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Comment: Spherical Cows in a Vacuum:
Data Analysis Competitions for Causal
Inference
Miguel A. Hernán

Abstract. A recent data analysis competition compared the performance
of several methods for causal inference from observational data. However,
sound causal inference requires not only adequate data analysis techniques
but also subject-matter expertise about the causal structure of the problem
under study. Therefore, until a methodology is developed to combine data
analysis and subject-matter knowledge, causal inference competitions may
only provide advice to practitioners under ideal conditions.
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We must be grateful to the organizers of the “2016
Atlantic Causal Inference Competition” for conducting
the first large-scale data analysis competition for causal
inference from observational data (Dorie et al., 2019).
Modeled upon the machine learning competitions that
are popular among data scientists, the 2016 competi-
tion challenged participants to estimate the causal ef-
fect of a treatment on an outcome using simulated
datasets with many of the complications often found
in real data.

Specifically, the participants in the 2016 competition
were asked to apply their favorite method to a hypo-
thetical subset of twin pregnancies from the Collabora-
tive Perinatal Project (Niswander and Gordon, 1972).
The goal was to estimate the average causal effect—
defined as the effect in the treated—of low birth weight
on child’s IQ. The participants were provided with
datasets generated under 77 different scenarios. The
data generating processes for these scenarios differed
with respect to degree of nonlinearity, overlap, per-
cent treated, alignment between treatment and outcome
models, treatment effect heterogeneity, and magnitude
of treatment effect. Each dataset included 4802 obser-
vations, a binary treatment variable, a continuous out-
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come variable, and 58 covariates (not all of them con-
founders).

The 2016 competition had two flavors, labeled as
“do-it-yourself” for participants who implemented
their methods themselves and “black box” for partic-
ipants who submitted a version of their method for
implementation by the organizers. Participants pro-
posed analyses based on stratification, matching (with
and without propensity scores) and weighting. The
submitted proposals included various modeling exten-
sions and variable selection via machine learning algo-
rithms. Several methods showed to be viable options
that yielded relatively unbiased results. Methods that
included flexible models for outcomes (regardless of
whether they also modeled treatment) were the best
performers, while methods that relied only on treat-
ment prediction were at a disadvantage because ad-
justment for nonconfounders resulted in imprecise es-
timates.

While the “2016 Atlantic Causal Inference Compe-
tition” was an impressive exercise that explored the
relative strengths and weaknesses of methods across
a broad range of data generating processes, no com-
petition can address all key challenges that investiga-
tors encounter when attempting causal inferences using
observational data. For example, all simulated datasets
had a dichotomous treatment (even though birth weight
is actually a continuous variable), a continuous out-
come, i.i.d. data, equal sample size, equal number of
covariates and no measurement error. As Dorie et al.
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(2019) explain, these restrictions were necessary to
limit the number of scenarios provided to participants.

Like the organizers of the 2016 competition, I hope
that others will be inspired to launch competitions that
go beyond the restrictions (sensibly) imposed in 2016.
In particular, I look forward to future competitions
that include failure time outcomes and time-varying
treatments and covariates. Note that the 2016 com-
petition reflected the simplified aim of a large part
of the causal inference literature: estimating the av-
erage causal effect of a time-fixed treatment. How-
ever, this emphasis on time-fixed treatments is at odds
with the widespread presence of time-varying treat-
ments and confounders in the health and social sci-
ences. Future competitions may challenge researchers
to use observational data with time-varying treatments
and treatment-confounder feedback for the compar-
ison of treatment strategies that are sustained over
time (Robins, 1986). In these settings, it is likely that
g-methods—g-formula, inverse probability weighting,
g-estimation, and their doubly robust versions (e.g.,
TMLE)—will outperform many of the methods pro-
posed in the 2016 competition, which cannot appropri-
ately handle time-varying treatments with treatment-
confounder feedback.

The experience accumulated during the “2016 At-
lantic Causal Inference Competition” is a solid foun-
dation for the extension of future competitions to more
technically complex scenarios. Yet, regardless of their
degree of technical sophistication, data analysis com-
petitions will necessarily result in limited recommen-
dations for applied researchers. The reason is that there
is a fundamental mismatch between causal inference
and data analysis competitions: causal inference from
observational data requires not only adequate methods
for data analysis but also sound subject-matter knowl-
edge about the causal structure of the problem at hand
(Hernán, Hsu and Healy, 2019). Let us see three ex-
amples of the reliance of causal inference on subject-
matter knowledge.

First, adjustment for some variables may intro-
duce systematic bias. These variables, which can of-
ten be be identified via subject-matter knowledge, may
be colliders, mediators of the effect of treatment on
the outcome, or instruments (which can amplify bias
due to unmeasured confounders when, unlike in the
2016 competition, there are unmeasured confounders)
(Greenland, Pearl and Robins, 1999; Pearl, 2011).
However, none of the 2016 competition scenarios in-
cluded variables that, if adjusted for, would induce bias

in large samples. There is a good reason for the omis-
sion of biasing variables in a data analysis competition:
in general, biasing covariates are statistically indis-
tinguishable from debiasing covariates (confounders).
Because no data analysis method can ever guarantee
that biasing variables will be excluded from the adjust-
ment set, little would be learned by including them in
a data analysis competition.

Second, all scenarios in the 2016 competition in-
cluded enough information to identify the causal ef-
fect of interest. That is, all scenarios were simulated
under exchangeability of the treated and the untreated
and positivity of treatment (also referred to as ignor-
ability and overlap). Again, the organizers had little
choice here. Suppose they had simulated scenarios in
which important confounders were omitted from the
dataset. In the absence of data on those confounders,
none of the data analysis methods would have been
able to correctly identify the causal effect. For ex-
ample, suppose that birth weight is associated with
IQ not because it causally affects IQ but because it
is a marker for harmful intrauterine events that af-
fect IQ. If a variable for those harmful intrauterine
events is not in the dataset, all methods in the com-
petition will fail to report the (truly) null effect of
birth weight. Therefore, little would have been learned
by including scenarios with unmeasured confound-
ing.

Third, all scenarios in the 2016 competition assumed
that the selection of individuals into the dataset was not
in itself a source of bias. Suppose the organizers had
simulated scenarios in which, unknown to the compe-
tition participants, children with missing IQ measure-
ments were excluded from the dataset and in which
the probability of having a missing IQ measurement
depended on both maternal IQ and low birth weight.
Then selection into the data (non-missing IQ) would be
a conditioned on collider and selection bias would be
expected (Hernán, Hernández-Díaz and Robins, 2004).
However, no data analysis methods could have de-
tected this bias.

An implication of the above is that starting point of
all future data analysis competitions for causal infer-
ence may need to be somewhat unrealistic: datasets
that do not include any biasing variables, that include
all confounders, and that are not already conditional on
colliders that would introduce selection bias.

Data analysis competitions are better suited for pre-
diction than for causal inference. A prediction exer-
cise may pay only a small price for neglecting subject-
matter causal expertise once the question has been ar-
ticulated and high-quality data have been obtained in
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the population of interest. On the other hand, a real-
istic causal inference exercise cannot ignore subject-
matter expertise because confounder identification and
selection is riskier when not guided by expert knowl-
edge.

The organizers of the 2016 competition were well
aware of these limitations. As Dorie et al. (2019) note,
the identification of unmeasured confounders “would
require a great deal of subject matter expertise”, which
raises the question of how to fairly compare data anal-
ysis methods when their performance depends on the
subject-matter expertise of the team that implemented
them. Indeed, in the real world outside of data analy-
sis competitions, research groups with subject-matter
expertise are generally better positioned to make valid
causal inferences. Dorie et al. (2019) state that “future
competition organizers might consider ways to violate
the key assumptions of ignorability and overlap for
the inferential group.” That will be a formidable task
for causal inference competitions, which will have to
find a way to satisfactorily combine data analysis and
subject-matter expertise.

In summary, reducing a causal inference competition
to a data analysis exercise may be necessary to learn
about the statistical performance of various method-
ological approaches under artificial conditions. How-
ever, the overemphasis on adjustment and modeling
techniques, at the expense of subject-matter expertise,
results in a competition that is somewhat detached
from the practice of causal inference in the health and
social sciences. Researchers who look at causal in-
ference competitions for practical advice are like the
proverbial farmer who asked the local university for
assistance to increase the milk production of his cows.

A sophisticated theoretician wrote back “I have the so-
lution, but it works only in the case of a spherical cow
in a vacuum.”
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