) in the GPRD trials by IPW. As discussed by
Robins and Finkelstein (2000) and Robins (1998), one should
not regard as noncompliant women whose deviation from their
assigned therapy was for (not easily palliated) adverse med-
ical reasons. Prentice et al. make a similar point. However,
in the GPRD study, this option was not available to us, as
data on why a woman stopped hormone therapy was not rou-
tinely collected. Robins and Finkelstein (2000) showed that
the IPW estimates are consistent for the “continuous treat-
ment” hazard ratio if (i) women who initiated and did not
initiate hormone therapy in each trial m were comparable
conditionally on L̄(m) (no unmeasured confounding for treat-
ment), (ii) women who discontinued and did not discontinue
their baseline treatment in each month k were comparable
conditionally on L̄(k) (no unmeasured confounding for cen-
soring), and (iii) model misspecification is absent. Our IPW
methodology to correct for informative censoring is a special
case of the much more general methodology of IPW estima-
tion of marginal structural models. In the GPRD, the overall
IPW hazard ratio estimate of 0.87 was close to the overall
ITT estimate of 0.92.

Further, by comparing the weighted and unweighted esti-
mates of the continuous therapy effect in Table 2, we can
see that although censoring by noncompliance may have been
moderately informative, the observed differences are not sta-
tistically significant. It would be interesting to conduct IPW
analyses of censoring by noncompliance in the WHI trial as
well.

Although we did not do so here, in the presence of un-
measured confounding for treatment continuation (i.e., con-
tinued compliance), IPW estimators can be used to conduct
a sensitivity analysis as follows. Suppose, for the moment,
the amount of unmeasured confounding were known, in the
sense that we could choose a parameter ω and a function
q(j,m, L̄(j), Tā) such that their product ωq(j,m, a, L̄(j), Tā)
correctly quantifies the degree of dependence on the log-odds
scale between the probability of treatment continuation and
the counterfactual survival time Tā under treatment history
ā through the model

logit Pr
[
A(j) = a |G(m) = 1, A(j − 1) = a,

A(m) = a, L̄(j), T > j, Tā

]
= θa0 + θ′a1L̄(j) + ωq(j,m, a, L̄(j), Tā) for j > m. (4)

This logistic model reduces to model (2) if there were
no unmeasured confounding for continued compliance (i.e.,
ωq(j,m, a, L̄(j), Tā) = 0). Because the degree of unmeasured
confounding is actually unknown, we suggest a sensitivity
analysis in which one plots estimates and confidence intervals
for the “continuous treatment” hazard ratio as a function of
ω and q(j,m, a, L̄(j), Tā), where ω and q(j,m, a, L̄(j), Tā) are
allowed to vary over a plausible range of values and functional
forms (Scharfstein et al., 2001; Robins, 2002).

Prentice and collaborators also consider estimating the full
compliance hazard ratio in the WHI randomized trial by cen-
soring subjects at the time of noncompliance, but do not
use data on evolving postrandomization covariates L̄(j) to
reweight subjects. Prentice and collaborators conjecture that
any bias due to this failure to adjust for L̄(k) is likely small.
The rather modest differences in weighted and the unweighted
estimates in Table 2 serve as an empirical test and partial
confirmation of this conjecture in the GPRD. However, in ob-
servational studies of the effect of drug therapy on time to
AIDS or death in HIV-infected subjects, the magnitude of
confounding by time-varying covariates (e.g., CD4 cell count)
is much larger than for the effect of hormone therapy on CHD
in the GPRD study. In these studies we have repeatedly shown
that standard analytic strategies fail; only “causal inference”
methods (either IPW estimation of marginal structural mod-
els or g-estimation of nested structural models) successfully
reproduce the results of randomized trials (Cole et al., 2003;
Hernán et al., 2005; Sterne et al., 2005). Because small bias
cannot be assured a priori, we believe an analyst should rou-
tinely correct (separately in each arm) for selection bias at-
tributable to the measured factors L̄(k) by using IPW and
should, perhaps, also consider using IPW to investigate the
sensitivity of one’s inferences to confounding by unmeasured
factors.

Prentice et al. mention the existence of methods for an-
alyzing double blind randomized trial suffering from non-
compliance that both (i), like an as treated analysis, pro-
vide estimates of the treatment effect under full compliance
and yet (ii), like an ITT analysis, protect the α-level under
the null hypothesis of no treatment effect (without imposing
any assumptions concerning either the existence or magni-
tude of unmeasured confounding for treatment continuation).
Specifically, Prentice et al. reference methodologies proposed
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by Cuzick, Edwards, and Segnan (1997) and Frangakis and
Rubin (1999). However, these methodologies only apply if
compliance is of the “all or none” type, and censoring by
end of follow-up is independent conditional on complier type.
But in the WHI compliance is complex and time varying with
women repeatedly stopping and starting their assigned ther-
apy. Further, although less likely, censoring by end of follow-
up may be dependent if secular changes in baseline mortality
risk have occurred over the trial accrual period. In this set-
ting, as far as we are aware, g-estimation of nested structural
models (usually referred to as SNFTMs) is the only general
methodology available for the analysis of failure time data
that satisfies both (i) and (ii) (Mark and Robins, 1993). Of
course, adequate data on actual treatment A(t) must be avail-
able for analysis. The Appendix provides further detail.

We could have also used doubly robust g-estimation of an
SNFTM rather than our IPW methodology to estimate the
effect of continuous hormone therapy on CHD in the GPRD
study. Doubly robust g-estimation provides consistent esti-
mation of the effect of continuous hormone therapy if there
is no unmeasured confounding for treatment initiation, the
SNFTM is correct, and one has correctly specified either (but
not necessarily both) a model for the conditional probabil-
ity that an eligible subject (i.e., G(m) = 1) initiates treat-
ment in trial m given L̄(m) or a model for the counterfactual
regressions E[Tm,0 | L̄(m), G(m) = 1, T > m] where Tm,0 is a
subject’s possibly counterfactual time to CHD had the sub-
ject received her observed treatment Ā(m− 1) up till month
m − 1 and no treatment from m (these g-estimators are re-
ferred to as doubly robust because of this latter property).
The requirement for correct specification of the SNFTM in
g-estimation substitutes for the requirement for correct spec-
ification of model (4) in IPW estimation.

Furthermore, we could have used doubly robust g-
estimation of an SNFTM to estimate the ITT effect of treat-
ment in our GPRD trials but on a multiplicative survival scale
rather than on a hazard ratio scale. In this setting the sim-
plest SNFTM is a nested AFT model (defined in the Ap-
pendix). A nested AFT model (and more generally any ITT
SNFTM) has certain theoretical advantages compared with
nested hazard ratio models such as the nested Cox model that
we used. First, as remarked by Prentice et al., and in contrast
with nested AFT models, if the treatment and control ITT
hazards cross at some time t, the values of the parameters
of even a correctly specified ITT hazard ratio model do not
determine when (or even whether) the survival curves also
cross, unless combined with an estimate of the baseline sur-
vivor function. (Only when the survival curves cross can one
logically conclude that treatment benefits some subjects and
harms others.) Second, standard hazard ratio models do not
admit doubly robust estimators, although this shortcoming
in robustness can be alleviated by using marginal structural
hazard ratio models.

Reading from Table 2, we see that there is no qualitative
difference between IPW results and the results from the stan-
dard updated-covariate analysis, especially in view of the sub-
stantial sampling variability. Both analyses suggest a possible
hazard ratio of less than 1 when the duration of therapy is
from 2 to 5 years. However in light of the large sampling

variability and multiple comparison considerations, no defini-
tive conclusions are possible. In contrast with the qualitative
agreement in the GPRD, in studies of the effect of highly ac-
tive antiretroviral therapy (HAART) on (i) time to AIDS or
death and (ii) on evolution of CD4 count in HIV-infected sub-
jects, IPW succeeded but standard updated-covariate anal-
yses failed to reproduce results found in randomized clini-
cal trials. The problem with the standard updated-covariate
analysis is that it adjusts for covariates affected by ear-
lier treatment, which can result in bias (Hernán et al.,
2004).

As mentioned in the introduction, the original standard
updated-covariate analyses of the GPRD reported a statis-
tically significant hazard ratio of 0.72 (0.59, 0.89) for cur-
rent versus never exposed. However, the original 1995 GPRD
analyses differed from ours in that (i) all hormone users (in-
cluding estrogen only users) were compared to never users,
(ii) a subject was defined as “currently” exposed at t if ex-
posed any time in the 6 months before t (regardless of past
use history), and (iii) the maximum duration of follow-up was
5 years rather than 10 years. When we repeated our analy-
ses using definition (ii) of current exposure, effect estimates
were little changed (data not shown). As discussed above, our
analyses suggest (but do not prove) that the hazard ratio is
modified by duration of exposure and thus presumably by du-
ration of follow-up when current exposure is coded simply as
1 or 0. Thus the difference between our results and those of
the original GPRD analyses are presumably due to (i) and
perhaps to (iii).

Finally, five remaining differences may affect the GPRD-
WHI comparability. First, individuals in the GPRD trials
were not blinded as to whether they did or did not receive
hormone therapy. If awareness of exposure status modified
the behavior of either the women or their physicians in ways
that affected the risk of a CHD diagnosis, then the GPRD
estimates would reflect the joint effect of hormone therapy
and these behavioral modifications. WHI participants were
initially blinded to treatment regime, although some of them
may have become aware of it later on, and in fact differen-
tial unblinding of hormone users has been suggested as a po-
tential source of bias in the WHI (Garbe and Suissa, 2004).
Second, women with conditions inconsistent with adherence
(e.g., menopausal symptoms) were excluded in the WHI but
not in our GPRD analysis. The GPRD and WHI results might
differ if, as the WHI results suggest (Manson et al., 2003),
hormone therapy is less harmful, or possibly beneficial, in
the presence of menopausal symptoms. Third, women who
initiated hormone therapy in the GPRD were, on average,
8.6 years younger than initiators in the WHI. Fourth, the
particular drugs used for postmenopausal hormonal therapy
in the WHI and in the GPRD are different. Last, there is no
guarantee that the GPRD and WHI noncompliers were com-
parable. For example, many of the GPRD “noncompliers”
stopped hormone therapy simply because their physician pre-
scribed the drug only for a brief period to combat menopausal
symptoms. This last concern could be partly alleviated by
comparing the effects of continued hormone therapy in both
the GPRD and the WHI using either IPW or g-estimation
methodology.
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In conclusion, we have described an analytic approach
for observational studies that mimics that commonly used
for randomized trials and that allows more direct compar-
isons between the results of observational and randomized
studies. Under our approach no clear beneficial effect or ad-
verse effect of combined hormone therapy is apparent in the
GPRD, but we had little power to discover small to moderate
effects. The difference between the overall WHI ITT estimate
of 1.24 and our GPRD ITT estimate of 0.92 is consistent with
random variability, although additional systematic sources of
small to moderate bias cannot be excluded in the GPRD. Un-
fortunately, because of the large sampling variability in both
the WHI trial and the GPRD study, our results shed little
light on the question of whether an (even correctly analyzed)
observational study of a “lifestyle exposure” can reliably dis-
criminate among causal relative risks close to 1. Prentice et al.
show that when the hazard ratio is allowed to vary with du-
ration of therapy, the WHI randomized trial and the WHI
observational study provide similar hazard ratio estimates.
But these authors also had little power to distinguish this
similarity hypothesis from the hypothesis of a moderate sys-
tematic difference between the hazard ratios, which raises the
following counterfactual questions that we hope the authors
might respond to in their rejoinder. Had the WHI random-
ized trial been cancelled and the only data been that from the
WHI observational study, would Prentice et al. have analyzed
the data in the same way and reached the same conclusions
as in their actual paper? Further, what is their best expla-
nation of the discrepancy between the results of their WHI
observational analysis and the results of the other observa-
tional studies that found a clear benefit of hormone therapy
on CHD? How certain are they that this explanation is cor-
rect? We ask because, in our analyses of the GPRD and the
NHS, we have often been unable to find clear and convincing
explanations for the variation observed in our effect estimates
with elaboration of the analytic model in different directions.
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Appendix

G-Estimation of Nested Structural Models
for Survival Analysis

The simplest structural nested failure time model (SNFTM)
implies that for some unknown value ψ∗ of ψ, the ob-
servable random variable Hm(ψ) = hm(T, Ā(T ), ψ) =∫ T

m
exp(ψA(t)) dt has a conditional distribution given

(L̄(m), Ā(m), T > m) equal to that of Tm,0, where Tm,0

is defined in the main text. This model is related to the
time-dependent accelerated failure time model. It implies
that for each m, (Tm,1 − m) has the same distribution as
exp(−ψ∗) (Tm,0 − m) and where Tm,1 is a subject’s possibly
counterfactual time to CHD had the subject received her
observed treatment Ā(m− 1) up to month m and contin-
uous treatment from m onward. In particular, continuous
treatment from m = 0 scales the survival distribution by a
factor exp(−ψ∗) compared to no treatment. The parameter
ψ∗ is estimated with doubly robust g-estimation. A general
SNFTM posits Hm(ψ) = hm(T, Ā(T ), L̄(T ), ψ) to be a known
function of (T, Ā(T ), L̄(T ), ψ) increasing in T and satisfying
Hm(ψ) = T − m if ψ = 0 or A(u) = 0, m ≤ u < ∞. Robins
et al. (1992) extends g-estimation to allow for right censoring
both by administrative end of follow-up and by competing
risks. Owing to double robustness and to the fact that
structural nested failure time models are guaranteed correct
(with true ψ∗ = 0) whenever a hormone effect on CHD is
absent, g-estimation can be used to construct robust tests of
the null hypothesis of no effect of hormone therapy on CHD,
whenever there is no unmeasured confounding for treatment
initiation.

To estimate the ITT effect of therapy, we simply redefine

Hm(ψ) =
∫ T

m
exp(ψA(m)) dt = A(m) exp(ψ), then exp(−ψ)

now has the meaning of the ITT effect of treatment, as-
sumed to be the same for each trial m. We refer to this
model as a time-independent nested AFT model for the ITT
effect. A general ITT SNFTM has Hm(ψ) = hm(T, Ā(m),
L̄(m), ψ) with hm(T, Ā(m), L̄(m), ψ) = T −m if ψ = 0 or
A(m) = 0.
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In a typically masterful performance, Prentice, Pettinger, and
Anderson have beautifully summarized a broad range of sta-
tistical issues raised by one of the most important longitudi-
nal studies of our day, combining both randomized trial and
observational epidemiology components. As other commenta-
tors will address many of the clinical trial and observational
epidemiology issues, I will confine my remarks to the genetic
issues raised in Section 2.2. In particular, I will focus on the
discussion of germline variation, although many of the prob-
lems associated with very high density data arising in that
context also apply to the proteomic data. This is frequently
referred to as the “p � n problem,” meaning many more vari-
ables than observations.

To begin with, the focus of Prentice et al.’s discussion of
germline variation is on detecting the main effects of genetic
variants on disease risk. Many such “genome-wide association
scans” (GWASs)—first seriously proposed nearly a decade
ago by Risch and Merikangas (1996)—have recently been pro-
posed and some are already underway (see review of several
such initiatives in Thomas, Haile, and Duggan, 2005). Indeed,
the first reports of such scans have started to appear (Ozaki
et al., 2002; Klein et al., 2005; Maraganore et al., 2005). Be-
fore discussing some of the methodological issues involved in
GWASs, it’s worth noting that much of the interest in the
pharmacogenomics world centers on genetic modifiers of the
response to drug treatments (Need, Motulsky, and Goldstein,


