Causal Inference

Miguel A. Hernán, James M. Robins

July 27, 2019
16 Instrumental variable estimation
- 16.1 The three instrumental conditions 57
- 16.2 The usual IV estimand .. 60
- 16.3 A fourth identifying condition: homogeneity 62
- 16.4 An alternative fourth condition: monotonicity 64
- 16.5 The three instrumental conditions revisited 68
- 16.6 Instrumental variable estimation versus other methods 70

17 Causal survival analysis
- 17.1 Hazards and risks .. 73
- 17.2 From hazards to risks .. 75
- 17.3 Why censoring matters ... 78
- 17.4 IP weighting of marginal structural models 80
- 17.5 The parametric g-formula ... 81
- 17.6 G-estimation of structural nested models 83

18 Variable selection for causal inference 87
Part II

Causal inference with models
Do not worry. No more chapter introductions around the effect of your looking up on other people’s looking up. We squeezed that example well beyond what seemed possible. In Part II of this book, most examples involve real data. The data sets can be downloaded from the book’s web site.

Part I was mostly conceptual. Calculations were kept to a minimum, and could be carried out by hand. In contrast, the material described in Part II requires the use of computers to fit regression models, such as linear and logistic models. Because this book cannot provide a detailed introduction to regression techniques, we assume that readers have a basic understanding and working knowledge of these commonly used models. Our web site provides links to computer code in R, SAS, Stata, and Python to replicate the analyses described in the text. The code margin notes specify the portion of the code that is relevant to the analysis described in the text.

This chapter describes the differences between the nonparametric estimators used in Part I and the parametric (model-based) estimators used in Part II. It also reviews the concept of smoothing and, briefly, the bias-variance trade-off involved in any modeling decision. The chapter motivates the need for models in data analysis, regardless of whether the analytic goal is causal inference or, say, prediction. We will take a break from causal considerations until the next chapter. Please bear in mind that the statistical literature on modeling is vast; this chapter can only highlight some of the key issues.

11.1 Data cannot speak for themselves

Consider a study population of 16 individuals infected with the human immunodeficiency virus (HIV). Unlike in Part I of this book, we will not view these individuals as representatives of 1 billion individuals identical to them. Rather, these are just 16 individuals randomly sampled from a large, possibly hypothetical super-population: the target population.

At the start of the study each individual receives a certain level of a treatment \(A \) (antiretroviral therapy), which is maintained during the study. At the end of the study, a continuous outcome \(Y \) (CD4 cell count, in cells/mm\(^3\)) is measured in all individuals. We wish to consistently estimate the mean of \(Y \) among individuals with treatment level \(A = a \) in the population from which the 16 individuals were randomly sampled. That is, the estimand is the unknown population parameter \(E[Y|A = a] \).

As defined in Chapter 10, an estimator \(\hat{E}[Y|A = a] \) of \(E[Y|A = a] \) is some function of the data that is used to estimate the unknown population parameter. Informally, a consistent estimator \(\hat{E}[Y|A = a] \) meets the requirement that “the larger the sample size, the closer the estimate to the population value \(E[Y|A = a] \).” Two examples of possible estimators \(\hat{E}[Y|A = a] \) are (i) the sample average of \(Y \) among those receiving \(A = a \), and (ii) the value of the first observation in the dataset that happens to have the value \(A = a \). The sample average of \(Y \) among those receiving \(A = a \) is a consistent estimator of the population mean; the value of the first observation with \(A = a \) is not. In practice we require all estimators to be consistent, and therefore we use the sample average to estimate the population mean.

Suppose treatment \(A \) is a dichotomous variable with two possible values: no
treatment \((A = 0)\) and treatment \((A = 1)\). Half of the individuals were treated \((A = 1)\). Figure 11.1 is a scatter plot that displays each of the 16 individuals as a dot. The height of the dot indicates the value of the individual’s outcome \(Y\). The 8 treated individuals are placed along the column \(A = 1\), and the 8 untreated along the column \(A = 0\). As defined in Chapter 10, an estimate of the mean of \(Y\) among individuals with level \(A = a\) in the population is the numerical result of applying the estimator—in our case, the sample average—to a particular data set.

Our estimate of the population mean in the treated is the sample average 146.25 for those with \(A = 1\), and our estimate of the population mean in the untreated is the sample average 67.50 in those with \(A = 0\). Under exchangeability of the treated and the untreated, the difference 146.25 − 67.50 would be interpreted as an estimate of the average causal effect of treatment \(A\) on the outcome \(Y\) in the target population. However, this chapter is not about making causal inferences. Our current goal is simply to motivate the need for models when trying to estimate population quantities like the mean \(E[Y|A = a]\), irrespective of whether the estimates do or do not have a causal interpretation.

Now suppose treatment \(A\) is a polytomous variable that can take 4 possible values: no treatment \((A = 1)\), low-dose treatment \((A = 2)\), medium-dose treatment \((A = 3)\), and high-dose treatment \((A = 4)\). A quarter of the individuals received each treatment level. Figure 11.2 displays the outcome value for the 16 individuals in the study population. To estimate the population means in the 4 groups defined by treatment level, we compute the corresponding sample averages. The estimates are 70.0, 80.0, 117.5, and 195.0 for \(A = 1\), \(A = 2\), \(A = 3\), and \(A = 4\), respectively.

Figures 11.1 and 11.2 depict examples of discrete (categorical) treatment variables with 2 and 4 categories, respectively. Because the number of study individuals is fixed at 16, the number of individuals per category decreases as the number of categories increase. The sample average in each category is still an exactly unbiased estimator of the corresponding population mean, but the probability that the sample average is close to the corresponding population mean decreases as the number of individuals in each category decreases. The length of the 95% confidence intervals (see Chapter 10) for the category-specific means will be greater for the data in Figure 11.2 than for the data in Figure 11.1.

Finally, suppose that treatment \(A\) is variable representing the dose of treatment in mg/day, and that it takes integer values from 0 to 100 mg. Figure 11.3 displays the outcome value for each of the 16 individuals. Because the number of possible values of treatment is much greater than the number of individuals in the study, there are many values of \(A\) that no individual received. For example, there are no individuals with treatment dose \(A = 90\) in the study population.

This creates a problem: how can we estimate the mean of the outcome \(Y\) among individuals with treatment level \(A = 90\) in the target population? The estimator we used for the data in Figures 11.1 and 11.2—the treatment-specific sample average—is undefined for treatment levels for which there are zero individuals in Figure 11.3. If treatment \(A\) were a truly continuous variable, then the sample average would be undefined for nearly all treatment levels. (A continuous variable \(A\) can be viewed as a categorical variable with an uncountably infinite number of categories.)

The above description shows that we cannot always let the data “speak for themselves” to obtain a meaningful estimate. Rather, we often need to
supplement the data with a model, as we describe in the next section.

11.2 Parametric estimators of the conditional mean

We want to estimate the mean of \(Y \) among individuals with treatment level \(A = 90 \), i.e., \(\text{E}[Y|A = 90] \), from the data in Figure 11.3. Suppose we expect the mean of \(Y \) among individuals with treatment level \(A = 90 \) to lie between the mean among individuals with \(A = 80 \) and the mean among individuals with \(A = 100 \). In fact, suppose we knew that the treatment-specific population mean of \(Y \) is a linear function of the value of treatment \(A \) throughout the range of \(A \). More precisely, we know that the mean of \(Y \), \(\text{E}[Y|A] \), increases (or decreases) from some value \(\theta_0 \) for \(A = 0 \) by \(\theta_1 \) units per unit of \(A \). Or, more compactly,

\[
\text{E}[Y|A] = \theta_0 + \theta_1 A
\]

This equation is a restriction on the shape of conditional mean function \(\text{E}[Y|A] \). This particular restriction is referred to as a **linear mean model**, and the quantities \(\theta_0 \) and \(\theta_1 \) are referred to as the **parameters of the model**. Models that describe the conditional mean function in terms of a finite number of parameters are referred to as parametric conditional mean models. In our example, the parameters \(\theta_0 \) and \(\theta_1 \) define a straight line that crosses (intercepts) the vertical axis at \(\theta_0 \) and has a slope \(\theta_1 \). That is, the model specifies that all conditional mean functions are straight lines, though their intercepts and slopes may vary.

We are now ready to combine the data in Figure 11.3 with our parametric mean model to estimate \(\text{E}[Y|A = a] \) for all values \(a \) from 0 to 100. The first step is to obtain estimates \(\hat{\theta}_0 \) and \(\hat{\theta}_1 \) of the parameters \(\theta_0 \) and \(\theta_1 \). The second step is to use these estimates to estimate the mean of \(Y \) for any value \(A = a \). For example, to estimate the mean of \(Y \) among individuals with treatment level \(A = 90 \), we use the expression \(\hat{\text{E}}[Y|A = 90] = \hat{\theta}_0 + 90\hat{\theta}_1 \). The estimate \(\hat{\text{E}}[Y|A] \) for each individual is referred to as the **predicted value**.

An exactly unbiased estimator of \(\theta_0 \) and \(\theta_1 \) can be obtained by the method of **ordinary least squares**. A nontechnical motivation of the method follows. Consider all possible candidate straight lines for Figure 11.3, each of them with a different combination of values of intercept \(\theta_0 \) and slope \(\theta_1 \). For each candidate line, one can calculate the vertical distance from each dot to the line (the **residual**), square each of those 16 residuals, and then sum the 16 squared residuals. The line for which the sum is the smallest is the “least squares” line, and the parameter values \(\hat{\theta}_0 \) and \(\hat{\theta}_1 \) of this “least squares” line are the “least squares” estimates. The values \(\theta_0 \) and \(\theta_1 \) can be easily computed using linear algebra, as described in any statistics textbook.

In our example, the parameter estimates are \(\hat{\theta}_0 = 24.55 \) and \(\hat{\theta}_1 = 2.14 \), which define the straight line shown in Figure 11.4. The predicted mean of \(Y \) among individuals with treatment level \(A = 90 \) is therefore \(\hat{\text{E}}[Y|A = 90] = 24.55 + 90 \times 2.14 = 216.9 \). Because ordinary least squares estimation uses all data points to find the best line, the mean of \(Y \) in the group \(A = a \), i.e., \(\text{E}[Y|A = a] \), is estimated by borrowing information from individuals who have values of treatment \(A \) not equal to \(a \).

So what is a model? A model is defined by an a priori restriction on the joint distribution of the data. Our linear conditional mean model says that the

Code: Program 11.2

Under the assumption that the variance of the residuals does not depend on \(A \) (homoscedasticity), the Wald 95% confidence intervals are \((-21.2, 70.3)\) for \(\theta_0 \), \((1.28, 2.99)\) for \(\theta_1 \), and \((172.1, 261.6)\) for \(\text{E}[Y|A = 90] \).
conditional mean function $E[Y|A]$ is a straight line, which restricts its shape. For example, the model restricts the mean of Y for $A = 90$ to be between the mean of Y for $A = 80$ and the mean of Y for $A = 100$. This restriction is encoded by the parameters θ_0 and θ_1. A parametric conditional mean model is, through its a priori restrictions, adding information to compensate for the lack of sufficient information in the data.

Parametric estimators—those based on a parametric conditional mean model—allow us to estimate quantities that cannot be estimated otherwise, e.g., the mean of Y among individuals in the target population with treatment level $A = 90$ when no such individuals exist in the study population. But this is not a free lunch. When using a parametric model, the inferences are correct only if the restrictions encoded in the model are correct, i.e. if the model is correctly specified. Thus model-based causal inference—to which a large fraction of the remainder of this book is devoted—relies on the condition of (approximately) no model misspecification. Because parametric models are rarely, if ever, perfectly specified, a certain degree of model misspecification is almost always expected. This can be at least partially rectified by using nonparametric estimators, which we describe in the next section.

11.3 Nonparametric estimators of the conditional mean

Let us return to the data in Figure 11.1. Treatment A is dichotomous and we want to consistently estimate the mean of Y in the treated $E[Y|A = 1]$ and in the untreated $E[Y|A = 0]$. Suppose we have become so enamored with models that we decide to use one to estimate these two quantities. Again we proposed a linear model

$$E[Y|A] = \theta_0 + \theta_1 A$$

where $E[Y|A = 0] = \theta_0 + 0 \times \theta_1 = \theta_0$ and $E[Y|A = 1] = \theta_0 + 1 \times \theta_1 = \theta_0 + \theta_1$. We use the least squares method to obtain estimates of the parameters $\hat{\theta}_0$ and $\hat{\theta}_1$. These estimates are $\hat{\theta}_0 = 67.5$ and $\hat{\theta}_1 = 78.75$. We therefore estimate $\hat{E}[Y|A = 0] = 67.5$ and $\hat{E}[Y|A = 1] = 146.25$. Note that our model-based estimates of the mean of Y are identical to the sample averages we calculated in Section 11.1. This is not a coincidence but an expected finding.

Let us take a second look at the model $E[Y|A = a] = \theta_0 + \theta_1 A$ with a dichotomous treatment A. If we rewrite the model as $E[Y|A = 1] = E[Y|A = 0] + \theta_1$, we see that the model simply states that the mean in the treated $E[Y|A = 1]$ is equal to the mean in the untreated $E[Y|A = 0]$ plus a quantity θ_1, where θ_1 may be negative, positive or zero. But this statement is of course always true! The model imposes no restrictions whatsoever on the values of $E[Y|A = 1]$ and $E[Y|A = 0]$. Therefore $E[Y|A = a] = \theta_0 + \theta_1 A$ with a dichotomous treatment A is not a model because it lets the data speak for themselves, just like the sample average does. “Models” which do not impose restrictions on the distribution of the data are saturated models. Because they formally look like models even if they do not fit our definition of model, saturated models are ordinarily referred to as models too.

Generally, the model is saturated whenever the number of parameters in a conditional mean model is equal to the number of unknown conditional means in the population. For example, the linear model $E[Y|A] = \theta_0 + \theta_1 A$ has two parameters and, when A is dichotomous, there exist two unknown conditional means: the means $E[Y|A = 1]$ and $E[Y|A = 0]$. Since the values of the two...
Fisher consistency. Our definition of a nonparametric estimator in the main text coincides with what is known in statistics as a *Fisher consistent estimator* (Fisher 1922). That is, an estimator of a population quantity that, when calculated using the entire population rather than a sample, yields the true value of the population parameter. By definition, a Fisher consistent estimator lacks any model restrictions but, as discussed in the text, a Fisher consistent estimate may not exist for many population quantities. Technically, Fisher consistent estimators are the nonparametric maximum likelihood estimators of population quantities under a saturated model.

In the statistical literature, the term nonparametric estimator is sometimes used to refer to estimators that are not Fisher consistent but that impose very weak restrictions, such as kernel regression models. See Technical Point 11.1 for details.

A saturated model has the same number of unknowns on both sides of the equal sign.

For causal inference, identifiability assumptions are the assumptions that we would have to make even if we had an infinite amount of data. Modeling assumptions are the assumptions that we have to make precisely because we do not have an infinite amount of data.

11.4 Smoothing

Consider again the data in Figure 11.3 and the linear model $E[Y|A] = \theta_0 + \theta_1 A$. The parameter θ_1 is the difference in mean outcome per unit of treatment dose A. Because θ_1 is a single number, the model specifies that the difference in mean outcome Y per unit of treatment A must be constant throughout the entire range of A, that is, the model requires the conditional mean outcome to follow a straight line as a function of treatment dose A. Figure 11.4 shows the best-fitting straight line.

But one can imagine situations in which the difference in mean outcome is larger for a one-unit change at low doses of treatment, and smaller for a one-
unit change at high doses. This would be the case if, once the treatment dose reaches certain level, higher doses have an increasingly small effect. Under this scenario, the model $E[Y|A] = \theta_0 + \theta_1 A$ is incorrect. However, linear models can be made more flexible.

For example, suppose we fit the model $E[Y|A] = \theta_0 + \theta_1 A + \theta_2 A^2$, where $A^2 = A \times A$ is A-squared, to the data in Figure 11.3. This is still referred to as a linear model because the conditional mean is expressed as a linear combination, i.e., as the sum of the products of each covariate (A and A^2) with its associated coefficient (the parameters θ_1 and θ_2) plus an intercept (θ_0). However, whenever θ_2 is not zero, the parameters θ_0, θ_1, and θ_2 now define a curve—a parabola—rather than a straight line. We refer to θ_1 as the parameter for the linear term A, and to θ_2 as the parameter for the quadratic term A^2.

The curve under the 3-parameter linear model $E[Y|A] = \theta_0 + \theta_1 A + \theta_2 A^2$ can be found via ordinary least squares estimation applied to the data in Figure 11.3. The parameter estimates are $\hat{\theta}_0 = -7.41$, $\hat{\theta}_1 = 4.11$, and $\hat{\theta}_2 = -0.02$. The predicted mean of Y among individuals with treatment level $A = 90$ is obtained from the expression $E[Y|A = 90] = \hat{\theta}_0 + 90\hat{\theta}_1 + 90 \times 90\hat{\theta}_2 = 197.1$.

We could keep adding parameters for a cubic term ($\theta_3 A^3$), a quartic term ($\theta_4 A^4$) ... until we reach a 15th-degree term ($\theta_{15} A^{15}$). At that point the number of parameters in our model equals the number of data points (individuals). The shape of the curve would change as the number of parameters increases. In general, the more parameters in the model, the more inflection points will appear.

That is, the curve generally becomes more “wiggly,” or less smooth, as the number of parameters increase. A linear model with 2 parameters—a straight line—is the smoothest model. A linear model with as many parameters as data points is the least smooth model because it has as many possible inflection points as data points. In fact, such model interpolates the data, i.e., each data point in the sample lies on the estimated conditional mean function.

Often modeling can be viewed as a procedure to transform noisy data into more or less smooth curves. This smoothing occurs because the model borrows information from many data points to predict the outcome value at a particular combination of values of the covariates. The smoothing results from $E[Y|A = a]$ being estimated by borrowing information from individuals with A not equal to a. All parametric estimators incorporate some degree of smoothing.

The degree of smoothing depends on how much information is borrowed across individuals. The 2-parameter model $E[Y|A] = \theta_0 + \theta_1 A$ estimates $E[Y|A = 90]$ by borrowing information from all individuals in the study population to find the least squares straight line. A model with as many parameters as individuals does not borrow any information to estimate $E[Y|A]$ at the values of A that occur in the data, though it borrows information (by interpolation) for values of A that do not occur in the data.

Intermediate degrees of smoothing can be achieved by using an intermediate number of parameters or, more generally, by restricting the number of individuals that contribute to the estimation. For example, to estimate $E[Y|A = 90]$ we could decide to fit a 2-parameter model $E[Y|A] = \theta_0 + \theta_1 A$ restricted to individuals with treatment doses between 80 and 100. That is, we would only borrow information from individuals in a 10-unit window of $A = 90$. The wider the window around $A = 90$, the more smoothing would be achieved.

In our simplistic examples above, all models included a single covariate (with either a single parameter for A or two parameters for A and A^2) so that...
Why model?

Fine Point 11.2

Model dimensionality and the relation between frequentist and Bayesian intervals. In frequentist statistical inference, probability is defined as frequency. In Bayesian inference, probability is defined as degree-of-belief—a concept very different from probability as frequency. Chapter 10 described the confidence intervals used in frequentist statistical inference. Bayesian statistical inference uses credible intervals, which have a more natural interpretation: A Bayesian 95% credible interval means that, given the observed data, “there is a 95% probability that the estimand is in the interval”. However, in part because of the requirement to specify the investigators’ degree of belief, Bayesian inference is less commonly used than frequentist inference.

Interestingly, in simple, low-dimensional parametric models with large sample sizes, 95% Bayesian credible intervals are also 95% frequentist confidence intervals, whereas in high-dimensional or nonparametric models, a Bayesian 95% credible interval may not be a 95% confidence interval as it may trap the estimand much less than 95% of the time. The underlying reason for these results is that Bayesian inference requires the specification of a prior distribution for all unknown parameters. In low-dimensional parametric models the information in the data swamps that contained in reasonable priors. As a result, inference is relatively insensitive to the particular prior distribution selected. However, this is no longer the case in high-dimensional models. Therefore if the true parameter values that generated the data are unlikely under the chosen prior distribution, the center of Bayes credible interval will be pulled away from the true parameters and towards the parameter values given the greatest probability under the prior.

the curves can be represented on a two-dimensional book page. In realistic applications, models often include many different covariates so that the curves are really hyperdimensional surfaces. Regardless of the dimensionality of the problem, the concept of smoothing remains invariant: the fewer parameters in the model, the smoother the prediction (response) surface will be.

11.5 The bias-variance trade-off

In previous sections we have used the 16 individuals in Figure 11.3 to estimate the mean outcome \(Y \) among people receiving a treatment dose of \(A = 90 \) in the target population, \(E[Y|A = 90] \). Since nobody in the study population received \(A = 90 \), we could not let the data speak for themselves. So we combined the data with a linear model. The estimate \(E[Y|A = 90] \) varied with the model. Under the 2-parameter model \(E[Y|A] = \theta_0 + \theta_1 A \), the estimate was 216.9 (95% confidence interval: 172.1, 261.6). Under the 3-parameter model \(E[Y|A] = \theta_0 + \theta_1 A + \theta_2 A^2 \), the estimate was 197.1 (95% confidence interval: 142.8, 251.5). We used two different parametric models that yielded two different estimates. Which one is better? Is 216.9 or 197.1 closer to the mean in the target population?

If the relation is truly curvilinear, then the estimate from the 2-parameter model will be biased because this model assumes a straight line. On the other hand, if the relation is truly a straight line, then the estimates from both models will be valid. This is so because the 3-parameter model \(E[Y|A] = \theta_0 + \theta_1 A + \theta_2 A^2 \) is correctly specified whether the relation follows a straight line (in which case \(\theta_2 = 0 \)) or a parabolic curve (in which case \(\theta_2 \neq 0 \)). One safe strategy would be to use the 3-parameter model \(E[Y|A] = \theta_0 + \theta_1 A + \theta_2 A^2 \) rather than the 2-parameter model \(E[Y|A] = \theta_0 + \theta_1 A \). Because the 3-parameter model is correctly specified under both a straight line and a parabolic curve, it is less likely to be biased. In general, the larger the number of parameters in the
model, the fewer restrictions the model imposes; the less smooth the model,
the more protection afforded against bias from model misspecification.

Although less smooth models may yield a less biased estimate, they also
result in a larger variance, i.e., wider 95% confidence intervals around the
estimate. For example, the estimated 95% confidence interval around $\hat{E}[Y|A = 90]$ was much wider when we used the 3-parameter model than when we used
the 2-parameter model. However, when the estimate $\hat{E}[Y|A = 90]$ based on the
2-parameter model is biased, the standard (nominal) 95% confidence interval
is not calibrated, that is, it does not cover the true parameter $E[Y|A = 90]$
95% of the time.

This bias-variance trade-off is at the heart of many data analyses. Investi-
gators using models need to decide whether some protection against bias—by,
say, adding more parameters to the model—is worth the cost in terms of vari-
ance. Though some formal procedures exist to aid these decisions, in practice
many investigators decide which model to use based on criteria like tradition,
interpretability of the parameters, and software availability. In this book we
will usually assume that our parametric models are correctly speci-
fied. This is an unrealistic assumption, but it allows us to focus on the problems that
are specific to causal analyses. Model misspecification is, after all, a problem
that can arise in any sort of data analysis, regardless of whether the estimates
are endowed with a causal interpretation. In practice, careful investigators will
always question the validity of their models, and will conduct an analysis to
assess the sensitivity of their estimates to model specification.

We are now ready to describe the use of models for causal inference.
A taxonomy of commonly used models. The main text describes linear conditional mean models of the form
\[E[Y|X] = \theta X \equiv \sum_{i=0}^{p} \theta_i X_i \] where \(X \) is a vector of covariates \(X_0, X_1, \ldots, X_p \) with \(X_0 = 1 \) for all \(n \) individuals. These
models are a subset of larger class of conditional mean models which have two components: a linear functional form or
predictor \(\sum_{i=0}^{p} \theta_i X_i \) and a link function \(g(\cdot) \) such that \(g(E[Y|X]) = \sum_{i=1}^{p} \theta_i X_i \).

The linear conditional mean models described in the main text uses the identity link function. Conditional mean
models for outcomes with strictly positive values (e.g., counts, the numerator of incidence rates) often use the log
link function to ensure that all predicted values will be greater than zero, i.e., \(\log \{E[Y|X]\} = \sum_{i=0}^{p} \theta_i X_i \) so \(E[Y|X] = \exp\left(\sum_{i=0}^{p} \theta_i X_i\right) \). Conditional mean models for dichotomous outcomes (i.e., those that only take values 0 and 1) often
use a logit link i.e., \(\log \left\{ \frac{E[Y|X]}{1-E[Y|X]} \right\} = \sum_{i=0}^{p} \theta_i X_i \), so that \(E[Y|X] = \exp\left(\sum_{i=0}^{p} \theta_i X_i\right) \). This link ensures that all predicted
values will be greater than 0 and less than 1. Conditional mean models that use the logit function are referred to as
logistic regression models, and they are widely used in this book. For these links (referred to as canonical links) we can estimate \(\theta \) by maximum likelihood under a normal model for the identity link, a Poisson model for the log link, and a
logistic regression model for the logit link. These estimates are consistent for \(\theta \) as long as the conditional mean model
for \(E[Y|X] \) is correct. Generalized estimating equation (GEE) models, often used to deal with repeated measures, are
a further example of a conditional mean models (Liang and Zeger, 1986).

Conditional mean models only specify a parametric form for \(E[Y|X] \) but do not otherwise restrict the distribution of
\(Y|X \) or the marginal distribution of \(X \). Therefore, when \(X \) or \(Y \) are continuous, a parametric conditional mean model is a semiparametric model for the joint distribution of the data \((X, Y)\) because parts of the distribution are modeled parametrically whereas others are left unrestricted. The model is semiparametric because the set of all unrestricted components of the joint distribution cannot be represented by a finite number of parameters.

Conditional mean models themselves can be generalized by relaxing the assumption that \(E[Y|X] \) takes a parametric form. For example, a kernel regression model does not impose a specific functional form on \(E[Y|X] \) but rather estimates
\(E[Y|X = x] \) for any \(x \) by \(\frac{n}{\sum_{i=1}^{n} w_h(x - X_i)} Y_i / \sum_{i=1}^{n} w_h(x - X_i) \) where \(w_h(z) \) is a positive function, known as a kernel
function, that attains its maximum value at \(z = 0 \) and decreases to 0 as \(|z| \) gets large at a rate that depends on the
parameter \(h \) subscripting \(w \). As another example, generalized additive models (GAMs) replace the linear combination
\(\sum_{i=0}^{p} \theta_i X_i \) of a conditional mean model by a sum of smooth functions \(\sum_{i=0}^{p} f_i(X_i) \). The model can be estimated using a
backfitting algorithm with \(f_i(\cdot) \) estimated at iteration \(k \) by, for example, kernel regression (Hastie and Tibshirani 1990).

In the text we discuss smoothing with parametric models which specify an a priori functional form for \(E[Y|X = x] \), such as a parabola. In estimating \(E[Y|X = x] \), the model may borrow information from values of \(X \) that are far from \(x \). In contrast, kernel regression models do not specify an a priori functional form and borrow information only from values of \(X \) near to \(x \) when estimating \(E[Y|X = x] \). A kernel regression model is an example of a “non-parametric” regression model. This use of the term “nonparametric” differs from our previous usage. Our nonparametric estimators of \(E[Y|X = x] \) only used those individuals for whom \(X \) equalled \(x \) exactly; no information was borrowed even from close neighbors. Here “nonparametric” estimators of \(E[Y|X = x] \) use individuals with values of \(X \) near to \(x \). How near is controlled by a smoothing parameter referred to as the bandwidth \(h \).
Part II is organized around the causal question “what is the average causal effect of smoking cessation on body weight gain?” In this chapter we describe how to use IP weighting to estimate this effect from observational data. Though IP weighting was introduced in Chapter 2, we only described it as a nonparametric method. We now describe the use of models together with IP weighting which, under additional assumptions, will allow us to tackle high-dimensional problems with many covariates and nondichotomous treatments.

To estimate the effect of smoking cessation on weight gain we will use real data from the NHEFS, an acronym that stands for (ready for a long name?) National Health and Nutrition Examination Survey Data I Epidemiologic Follow-up Study. The NHEFS was jointly initiated by the National Center for Health Statistics and the National Institute on Aging in collaboration with other agencies of the United States Public Health Service. A detailed description of the NHEFS, together with publicly available data sets and documentation, can be found at www.cdc.gov/nchs/nhanes/nhefs/. For this and future chapters, we will use a subset of the NHEFS data that is available from this book’s web site. We encourage readers to improve upon and refine our analyses.

12.1 The causal question

We restricted the analysis to individuals with known sex, age, race, weight, height, education, alcohol use and intensity of smoking at the baseline (1971-75) and follow-up (1982) visits, and who answered the medical history questionnaire at baseline. See Fine Point 12.1.

Table 12.1

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean baseline</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>46.2</td>
<td>42.8</td>
</tr>
<tr>
<td>Men, %</td>
<td>54.6</td>
<td>46.6</td>
</tr>
<tr>
<td>White, %</td>
<td>91.1</td>
<td>85.4</td>
</tr>
<tr>
<td>University, %</td>
<td>15.4</td>
<td>9.9</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>72.4</td>
<td>70.3</td>
</tr>
<tr>
<td>Cigarettes/day</td>
<td>18.6</td>
<td>21.2</td>
</tr>
<tr>
<td>Years smoking</td>
<td>26.0</td>
<td>24.1</td>
</tr>
<tr>
<td>Little exercise, %</td>
<td>40.7</td>
<td>37.9</td>
</tr>
<tr>
<td>Inactive life, %</td>
<td>11.2</td>
<td>8.9</td>
</tr>
</tbody>
</table>

Our goal is to estimate the average causal effect of smoking cessation (the treatment) A on weight gain (the outcome) Y. To do so, we will use data from 1566 cigarette smokers aged 25-74 years who, as part of the NHEFS, had a baseline visit and a follow-up visit about 10 years later. Individuals were classified as treated A = 1 if they reported having quit smoking before the follow-up visit, and as untreated A = 0 otherwise. Each individual’s weight gain Y was measured (in kg) as the body weight at the follow-up visit minus the body weight at the baseline visit. Most people gained weight, but quitters gained more weight on average. The average weight gain was $\mathbb{E}[Y|A = 1] = 4.5$ kg in the quitters, and $\mathbb{E}[Y|A = 0] = 2.0$ kg in the non-quitters. The difference $\mathbb{E}[Y|A = 1] - \mathbb{E}[Y|A = 0]$ was therefore estimated to be 2.5, with a 95% confidence interval from 1.7 to 3.4. A conventional statistical test of the null hypothesis that this difference was equal to zero yielded a P-value < 0.001.

We define $\mathbb{E}[Y^{a=1}]$ as the mean weight gain that would have been observed if all individuals in the population had quit smoking before the follow-up visit, and $\mathbb{E}[Y^{a=0}]$ as the mean weight gain that would have been observed if all individuals in the population had not quit smoking. We define the average causal effect on the additive scale as $\mathbb{E}[Y^{a=1}] - \mathbb{E}[Y^{a=0}]$, that is, the difference in mean weight that would have been observed if everybody had been treated compared with untreated. This is the causal effect that we will be primarily concerned with in this and the next chapters.

The associational difference $\mathbb{E}[Y|A = 1] - \mathbb{E}[Y|A = 0]$, which we estimated in the first paragraph of this section, is generally different from the causal difference $\mathbb{E}[Y^{a=1}] - \mathbb{E}[Y^{a=0}]$. The former will not generally have a causal interpretation if quitters and non-quitters differ with respect to characteristics that affect weight gain. For example, quitters were on average 4 years older than non-quitters (quitters were 44% more likely to be above age 50 than non
Fine Point 12.1

Setting a bad example. Our smoking cessation example is convenient: it does not require deep subject-matter knowledge and the data are publicly available. One price we have to pay for this convenience is potential selection bias.

We classified individuals as treated $A = 1$ if they reported (i) being smokers at baseline in 1971-75, and (ii) having quit smoking in the 1982 survey. Condition (ii) implies that the individuals included in our study did not die and were not otherwise lost to follow-up between baseline and 1982 (otherwise they would not have been able to respond to the survey). That is, we selected individuals into our study conditional on an event—responding the 1982 survey—that occurred after the start of the treatment—smoking cessation. If treatment affects the probability of selection into the study, we might have selection bias as described in Chapter 8.

A randomized experiment of smoking cessation would not have this problem. Each individual would be assigned to either smoking cessation or no smoking cessation at baseline, so that their treatment group would be known even if the individual did not make it to the 1982 visit. In Section 12.6 we describe how to deal with potential selection bias due to censoring or missing data for the outcome—something that may occur in both observational studies and randomized experiments—but the situation described in this Fine Point is different: the missing data concerns the treatment itself. This selection bias can be handled through sensitivity analysis, as was done by Hernán et al. (2008, Appendix 3).

The choice of this example allows us to describe, in our own analysis, a ubiquitous problem in published analyses of observational data: a misalignment of treatment assignment and eligibility at the start of follow-up (Hernán et al. 2016). Though we decided to ignore this issue in order to keep our analysis simple, didactic convenience would not be a good excuse to avoid dealing with this bias in real life.

CODE: Program 12.1 computes the descriptive statistics shown in this section

... (code continues)...

As shown in Table 12.1, quitters and non-quitters also differed in their distribution of other variables such as sex, race, education, baseline weight, and intensity of smoking. If these variables are confounders, then they also need to be adjusted for in the analysis. In Chapter 18 we discuss strategies for confounder selection. Here we assume that the following 9 variables, all measured at baseline, are sufficient to adjust for confounding: sex (0: male, 1: female), age (in years), race (0: white, 1: other), education (5 categories), intensity and duration of smoking (number of cigarettes per day and years of smoking), physical activity in daily life (3 categories), recreational exercise (3 categories), and weight (in kg). That is, L represents a vector of 9 measured covariates. In the next section we use IP weighting to adjust for these covariates.

12.2 Estimating IP weights via modeling

IP weighting creates a pseudo-population in which the arrow from the confounders L to the treatment A is removed. Thus, if the confounders L are sufficient to block all backdoor paths from A to Y, then all confounding is eliminated in the pseudo-population. That is, the association between A and Y in the pseudo-population consistently estimates the causal effect of A on Y. Please reread Chapters 2 and 7 if you need a refresher on IP weighting and backdoor paths, respectively.

Informally, the pseudo-population is created by weighting each individual...
The conditional probability of treatment $\Pr (A = 1|L)$ is known as the propensity score. More about propensity scores in Chapter 15.

The curse of dimensionality was introduced in Chapter 10.

The estimated IP weights W^A ranged from 1.05 to 16.7, and their mean was 2.00.

The weighted least squares estimates $\hat{\theta}_0$ and $\hat{\theta}_1$ with weight W of θ_0 and θ_1 are the minimizers of $\sum_i W_i [Y_i - (\theta_0 + \theta_1 A_i)]^2$. If $W_i = 1$ for all individuals, we obtain the ordinary least squares estimates described in the previous chapter.

The estimate $\hat{E}[Y|A = a] = \hat{\theta}_0 + \hat{\theta}_1 a$ is equal to $\frac{\sum_{i=1}^n Y_i W_i}{\sum_{i=1}^n W_i}$ where the sum is over all subjects with $A = a$.

by the inverse (reciprocal) of the conditional probability of receiving the treatment level that she indeed received. The individual-specific IP weights for treatment A are defined as $W^A = 1/f (A|L)$. The denominator $f (A|L)$ of the IP weight is the probability of quitting conditional on the measured confounders, $Pr [A = 1|L]$, for the quitters, and the probability of not quitting conditional on the measured confounders, $Pr [A = 0|L]$, for the non-quitters. For a dichotomous treatment A, we only need to estimate $Pr [A = 1|L]$ because $Pr [A = 0|L] = 1 – Pr [A = 1|L]$.

In Section 2.4 we estimated the quantity $Pr [A = 1|L]$ nonparametrically: we simply counted how many people were treated ($A = 1$) in each stratum of L, and then divided this count by the number of individuals in the stratum. All the information required for this calculation was taken from a causally structured tree with 4 branches (2 for L times 2 for A). But nonparametric estimation of $Pr [A = 1|L]$ is out of the question when, as in our example, we have high-dimensional data with many confounders, some of them with multiple levels. Even if we were willing to recode all 9 confounders except age to a maximum of 6 categories each, our tree would still have over 2 million branches. And many more millions if we use the actual range of values of duration and intensity of smoking, and weight. We cannot obtain meaningful nonparametric stratum-specific estimates when there are 1566 individuals distributed across millions of strata. We need to resort to modeling.

To obtain parametric estimates of $Pr [A = 1|L]$ in each of the millions of strata defined by L, we fit a logistic regression model for the probability of quitting smoking with all 9 confounders included as covariates. We used linear and quadratic terms for the (quasi-)continuous covariates age, weight, intensity of smoking, and we included no product terms between the covariates. That is, our model restricts the possible values of $Pr [A = 1|L]$ such that, on the logit scale, the conditional relation between the continuous covariates and the risk of quitting can be represented by a parabolic curve, and each covariate’s contribution to the risk is independent of that of the other covariates. Under these parametric restrictions, we were able to obtain an estimate $\hat{Pr} [A = 1|L]$ for each combination of L values, and therefore for each of the 1566 individuals in the study population.

The next step is computing the difference $\hat{E}[Y|A = 1] – \hat{E}[Y|A = 0]$ in the pseudo-population created by the estimated IP weights. If there is no confounding for the effect of A in the pseudo-population, association is causation and a consistent estimator of the associational difference $E[Y|A = 1] – E[Y|A = 0]$ in the pseudo-population is also a consistent estimator of the causal difference $E[Y^{a=1}] – E[Y^{a=0}]$. To estimate $E[Y|A = 1] – E[Y|A = 0]$ in the pseudo-population, we fit the (saturated) linear mean model $E[Y|A] = \theta_0 + \theta_1 A$ by weighted least squares, with individuals weighted by their estimated IP weights: $1/\hat{Pr} [A = 1|L]$ for the quitters, and $1/(1 – \hat{Pr} [A = 1|L])$ for the non-quitters.

The parameter estimate $\hat{\theta}_1$ was 3.4. That is, we estimated that quitting smoking increases weight by $\hat{\theta}_1 = 3.4$ kg on average. See Technical Point 12.1 for a formal definition of the estimator.

To obtain a 95% confidence interval around the point estimate $\hat{\theta}_1 = 3.4$ we need a method that takes the IP weighting into account. One possibility is to use statistical theory to derive the corresponding variance estimator. This approach requires that the data analyst programs the estimator, which is not generally available in standard statistical software. A second possibility is to approximate the variance by nonparametric bootstrapping (see Technical Point 13.1). This approach requires appropriate computing resources, or
Technical Point 12.1

Horvitz-Thompson estimators. In Technical Point 3.1, we defined the “apparent” IP weighted mean for treatment level \(a\), \(E\left[\frac{I(A = a) Y}{f(A|L)} \right] \), which is equal to the counterfactual mean \(E[Y^a]\) under positivity and exchangeability. This IP weighted mean is consistently estimated by the original Horvitz-Thompson (1952) estimator \(\hat{E}\left[\frac{I(A = a) Y}{f(A|L)} \right] \). In this chapter, however, we estimated \(E[Y^a]\) via the IP weighted least squares estimate \(\hat{\theta}_0 + \hat{\theta}_1 a\), which is the modified Horvitz-Thompson estimator \(\frac{E\left[\frac{I(A = a) Y}{f(A|L)} \right]}{\hat{E}\left[\frac{I(A = a)}{f(A|L)} \right]} \), used to estimate the parameters of marginal structural models (Robins 1998).

This modified Horvitz-Thompson estimator is a consistent estimator of \(E\left[\frac{I(A = a) Y}{f(A|L)} \right] \), which, under positivity, is equal to \(E\left[\frac{I(A = a) Y}{f(A|L)} \right] \) because \(E\left[\frac{I(A = a)}{f(A|L)} \right] = 1\) (though the original and and the modified Horvitz-Thompson estimators may still yield different estimates in the sample sizes observed in practice).

On the other hand, if positivity does not hold, then the ratio \(\frac{E\left[\frac{I(A = a) Y}{f(A|L)} \right]}{\hat{E}\left[\frac{I(A = a)}{f(A|L)} \right]} \) equals

\[
\sum_l E[Y|A = a, L = l, L \in Q(a)] \Pr[L = l|L \in Q(a)]
\]

and, if exchangeability holds, it equals \(E[Y^a|L \in Q(a)]\), where \(Q(a) = \{l; \Pr(A = a|L = l) > 0\}\) is the set of values \(l\) for which \(A = a\) may be observed with positive probability. Therefore, as discussed in Technical Point 3.1, the difference between modified Horvitz-Thompson estimators with \(a = 1\) versus \(a = 0\) does not have a causal interpretation in the absence of positivity.

12.3 Stabilized IP weights

The goal of IP weighting is to create a pseudo-population in which there is no association between the covariates \(L\) and treatment \(A\). The IP weights \(W^A = 1/f(A|L)\) simulate a pseudo-population in which all members of the study population are replaced by two copies of themselves. One copy receives treatment value \(A = 1\) and the other copy receives treatment value \(A = 0\).
In Chapter 2 we showed how the original study population in Figure 2.1 was transformed into the pseudo-population in Figure 2.3. The pseudo-population was twice as large as the study population because all 20 individuals were included both under treatment and under no treatment. Equivalently, the expected mean of the weights \(W^A \) was 2.

The IP weights \(W^A = 1/f(A|L) \) adjust for confounding by \(L \) because they create a pseudo-population in which all individuals have the same probability of receiving \(A = 1 \) (a probability equal to 1) and the same probability of receiving \(A = 0 \) (also 1). Therefore, \(A \) and \(L \) are independent in the pseudo-population, which implies that all backdoor paths from treatment \(A \) to the outcome \(Y \) via \(L \) are eliminated.

However, there are other ways to create a pseudo-population in which \(A \) and \(L \) are independent. For example, a pseudo-population in which all individuals have a probability of receiving \(A = 1 \) equal to 0.5—rather than 1—and a probability of receiving \(A = 0 \) also equal to 0.5, regardless of their values of \(L \). Such pseudo-population is constructed by using IP weights \(0.5/f(A|L) \). This pseudo-population would be of the same size as the study population. Equivalently, the expected mean of the weights \(0.5/f(A|L) \) is 1.

The effect estimate obtained in the pseudo-population created by weights \(0.5/f(A|L) \) is equal to that obtained in the pseudo-population created by weights \(1/f(A|L) \). (You can check this empirically by using the data in Figure 2.1, or see the proof in Technical Point 12.2.) The same goes for any other IP weights \(p/f(A|L) \) with \(0 < p \leq 1 \). The weights \(W^A = 1/f(A|L) \) are just one particular example of IP weights with \(p = 1 \).

Let us take our reasoning a step further. The key requirement for confounding adjustment is that, in the pseudo-population, the probability of treatment \(A \) does not depend on the confounders \(L \). We can achieve this requirement by assigning treatment with the same probability \(p \) to everyone in the pseudo-population. But we can also achieve it by creating a pseudo-population in which different people have different probabilities of treatment, as long as the probability of treatment does not depend on the value of \(L \). For example, a common choice is to assign to the treated the probability of receiving treatment \(\Pr [A = 1] \) in the original population, and to the untreated the probability of not receiving treatment \(\Pr [A = 0] \) in the original population. Thus the IP weights are \(\Pr [A = 1]/f(A|L) \) for the treated and \(\Pr [A = 0]/f(A|L) \) for the untreated or, more compactly, \(f(A)/f(A|L) \).

Figure 12.1 shows the pseudo-population that is created by the IP weights \(f(A)/f(A|L) \) when applied to the data in Figure 2.1, where \(\Pr [A = 1] = 13/20 = 0.65 \) and \(\Pr [A = 0] = 7/20 = 0.35 \). Under the identifiability conditions of Chapter 3, the pseudo-population resembles a hypothetical randomized experiment in which 65% of the individuals in the study population have been randomly assigned to \(A = 1 \), and 35% to \(A = 0 \). Note that, to preserve the 65/35 ratio, the number of individuals in each branch cannot be integers. Fortunately, non-whole people are no big deal in mathematics.

The IP weights \(f(A)/f(A|L) \) range from 0.33 to 4.30, whereas the IP weights \(1/f(A|L) \) range from 1.05 to 16.7. The stabilizing factor \(f(A) \) in the numerator is responsible for the narrower range of the \(f(A)/f(A|L) \) weights. The IP weights \(W^A = 1/f(A|L) \) are referred to as nonstabilized weights, and the IP weights \(SW^A = f(A)/f(A|L) \) are referred to as stabilized weights. The mean of the stabilized weights is expected to be 1 because the size of the pseudo-population equals that of the study population.

The average causal effect in the treated subpopulation can be estimated by using IP weights in which \(p = \Pr [A = 1|L] \). See Technical Point 4.1.
Let us now re-estimate the effect of quitting smoking on body weight by using the stabilized IP weights SW^A. First, we need an estimate of the conditional probability $\Pr[A = 1|L]$ to construct the denominator of the weights. We use the same logistic model we used in Section 12.2 to obtain a parametric estimate $\hat{\Pr}[A = 1|L]$ for each of the 1566 individuals in the study population. Second, we need to estimate $\Pr[A = 1]$ for the numerator of the weights. We can obtain a nonparametric estimate by the ratio $403/1566$ or, equivalently, by fitting a saturated logistic model for $\Pr[A = 1]$ with an intercept and no covariates. Finally, we estimate the causal difference $E[Y^a=1] - E[Y^a=0]$ by fitting the mean model $E[Y|A] = \theta_0 + \theta_1A$ with individuals weighted by their estimated stabilized IP weights: $\hat{\Pr}[A = 1]/\hat{\Pr}[A = 1|L]$ for the quitters, and $(1 - \hat{\Pr}[A = 1])/(1 - \hat{\Pr}[A = 1|L])$ for the non-quitters. Under our assumptions, we estimated that quitting smoking increases weight by $\hat{\theta}_1 = 3.4$ kg (95% confidence interval: 2.4, 4.5) on average. This is the same estimate we obtained earlier using the nonstabilized IP weights W^A rather than the stabilized IP weights SW^A.

If nonstabilized and stabilized IP weights result in the same estimate, why use stabilized IP weights then? Because stabilized weights typically result in narrower 95% confidence intervals than nonstabilized weights. However, the statistical superiority of the stabilized weights can only occur when the (IP weighted) model is not saturated. In our above example, the two-parameter model $E[Y|A] = \theta_0 + \theta_1A$ was saturated because treatment A could only take 2 possible values. In many settings (e.g., time-varying or continuous treatments), the weighted model cannot possibly be saturated and therefore stabilized weights are used. The next section describes the use of stabilized weights for a continuous treatment.
Checking positivity. In our study, there are 4 white women aged 66 years and none of them quit smoking. That is, the probability of $A = 1$ conditional on (a subset of) L is 0. Positivity, a condition for IP weighting, is empirically violated. There are two possible ways in which positivity can be violated:

- Structural violations: The type of violations described in Chapter 3. Individuals with certain values of L cannot possibly be treated (or untreated). An example: when estimating the effect of exposure to certain chemicals on mortality, being off work is an important confounder because people off work are more likely to be sick and to die, and a determinant of chemical exposure—people can only be exposed to the chemical while at work. That is, the structure of the problem guarantees that the probability of treatment conditional on being off work is exactly 0 (a structural zero). We’ll always find zero cells when conditioning on that confounder.

- Random violations: The type of violations described in the first paragraph of this Fine Point. Our sample is finite so, if we stratify on several confounders, we will start finding zero cells at some places even if the probability of treatment is not really zero in the target population. This is a random, not structural, violation of positivity because the zeroes appear randomly at different places in different samples of the target population. An example: our study happened to include 0 treated individuals in the strata “white women age 66” and “white women age 67”, but it included a positive number of treated individuals in the strata “white women age 65” and “white women age 69.”

Each type of positivity violation has different consequences. In the presence of structural violations, causal inferences cannot be made about the entire population using IP weighting or standardization. The inference needs to be restricted to strata in which structural positivity holds. See Technical Point 12.1 for details. In the presence of random violations, we use our parametric model to estimate the probability of treatment in the strata with random zeroes using data from individuals in the other strata. In other words, we use parametric models to smooth over the zeroes. For example, the logistic model used in Section 12.2 estimated the probability of quitting in white women aged 66 by interpolating from all other individuals in the study. Every time we use parametric estimation of IP weights in the presence of zero cells—like we did in estimating $\hat{\theta}_1 = 3.4$—, we are effectively assuming random nonpositivity.

12.4 Marginal structural models

This is a (saturated) marginal structural mean model for a dichotomous treatment A.

Consider the following linear model for the mean outcome under treatment level a

$$E[Y^a] = \beta_0 + \beta_1 a$$

This model is different from all models we have considered so far: the outcome variable of this model is counterfactual—and hence generally unobserved. Therefore the model cannot be fit to the data of any real-world study. Models for the marginal mean of a counterfactual outcome are referred to as marginal structural mean models.

The parameters for treatment in structural mean models correspond to average causal effects. In the above model, the parameter β_1 is equal to $E[Y^{a=1}] - E[Y^{a=0}]$ because $E[Y^a] = \beta_0$ under $a = 0$ and $E[Y^a] = \beta_0 + \beta_1$ under $a = 1$. In previous sections, we have estimated the average causal effect of smoking cessation A on weight change Y defined as $E[Y^{a=1}] - E[Y^{a=0}]$. In other words, we have estimated the parameter β_1 of a marginal structural model.

Specifically, we used IP weighting to construct a pseudo-population, and then fit the model $E[Y | A] = \theta_0 + \theta_1 A$ to the pseudo-population data by using IP weighted least squares. Under our assumptions, association is causation in the pseudo-population. That is, the parameter θ_1 from the IP weighted
A desirable property of marginal structural models is null preservation (see Chapter 9): when the null hypothesis of no average causal effect is true, a marginal structural model is never misspecified. For example, under marginal structural model $E[Y^a] = \beta_0 + \beta_1 a + \beta_2 a^2$, a Wald test on two degrees of freedom of the joint hypothesis $\beta_1 = \beta_2 = 0$ is a valid test of the null hypothesis.

A (nonsaturated) marginal structural mean model for a continuous treatment A.

The estimated SW^A ranged from 0.19 to 5.10 with mean 1.00. We assumed constant variance (homoscedasticity), which seemed reasonable after inspecting a residuals plot. Other choices of distribution (e.g., truncated normal with heteroscedasticity) resulted in similar estimates.
model were \(\hat{\beta}_0 = 2.005, \hat{\beta}_1 = -0.109, \) and \(\hat{\beta}_2 = 0.003. \) According to these estimates, the mean weight gain (95% confidence interval) would have been 2.0 kg \((1.4, 2.6)\) if all individuals had kept their smoking intensity constant, and 0.9 kg \((-1.7, 3.5)\) if all individuals had increased smoking by 20 cigarettes/day between baseline and 1982.

One can also consider a marginal structural model for a dichotomous outcome. For example, if interested in the causal effect of quitting smoking \(A \) (1: yes, 0: no) on the risk of death \(D \) (1: yes, 0: no) by 1992, one could consider a marginal structural logistic model like

\[
\text{logit } \Pr[D^a = 1] = \alpha_0 + \alpha_1 a
\]

where \(\exp(\alpha_1) \) is the causal odds ratio of death for quitting versus not quitting smoking. The parameters of this model are consistently estimated, under our assumptions, by fitting the logistic model \(\logit \Pr[D = 1|A] = \theta_0 + \theta_1 A \) to the pseudo-population created by IP weighting. We estimated the causal odds ratio to be \(\exp(\hat{\theta}_1) = 1.0 \) (95% confidence interval: 0.8, 1.4).

12.5 Effect modification and marginal structural models

Marginal structural models do not include covariates when the target parameter is the average causal effect in the population. However, one may include covariates—which may be nonconfounders—in a marginal structural model to assess effect modification. Suppose it is hypothesized that the effect of smoking cessation varies by sex \(V \) (1: woman, 0: man). To examine this hypothesis, we add the covariate \(V \) to our marginal structural mean model:

\[
E[Y^a|V] = \beta_0 + \beta_1 a + \beta_2 a + \beta_3 V
\]

Additive effect modification is present if \(\beta_2 \neq 0. \) Technically, this is not a marginal model any more—because it is conditional on \(V \)—but the term “marginal structural model” is still applied.

We can estimate the model parameters by fitting the linear regression model \(E[Y|A, V] = \theta_0 + \theta_1 A + \theta_2 V A + \theta_3 V \) via weighted least squares with IP weights \(W^A \) or \(SW^A \). The vector of covariates \(L \) needs to include \(V \)—even if \(V \) is not a confounder—and any other variables that are needed to ensure exchangeability within levels of \(V \).

Because we are considering a model for the effect of treatment within levels of \(V \), we now have the choice to use either \(f[A] \) or \(f[A|V] \) in the numerator of the stabilized weights. IP weighting based on the stabilized weights

\[
SW^A(V) = \frac{f[A|V]}{f[A|L]}
\]

generally results in narrower confidence intervals around the effect estimates. Some intuition for the increased statistical efficiency of \(SW^A(V) \): with \(V \) in the conditioning event of both the numerator and the denominator, the numerical value of numerator and denominator gets closer, which results in added stabilization for (less variability in) the IP weights and therefore narrower 95% confidence intervals. We estimate \(SW^A(V) \) using the same approach as for \(SW^A \), except that we add the covariate \(V \) to the logistic model for the numerator of the weights.

The particular subset \(V \) of \(L \) that an investigator chooses to include in the marginal structural model should only reflect the investigator’s substantive interest. For example, a variable \(V \) should be included in the marginal structural
model only if the investigator both believes that V may be an effect modifier and has greater substantive interest in the causal effect of treatment within levels of the covariate V than in the entire population. In our example, we found no strong evidence of effect modification by sex as the 95% confidence interval around the parameter estimate $\hat{\theta}_2$ was $(-2.2, 1.9)$. If the investigator chooses to include all variables L in the marginal structural model, then the stabilized weights $SW^A(L)$ equal 1 and no IP weighting is necessary because the (unweighted) outcome regression model, if correctly specified, fully adjusts for all confounding by L (see Chapter 15). For this reason, in a slightly humorous vein, we refer to a marginal structural model that conditions on all variables L needed for exchangeability as a *faux marginal structural model*.

In Part I we discussed that effect modification and confounding are two logically distinct concepts. Nonetheless, many students have difficulty understanding the distinction because the same statistical methods—stratification (Chapter 4) or regression (Chapter 15)—are often used both for confounder adjustment and detection of effect modification. Thus, there may be some advantage to teaching these concepts using marginal structural models, because then methods for confounder adjustment (IP weighting) are distinct from methods for detection of effect modification (adding treatment-covariate product terms to a marginal structural model).

12.6 Censoring and missing data

When estimating the causal effect of smoking cessation A on weight gain Y, we restricted the analysis to the 1566 individuals with a body weight measurement at the end of follow-up in 1982. There were, however, 63 additional individuals who met our eligibility criteria but were excluded from the analysis because their weight in 1982 was not known. Selecting only individuals with nonmissing outcome values—that is, censoring from the analysis those with missing values—may introduce selection bias, as discussed in Chapter 8.

Let censoring C be an indicator for measurement of body weight in 1982: 1 if body weight is unmeasured (i.e., the individual is censored), and 0 if body weight is measured (i.e., the individual is uncensored). Our analysis was necessarily restricted to uncensored individuals, i.e., those with $C = 0$, because those were the only ones with known values of the outcome Y. That is, in sections 12.2 and 12.4 we did not fit the (weighted) outcome regression model $E[Y|A] = \theta_0 + \theta_1 A$, but rather the model $E[Y|A, C = 0] = \theta_0 + \theta_1 A$ restricted to individuals with $C = 0$.

Unfortunately, even under the null, selecting only uncensored individuals for the analysis is expected to induce bias when C is either a collider on a pathway between treatment A and the outcome Y, or the descendant of one such collider. See the causal diagrams in Figures 8.3 to 8.6. Our data are consistent with the structure depicted by those causal diagrams: treatment A is associated with censoring C—5.8% of quitters versus 3.2% nonquitters were censored—and at least some predictors of Y are associated with C—the average baseline weight was 76.6 kg in the censored versus 70.8 in the uncensored.

Because censoring due to loss to follow-up can introduce selection bias, we are generally interested in the causal effect if nobody in the study population had been censored. In our example, the goal becomes estimating the mean weight gain if everybody had quit smoking and nobody’s outcome had been censored, $E[Y_{a=1,c=0}]$, and the mean weight gain if nobody had quit smoking...
The IP weights for censoring and treatment are $W^{A,C} = 1/f(A,C = 0|L)$, where the joint density of A and C is factored as $f(A,C = 0|L) = f(A|L) \times \Pr[C = 0|L,A]$.

Some variables in L may have zero coefficients in the model for $f(A|L)$ but not in the model for $\Pr[C = 0|L,A]$, or vice versa. Nonetheless, in large samples, it is always more efficient to keep all variables L that independently predict the outcome in both models.

The estimated IP weights SW^{C} have mean 1 when the model for $\Pr[C = 0|A]$ is correctly specified. See Technical Point 12.2 for more on stabilized IP weights.

and nobody’s outcome had been censored $E[Y^{a=0,c=0}]$. Then the causal effect of interest is $E[Y^{a=1,c=0}] - E[Y^{a=0,c=0}]$, a joint effect of A and C as we discussed in Chapter 8. The use of the superscript $c = 0$ makes it explicit the causal contrast that many have in mind when they refer to the causal effect of treatment A, even if they choose not to use the superscript $c = 0$.

This causal effect can be estimated by using IP weights $W^{A,C} = W^A \times W^C$ in which $W^C = 1/\Pr[C = 0|L,A]$ for the uncensored individuals and $W^C = 0$ for the censored individuals. The IP weights $W^{A,C}$ adjust for both confounding and selection bias under the identifiability conditions of exchangeability for the joint treatment (A,C) conditional on L—that is, $Y^{a,c=0} \perp \! \! \! \perp (A,C) | L$, joint positivity for $(A = a, C = 0)$, and consistency. If some of the variables in L are affected by treatment A, e.g., as in Figure 8.4, the conditional independence $Y^{a,c=0} \perp \! \! \! \perp (A,C) | L$ will not generally hold. In Part III we show that there are alternative exchangeability conditions that license us to use IP weighting to estimate the joint effect of A and C when some components of L are affected by treatment.

Remember that the weights $W^C = 1/\Pr[C = 0|L,A]$ create a pseudo-population with the same size as that of the original study population before censoring, and in which there is no arrow from either L or A into C. In our example, the estimates of IP weights for censoring W^C will create a pseudo-population with (approximately) 1566 + 63 = 1629 in which, under our assumptions, there is no selection bias because there is no selection. That is, we fit the weighted model $E[Y|A,C = 0] = \theta_0 + \theta_1 A$ with weights $W^{A,C}$ to estimate the parameters of the marginal structural model $E[Y^{a,c=0}] = \beta_0 + \beta_1 a$ in the entire population.

Alternatively, one can use stabilized IP weights $SW^{A,C} = SW^A \times SW^C$. The censoring weights $SW^C = \Pr[C = 0|A] / \Pr[C = 0|L,A]$ create a pseudo-population of the same size as the original study population after censoring, and in which there is no arrow from L into C. In our example, the estimates of IP weights for censoring SW^C will create a pseudo-population of (approximately) 1566 uncensored individuals. That is, the stabilized weights do not eliminate censoring in the pseudo-population, they make censoring occur at random with respect to the measured covariates L. Therefore, under our assumption of conditional exchangeability of censored and uncensored individuals given L (and A), the proportion of censored individuals in the pseudo-population is identical to that in the study population: there is selection but no selection bias.

To obtain parametric estimates of $\Pr[C = 0|L,A]$ in our example, we fit a logistic regression model for the probability of being uncensored to the 1629 individuals in the study population. The model included the same covariates we used earlier to estimate the weights for treatment. Under these parametric restrictions, we obtained an estimate $\Pr[C = 0|L,A]$ and an estimate of SW^C for each of the 1566 uncensored individuals. Using the stabilized weights $SW^{A,C} = SW^A \times SW^C$ we estimated that quitting smoking increases weight by $\hat{\theta}_1 = 3.5$ kg (95% confidence interval: 2.5, 4.5) on average. This is almost the same estimate we obtained earlier using IP weights SW^A, which suggests that either there is no selection bias by censoring or that our measured covariates are unable to eliminate it.

We now describe an alternative to IP weighting to adjust for confounding and selection bias: standardization.
More on stabilized weights. The stabilized weights $SW^A = \frac{g[A]}{f[A|L]}$, where $g[A]$ is any function of A that is not a function of L. When unsaturated structural models are used, weights $\frac{g[A]}{f[A|L]}$ are preferable over weights $\frac{1}{f[A|L]}$ because there exist functions $g[A]$ (often $f[A]$) that can be used to construct more efficient estimators of the causal effect in a nonsaturated marginal structural model. We now show that the IP weighted mean with weights $\frac{g[A]}{f[A|L]}$ is equal to the counterfactual mean $E[Y^a]$.

First note that the IP weighted mean $E\left[\frac{I(A = a) Y}{f(A|L)}\right]$ using weights $\frac{1}{f[A|L]}$, which is equal to $E[Y^a]$, can also be expressed as $E\left[\frac{I(A = a) Y}{f(A|L)}\right]$, because $E\left[\frac{I(A = a)}{f(A|L)}\right] = 1$. Similarly, the IP weighted mean using weights $\frac{g[A]}{f[A|L]}$ can be expressed as $E\left[\frac{I(A = a) Y}{f(A|L)} g(A)\right]$, which is also equal to $E[Y^a]$. The proof proceeds as in Technical Point 2.2 to show that the numerator $E\left[\frac{I(A = a) Y}{f(A|L)} g(A)\right] = E[Y^a] g(a)$, and that the denominator $E\left[\frac{I(A = a)}{f(A|L)} g(A)\right] = g(a)$.
In this chapter we describe how to use standardization to estimate the average causal effect of smoking cessation on body weight gain. We use the same observational data set as in the previous chapter. Though standardization was introduced in Chapter 2, we only described it as a nonparametric method. We now describe the use of models together with standardization, which will allow us to tackle high-dimensional problems with many covariates and nondichotomous treatments. As in the previous chapter, we provide computer code to conduct the analyses.

In practice, investigators will often have a choice between IP weighting and standardization as the analytic approach to obtain effect estimates from observational data. Both methods are based on the same identifiability conditions, but on different modeling assumptions.

13.1 Standardization as an alternative to IP weighting

In the previous chapter we estimated the average causal effect of smoking cessation A (1: yes, 0: no) on weight gain Y (measured in kg) using IP weighting. In this chapter we will estimate the same effect using standardization. Our analyses will also be based on NHEFS data from 1629 cigarette smokers aged 25-74 years who had a baseline visit and a follow-up visit about 10 years later. Of these, 1566 individuals had their weight measured at the follow-up visit and are therefore uncensored ($C = 0$).

We define $E[Y^{a=0}c=0]$ as the mean weight gain that would have been observed if all individuals had received treatment level a and if no individuals had been censored. The average causal effect of smoking cessation can be expressed as the difference $E[Y^{a=1}c=0] - E[Y^{a=0}c=0]$, that is, the difference in mean weight that would have been observed if everybody had been treated and uncensored compared with untreated and uncensored.

As shown in Table 12.1, quitters ($A = 1$) and non-quitters ($A = 0$) differ with respect to the distribution of predictors of weight gain. The observed associational difference $E[Y|A = 1,C = 0] - E[Y|A = 0,C = 0] = 2.5$ is expected to differ from the causal difference $E[Y^{a=1}c=0] - E[Y^{a=0}c=0]$. Again we assume that the vector of variables L is sufficient to adjust for confounding and selection bias, and that L includes the baseline variables sex (0: male, 1: female), age (in years), race (0: white, 1: other), education (5 categories), intensity and duration of smoking (number of cigarettes per day and years of smoking), physical activity in daily life (3 categories), recreational exercise (3 categories), and weight (in kg).

As in the previous chapter, we will assume that the components of L required to adjust for C are unaffected by A. Otherwise, we would need to use the more general approach described in Part III.

One way to adjust for the variables L is IP weighting, which creates a pseudo-population in which the distribution of the variables in L is the same in the treated and in the untreated. Then, under the assumptions of exchangeability and positivity given L, we estimate $E[Y^{a=0}]$ by simply computing $\hat{E}[Y|A = a,C = 0]$ as the average outcome in the pseudo-population. If A were a continuous treatment (contrary to our example), we would also need a structural model to estimate $E[Y|A,C = 0]$ in the pseudo-population for all possible values of A. IP weighting requires estimating the joint distribution of
Structural positivity. Lack of structural positivity precludes the identification of the average causal effect in the entire population when using IP weighting. Positivity is also necessary for standardization because, when $\Pr[A=a|L=l]=0$ and $\Pr[L=l]\neq 0$, then the conditional mean outcome $E[Y|A=a, L=l]$ is undefined.

But the practical impact of deviations from positivity may vary greatly between IP weighted and standardized estimates that rely on parametric models. When using standardization, one can ignore the lack of positivity if one is willing to rely on parametric extrapolation. That is, one can fit a model for $E[Y|A, L]$ that will smooth over the strata with structural zeroes. This smoothing will introduce bias into the estimation, and therefore the nominal 95% confidence intervals around the estimates will cover the true effect less than 95% of the time.

In general, in the presence of violations or near-violations of positivity, the standard error of the treatment effect will be smaller for standardization than for IP weighting. This does not necessarily mean that standardization is preferred over IP weighting; the difference in the biases may swamp the differences in standard errors.

The average causal effect in the treated can be estimated by standardization as described in Technical Point 4.1. One just needs to replace $\Pr[L=l]$ by $\Pr[L=l|A=1]$ in the expression to the right. For the dichotomous treatment smoking cessation, we estimated $\Pr[A=a, C=0|L]$ and computed IP probability weights with this joint probability in the denominator.

As discussed in Chapter 2, an alternative to IP weighting is standardization. Under exchangeability and positivity conditional on the variables in L, the standardized mean outcome in the uncensored treated is a consistent estimator of the mean outcome if everyone had been treated and had remained uncensored $E[Y_{a=1,c=0}]$. Analogously, the standardized mean outcome in the uncensored untreated is a consistent estimator of the mean outcome if everyone had been untreated and had remained uncensored $E[Y_{a=0,c=0}]$. See Fine Point 13.1 for a discussion of the relative impact of deviations from positivity in IP weighting and in standardization.

To compute the standardized mean outcome in the uncensored treated, we first need to compute the mean outcomes in the uncensored treated in each stratum l of the confounders L, i.e., the conditional means $E[Y|A=1, C=0, L=l]$ in each of the strata l. In our smoking cessation example, we would need to compute the mean weight gain Y among those who quit smoking and remained uncensored in each of the (possibly millions of) strata defined by the combination of values of the 9 variables in L.

The standardized mean in the uncensored treated is then the weighted average of these conditional means using as weights the prevalence of each value l in the study population, i.e., $\Pr[L=l]$. That is, the conditional mean from the stratum with the greatest number of individuals has the greatest weight in the computation of the standardized mean. The standardized mean in the uncensored untreated is computed analogously except that the $A=1$ in the conditioning event is replaced by $A=0$.

More compactly, the standardized mean in the uncensored who received treatment level a is

$$\sum_l E[Y|A=a, C=0, L=l] \times \Pr[L=l]$$

When, as in our example, some of the variables in L are continuous, one needs to replace $\Pr[L=l]$ by the probability density function (PDF) $f_L(l)$, and the above sum becomes an integral.

The next two sections describe how to estimate the conditional means of the outcome Y and the distribution of the confounders L, the two types of quantities required to estimate the standardized mean.
13.2 Estimating the mean outcome via modeling

Ideally, we would estimate the set of conditional means $E[Y|A = 1, C = 0, L = l]$ nonparametrically. We would compute the average outcome among the uncensored treated in each of the strata defined by different combination of values of the variables L. This is precisely what we did in Section 2.3, where all the information required for this calculation was taken from Table 2.2.

But nonparametric estimation of $E[Y|A = 1, C = 0, L = l]$ is out of the question when, as in our current example, we have high-dimensional data with many confounders, some of them with multiple levels. We cannot obtain meaningful nonparametric stratum-specific estimates of the mean outcome in the treated when there are only 403 treated individuals distributed across millions of strata. We need to resort to modeling. The same rationale applies to the conditional mean outcome in the uncensored untreated $E[Y|A = 0, C = 0, L = l]$.

To obtain parametric estimates of $E[Y|A = a, C = 0, L = l]$ in each of the millions of strata defined by L, we fit a linear regression model for the mean weight gain with treatment A and all 9 confounders in L included as covariates. We used linear and quadratic terms for the (quasi-)continuous covariates age, weight, intensity and duration of smoking. That is, our model restricts the possible values of $E[Y|A = a, C = 0, L = l]$ such that the conditional relation between the continuous covariates and the mean outcome can be represented by a parabolic curve. We included a product term between smoking cessation A and intensity of smoking. That is, our model imposes the restriction that each covariate’s contribution to the mean is independent of that of the other covariates, except that the contribution of smoking cessation A varies linearly with intensity of prior smoking.

Under these parametric restrictions, we obtained an estimate $\hat{E}[Y|A = a, C = 0, L = l]$ for each combination of values of A and L, and therefore for each of the 403 uncensored treated ($A = 1, C = 0$) and each of the 1163 uncensored untreated ($A = 0, C = 0$) individuals in the study population. For example, we estimated that individuals with the combination of values {non-quitter, male, white, age 26, college dropout, 15 cigarettes/day, 12 years of smoking habit, moderate exercise, very active, weight 112 kg} had a mean weight gain of 0.34 kg (the individual with unique identifier 24770 happened to have these combination of values, you may take a look at his predicted value).

In general, the standardized mean of Y is written as

$$\int E[Y|A = a, C = 0, L = l] \, dF_L(l)$$

where $F_L(\cdot)$ is the joint cumulative distribution function (CDF) of the random variables in L. When, as in this chapter, L is a vector of baseline covariates unaffected by treatment, we can average over the observed values of L to nonparametrically estimate this integral.

Remember that our goal is to estimate the standardized mean $\sum_l E[Y|A = a, C = 0, L = l] \times \Pr[L = l]$ in the treated ($A = 1$) and in the untreated ($A = 0$). More formally, the standardized mean should be written as an integral because some of the variables in L are essentially continuous, and thus their distribution cannot be represented by a probability function. Regardless of these notational issues, we have already estimated the means $E[Y|A = a, C = 0, L = l]$ for all values of treatment A and confounders L.

The next step is standardizing these means to the distribution of the confounders L for all values l.
13.3 Standardizing the mean outcome to the confounder distribution

The standardized mean is a weighted average of the conditional means $E[Y|A = a, C = 0, L = l]$. When all variables in L are discrete, each mean receives a weight equal to the proportion of individuals with values $L = l$, i.e., $Pr[L = l]$. In principle, these proportions $Pr[L = l]$ could be calculated nonparametrically from the data: we would divide the number of individuals in the strata defined by $L = l$ by the total number of individuals in the population. This is precisely what we did in Section 2.3, where all the information required for this calculation was taken from Table 2.2. However, this method becomes tedious for high-dimensional data with many confounders, some of them with multiple levels, as in our smoking cessation example.

Fortunately, we do not need to estimate $Pr[L = l]$. We only need to estimate $E[Y|A = a, C = 0, L = l]$ for the l value of each individual i in the study, and then compute the average $\frac{1}{n} \sum_{i=1}^{n} E[Y|A = a, C = 0, L_i]$ where n is the number of individuals in the study. This is so because the weighted mean $\sum_{i} E[Y|A = a, C = 0, L = l] Pr[L = l]$ can also be written as the double expectation $E[E[Y|A = a, L]]$.

We now describe a simple computational method to estimate the standar-
dized means $\sum_{i} E[Y|A = a, C = 0, L = l] \times Pr[L = l]$ in the treated ($A = 1$) and in the untreated ($A = 0$) with many confounders, without ever explicitly estimating $Pr[L = l]$. We first apply the method to the data in Table 2.2, in which there was no censoring, the confounder L is only one variable with two levels, and Y is a dichotomous outcome, i.e., the mean $E[Y|A = a, C = 0, L = l]$ is the risk $Pr[Y = 1|A = a, L = l]$ of developing the outcome. Then we apply it to the real data with censoring and many confounders. The method has 4 steps: expansion of dataset, outcome modeling, prediction, and standardization by averaging.

Table 2.2 has 20 rows, one per individual in the study. We now create a new dataset in which the data of Table 2.2 is copied three times. That is, the analytic dataset has 60 rows in three blocks of 20 individuals each. We leave the first block of 20 rows as is, i.e., the first block is identical to the data in Table 2.2. We modify the data of the second and third blocks as shown in the margin. In the second block, we set the value of A to 0 (untreated) for all 20 individuals; in the third block we set the value of A to 1 (treated) for all individuals. In the second and third blocks, we delete the data on the outcome for all individuals, i.e., the variable Y is assigned a missing value. As described below, we will use the second block to estimate the standardized mean in the untreated and the third block for the standardized mean in the treated.

Next we use the 3-block dataset to fit a regression model for the mean outcome given treatment A and the confounder L. We add a product term $A \times L$ to make the model saturated. Note that only the rows in the first block of the dataset (the actual data) will contribute to the estimation of the parameters of the model because the outcome is missing for all rows in the second and third blocks.

The next step is to use the parameter estimates from the first block to predict the outcome values for all rows in the second and third blocks. (That is, we combine the values of the columns L and A with the regression estimates to impute the missing value for the outcome Y.) The predicted outcome values for the second block are the mean estimates for each combination of values of L and $A = 0$, and the predicted values for the third block are the mean estimates

<table>
<thead>
<tr>
<th>Second block: All untreated</th>
<th>L</th>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheia</td>
<td>0</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Kronos</td>
<td>0</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Demeter</td>
<td>0</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Hades</td>
<td>0</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Hestia</td>
<td>0</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Poseidon</td>
<td>0</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Hera</td>
<td>0</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Zeus</td>
<td>0</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Artemis</td>
<td>1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Apollo</td>
<td>1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Leto</td>
<td>1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Ares</td>
<td>1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Athena</td>
<td>1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Hephaestus</td>
<td>1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Aphrodite</td>
<td>1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Cyclope</td>
<td>1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Persephone</td>
<td>1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Hermes</td>
<td>1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Hebe</td>
<td>1</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>Dionysus</td>
<td>1</td>
<td>0</td>
<td>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third block: All treated</th>
<th>L</th>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheia</td>
<td>0</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Kronos</td>
<td>0</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Demeter</td>
<td>0</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Hades</td>
<td>0</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Hestia</td>
<td>0</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Poseidon</td>
<td>0</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Hera</td>
<td>0</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Zeus</td>
<td>0</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Artemis</td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Apollo</td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Leto</td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Ares</td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Athena</td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Hephaestus</td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Aphrodite</td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Cyclope</td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Persephone</td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Hermes</td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Hebe</td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Dionysus</td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
</tbody>
</table>
for each combinations of values of L and $A = 1$.

Finally, we compute the average of all predicted values in the second block. Because 60% of rows have value $L = 1$ and 40% have value $L = 0$, this average gives more weight to rows with $L = 1$. That is, the average of all predicted values in the second block is precisely the standardized mean outcome in the untreated. We are done. To estimate the standardized mean outcome in the treated, we compute the average of all predicted values in the third block.

The above procedure yields exactly the same estimates of the standardized means (0.5 for both of them) as the direct calculation in Section 2.3. Both approaches are completely nonparametric. In this chapter we did not directly estimate the distribution of L, but rather average over the observed values of L, i.e., its empirical distribution.

The use of the empirical distribution for standardizing is the way to go in more realistic examples, like our smoking cessation study, with high-dimensional L. The procedure for our study is analogous to the one described above for the data in Table 2.2. We add the second and third blocks to the dataset, fit the regression model for $E[Y|A = a, C = 0, L = l]$ as described in the previous section, and generate the predicted values. The average predicted value in the second block—the standardized mean in the untreated—was 1.65, and the average predicted value in the third block—the standardized mean in the treated—was 5.11. Therefore, our estimate of the causal effect $E[Y|a=1, c=0] - E[Y|a=0, c=0]$ was $5.11 - 1.65 = 3.5$ kg. To obtain a 95% confidence interval for this estimate we used a statistical technique known as bootstrapping (see Technical Point 13.1). In summary, we estimated that quitting smoking increases body weight by 3.5 kg (95% confidence interval: 2.6, 4.5).

13.4 IP weighting or standardization?

We have now described two ways in which modeling can be used to estimate the average causal effect of a treatment: IP weighting (previous chapter) and standardization (this chapter). In our smoking cessation example, both yielded almost exactly the same effect estimate. Indeed Technical Point 2.3 proved that the standardized mean equals the IP weighted mean.

Why are we then bothering to estimate the standardized mean in this chapter if we had already estimated the IP weighted mean in the previous chapter? It turns out that the IP weighted and the standardized means are only exactly equal when no models are used to estimate them. Otherwise they are expected to differ. To see this, consider the quantities that need to be modeled to implement either IP weighting or standardization. IP weighting models $Pr[A = a, C = 0 | L]$, which we estimated in the previous chapter by fitting parametric logistic regression models for $Pr[A = a | L]$ and $Pr[C = 0 | A = a, L]$. Standardization models the conditional means $E[Y | A = a, C = 0, L = l]$, which we estimated in this chapter using a parametric linear regression model.

In practice some degree of misspecification is inescapable in all models, and model misspecification will introduce some bias. But the misspecification of the treatment model (IP weighting) and the outcome model (standardization) will not generally result in the same magnitude and direction of bias in the effect estimate. Therefore the IP weighted estimate will generally differ from the standardized estimate because unavoidable model misspecification will affect the point estimates differently. Large differences between the IP weighted and standardized estimate will alert us to the presence of serious model misspec-
Technical Point 13.1

Bootstrapping. Effect estimates are presented with measures of random variability, such as the standard error or the 95% confidence interval, which is a function of the standard error. (We discussed the foundations of variability in Chapter 10.) Because of the computational difficulty to obtain exact estimates, in practice standard error estimates are often based on large-sample approximations, which rely on asymptotic considerations. However, sometimes even large-sample approximations are too complicated to be calculated. The bootstrap is an alternative method for estimating standard errors and computing 95% confidence intervals. The simplest version of the bootstrap, which we used to compute the 95% confidence interval around the effect estimate of smoking cessation, is sketched below.

Take the study population of 1629 individuals. Sample with replacement 1629 individuals from the study population, so that some of the original individuals may appear more than once while others may not be included at all. This new sample of size 1629 is referred to as a “bootstrap sample.” Compute the effect of interest in the bootstrap sample (e.g., by using standardization as described in the main text). Now create a second bootstrap sample by again sampling with replacement 1629 individuals. Compute the effect of interest in the second bootstrap sample using the same method as for the first bootstrap sample. By chance, the first and second bootstrap sample will generally include a different number of copies of each individual, and therefore will result in different effect estimates. Repeat the procedure in a large number (say, 1000) of bootstrap samples. It turns out that the standard deviation of the 1000 effect estimates in the bootstrap samples consistently estimates the standard error of the effect estimate in the study population. The 95% confidence interval is then computed by using the usual normal approximation: ±1.96 times the estimate of the standard error. See, for example, Wasserman (2004) for an introduction to the statistical theory underlying the bootstrap.

We used this bootstrap method with 1000 bootstrap samples to obtain the 95% confidence interval described in the main text for the standardized mean difference. Though the bootstrap is a simple method, it can be computationally intensive for very large datasets. It is therefore common to see published estimates that are based on only 200-500 bootstrap samples (which would have resulted in an almost identical confidence interval in our example). Finally, note that the bootstrap is a general method for large samples. We could have also used it to compute a 95% confidence interval for the IP weighted estimates from marginal structural models in the previous chapter.

Robins (1986) described the generalization of standardization to time-varying treatments and confounders, and named it the g-computation algorithm formula. Because this name is very long, some authors have abbreviated to g-formula and others to g-computation. Even though g-formula and g-computation are synonyms, this book uses only the former term because the latter term is frequently confused with g-estimation, a different method described in Chapter 14.

Ification in at least one of the estimates. Small differences do not guarantee absence of serious model misspecification, but will be reassuring—though logically possible, it is unlikely that badly misspecified models resulting in bias of similar magnitude and direction for both methods.

In our smoking cessation example, both the IP weighted and the standardized estimates are similar. After rounding to one decimal place, the estimated weight gain due to smoking cessation was 3.5 kg regardless of whether we fit a model for treatment A (IP weighting) or for the outcome Y (standardization). In neither case we fit a model for the confounders L, as we did not need the distribution of the confounders to obtain the IP weighted estimate, and we just used the empirical distribution of L (a nonparametric method) to compute the standardized estimate.

Both IP weighting and standardization are estimators of the g-formula, a general method for causal inference first described in 1986. (Part III describes the generalization of IP weighting and standardization to time-varying treatments.) We say that standardization is a plug-in g-formula estimator because it simply replaces the conditional mean outcome in the g-formula by its estimates. When, like in this chapter, those estimates come from parametric models, we refer to the method as the parametric g-formula. Because here we were only interested in the average causal effect, we only had to estimate the conditional mean outcome. More generally, the parametric g-formula uses estimates of any functions of the distribution of the outcome (e.g., functionals like the probability density function or PDF) within levels of A and L to com-
Fine Point 13.2

A doubly robust estimator. The previous chapter describes IP weighting, a method that requires a correct model for treatment \(A \) conditional on the confounders \(L \). This chapter describes standardization, a method that requires a correct model for the outcome \(Y \) conditional on treatment \(A \) and the confounders \(L \). How about a method that requires a correct model for \textit{either} treatment \(A \) or outcome \(Y \)? That is precisely what doubly robust estimation does. Under the usual identifiability assumptions, a doubly robust estimator consistently estimates the causal effect if at least one of the two models is correct (and one need not know which of the two models is correct). That is, doubly robust estimators give us two chances to get it right.

There are many types of doubly robust estimators. Here we describe a doubly robust estimator proposed by Bang and Robins (2005) for the average causal effect of a dichotomous treatment \(A \) on an outcome \(Y \). For simplicity, we consider a setting without censoring.

To obtain a doubly robust estimate of the average causal effect, first estimate the IP weight \(W^A = 1/f(A|L) \) as described in the previous chapter. Then fit an outcome regression model like the one described in this chapter—a generalized linear model with a canonical link—for \(E[Y|A = a, L = l, R] \) that adds the covariate \(R \), where \(R = W^A \) if \(A = 1 \) and \(R = -W^A \) if \(A = 0 \). Finally, use the predicted values from the outcome model to obtain the standardized mean outcomes under \(A = 1 \) and \(A = 0 \). The difference of the standardized mean outcomes is now doubly robust. That is, under exchangeability and positivity given \(L \), this estimator consistently estimates the average causal effect if either the model for the treatment or the model for the outcome is correct, without knowing which of the two models is the correct one.

13.5 How seriously do we take our estimates?

We spent Part I of this book reviewing the definition of average causal effect, the assumptions required to estimate it, and many potential biases. The discussion was purely conceptual, the data examples hypersimplistic. A key message was that a causal analysis of observational data is sharper when explicitly emulating a (hypothetical) randomized experiment—the target trial.

The analyses in this and the previous chapter are our first attempts at estimating causal effects from real data. Using both IP weighting and the parametric g-formula we estimated that the mean weight gain would have
been 5.2 kg if everybody had quit smoking compared with 1.7 kg if nobody had quit smoking. Both methods estimated that quitting smoking increases weight by 3.5 kg (95% confidence interval: 2.5, 4.5) on average in this particular population. In the next chapters we will see that similar estimates are obtained when using g-estimation, outcome regression, and propensity scores.

The compatibility of estimates across methods is reassuring because each method’s estimate is based on different modeling assumptions. However, observational effect estimates are always open to serious criticism. Even if we do not wish to transport our effect estimate to other populations (Chapter 4) and even if there is no interference between individuals, the validity of our estimates for the target population requires many conditions. We classify these conditions in three groups.

First, the identifiability conditions of exchangeability, positivity, and consistency (Chapter 3) need to hold for the observational study to resemble the target trial. The quitters and the non-quitters need to be exchangeable conditional on the 9 measured covariates L (see Fine Point 14.2). Unmeasured confounding (Chapter 7) or selection bias (Chapter 8, Fine Point 12.2) would prevent conditional exchangeability. Positivity requires that the distribution of the covariates L in the quitters fully overlaps with that in the non-quitters. Fine Point 13.1 discussed the different impact of deviations from positivity for nonparametric IP weighting and standardization. Regarding consistency, note that there are multiple versions of both quitting smoking (e.g., quitting progressively, quitting abruptly) and not quitting smoking (e.g., increasing intensity of smoking by 2 cigarettes per day, reducing intensity but not to zero). Our effect estimate corresponds to a somewhat vague hypothetical intervention in the target population that randomly assigns these versions of treatment with the same frequency as they actually have in the study population. Other hypothetical interventions might result in a different effect estimate.

Second, all variables used in the analysis need to be correctly measured. Measurement error in the treatment A, the outcome Y, or the confounders L will generally result in bias (Chapter 9).

Third, all models used in the analysis need to be correctly specified (Chapter 11). Suppose that the correct functional form for the continuous covariate age in the treatment model is not the parabolic curve we used but rather a curve represented by a complex polynomial. Then, even if all the confounders had been correctly measured and included in L, IP weighting would not fully adjust for confounding. Model misspecification has a similar effect as measurement error in the confounders.

Ensuring that each of these conditions hold, at least approximately, is the investigator’s most important task. If these conditions could be guaranteed to hold, then the data analysis would be trivial. The problem is, of course, that one cannot ever expect that any of these conditions will hold perfectly. Unmeasured confounders, nonoverlapping confounder distributions, ill-defined interventions, mismeasured variables, and misspecified models will typically lurk behind our estimates. Some of these problems may be addressed empirically, but others will remain a matter of subject-matter judgement, and therefore open to criticism that cannot be refuted by our data. For example, we can propose different model specifications but we cannot adjust for variables that were not measured.

Causal inferences rely on the above conditions, which are heroic and not empirically testable. We replace the lack of data on the distribution of the counterfactual outcomes by the assumption that the above conditions are approximately met. The more our study deviates from those conditions, the
more biased our effect estimate may be. Therefore a healthy skepticism of causal inferences drawn from observational data is necessary. In fact, a key step towards less casual causal inferences is the realization that the discussion should primarily revolve around each of the above assumptions. We only take our effect estimates as seriously as we take the conditions that are needed to endow them with a causal interpretation.
The bias of doubly robust estimators. Suppose we have a dichotomous treatment A, an outcome Y, and a vector of measured variables L that satisfy positivity and exchangeability (consistency is assumed). For simplicity we consider estimation of the counterfactual mean outcome under treatment $E[Y^{a=1}]$ rather than the average causal effect. Then $E[Y^{a=1}]$ can be written as either $E[b(L)]$, where $b(L) = E[Y|A = 1, L]$, or $E[A\frac{Y}{P(L)}]$, where $\pi(L) = \Pr[A = 1|L = l]$. In this chapter, we described a plug-in g-formula estimator $\frac{1}{n} \sum_{i=1}^{n} \hat{b}(L_i)$ that replaces the conditional mean outcome by its estimate from a (say, linear) regression model for $b(L)$ and averages it over all n individuals in the study. In the previous chapter, we described a Horvitz-Thompson IP weighted estimator $\frac{1}{n} \sum_{i=1}^{n} \frac{A_i Y_i}{\pi(L_i)}$ that replaces the probability of treatment by its estimate from a (say, logistic) regression model for $\pi(L)$ and averages it over the n individuals. The bias of the plug-in g-formula estimator will be large if the estimate $\hat{b}(L)$ is far from $b(L)$, and the bias of the IP weighted estimator will be large if $\hat{\pi}(L)$ is far from $\pi(L)$.

A doubly robust estimator of $E[Y^{a=1}]$ appropriately combines the estimate $\hat{b}(L)$ from the outcome model and the estimate $\hat{\pi}(L)$ from the treatment model. There are many forms of doubly robust estimators, like the one described in Fine Point 13.2 for the average causal effect. All doubly robust estimators involve a correction of the outcome regression model by a function that replaces the probability of treatment (the first-order influence function), which can also be viewed as a correction of the Horvitz-Thompson estimator by a function that involves the outcome regression model. For example, consider the following doubly robust estimator of $E[Y^{a=1}]$:

$$
\hat{E}[Y^{a=1}]_{DR} = \frac{1}{n} \sum_{i=1}^{n} \left[b(L_i) + \frac{A_i Y_i}{\hat{\pi}(L_i)} \left(Y_i - \hat{b}(L_i) \right) \right],
$$

which can also be written as $\frac{1}{n} \sum_{i=1}^{n} \left[\frac{A_i Y_i}{\hat{\pi}(L_i)} - \left(\frac{A_i Y_i}{\hat{\pi}(L_i)} - 1 \right) \hat{b}(L_i) \right]$.

Under exchangeability and positivity, the bias of this doubly robust estimator of $E[Y^{a=1}]$ is small if either the estimate $\hat{b}(L)$ is close to $b(L)$ or the estimate $\hat{\pi}(L)$ is close to $\pi(L)$. Specifically, the bias $E \left[\hat{E}[Y^{a=1}]_{DR} - E[Y^{a=1}] \right]$ of $\hat{E}[Y^{a=1}]_{DR}$ in large samples is

$$
E \left[\hat{\pi}(L) \left(\frac{1}{\hat{\pi}(L)} - \frac{1}{\pi^*(L)} \right) (b(L) - b^*(L)) \right],
$$

where $\pi^*(L)$ and $b^*(L)$ are the probability limits of $\hat{\pi}(L)$ and $\hat{b}(L)$ and $\pi^*(L) = \pi(L)$ when the treatment model is correct and $b^*(L) = b(L)$ when the outcome model is correct. Thus the large sample (i.e., asymptotic) bias is zero when either the outcome model or the treatment model is correct (and we do not need to know which one). Of course, one does not expect any parametric model to be correctly specified if the vector L is very high-dimensional and thus even the bias of our doubly robust estimator may be large.

However, all doubly robust estimators have the property that the bias depends on the product of the error $\frac{1}{\pi^*(L)} - \frac{1}{\hat{\pi}(L)}$ in the estimation of $\frac{1}{\pi^*(L)}$ with the error $b(L) - \hat{b}(L)$ in the estimation of $b(L)$. As we discuss in Chapter 18, this property—which is known as second-order bias—allows us to construct doubly-robust estimators of $E[Y^{a=1}]$ that may have small bias by estimating $\pi(l)$ and $b(l)$ with machine learning estimators rather than with standard parametric models. This is because, in high-dimensional settings, machine learning estimators based on complex algorithms, produce more accurate estimators of $\pi(l)$ and $b(l)$ than standard parametric models which have a small number of parameters compared to the sample size.
In the previous two chapters, we described IP weighting and standardization (the g-formula) to estimate the average causal effect of smoking cessation on body weight gain. In this chapter we describe a third method to estimate the average causal effect: g-estimation. We use the same observational NHEFS data and provide simple computer code to conduct the analyses.

IP weighting, the g-formula, and g-estimation are often collectively referred to as g-methods because they are designed for application to generalized treatment contrasts involving treatments that vary over time. The application of g-methods to treatments that do not vary over time in Part II of this book may then be overkill since there are alternative, simpler approaches. However, by presenting g-methods in a relatively simple setting, we can focus on their main features while avoiding the more complex issues described in Part III.

IP weighting and standardization were introduced in Part I (Chapter 2) and then described with models in Part II (Chapters 12 and 13, respectively). In contrast, we have waited until Part II to describe g-estimation. There is a reason for that: describing g-estimation is facilitated by the specification of a structural model, even if the model is saturated. Models whose parameters are estimated via g-estimation are known as structural nested models. The three g-methods are based on different modeling assumptions.

14.1 The causal question revisited

As in previous chapters, we restricted the analysis to NHEFS individuals with known sex, age, race, weight, height, education, alcohol use and intensity of smoking at the baseline (1971-75) and follow-up (1982) visits, and who answered the medical history questionnaire at baseline. In the last two chapters we have applied IP weighting and standardization to estimate the average causal effect of smoking cessation (the treatment) A on weight gain (the outcome) Y. To do so, we used data from 1566 cigarette smokers aged 25-74 years who were classified as treated A = 1 if they quit smoking, and as untreated A = 0 otherwise. We assumed that exchangeability of the treated and the untreated was achieved conditional on the \(\mathcal{I} \) variables: sex, age, race, education, intensity and duration of smoking, physical activity in daily life, recreational exercise, and weight. We defined the average causal effect on the difference scale as \(E[Y^{a=1,c=0}] - E[Y^{a=0,c=0}] \), that is, the difference in mean weight that would have been observed if everybody had been treated and uncensored compared with untreated and uncensored.

The quantity \(E[Y^{a=1,c=0}] - E[Y^{a=0,c=0}] \) measures the average causal effect in the entire population. But sometimes one can be interested in the average causal effect in a subset of the population. For example, one may want to estimate the average causal effect in women—\(E[Y^{a=1,c=0}|\text{woman}] - E[Y^{a=0,c=0}|\text{woman}] \)—, in individuals aged 45, in those with low educational level, etc. To estimate the effect in a subset of the population one can use marginal structural models with product terms (see Chapter 12) or apply standardization to that subset only (Chapter 13).

Suppose that the investigator is interested in estimating the causal effect of smoking cessation A on weight gain Y in each of the strata defined by combinations of values of the variables \(L \). In our example, there are many such strata. One of them is the stratum {non-quitter, male, white, age 26, college dropout, 15 cigarettes/day, 12 years of smoking habit, moderate exercise, very active, weight 112 kg}. As described in Chapter 4, investigators could partition
the study population into mutually exclusive subsets or non-overlapping strata, each of them defined by a particular combination of values \(l \) of the variables in \(L \), and then estimate the average causal effect in each of the strata. In Section 12.5 we explain that an alternative approach is to add all variables \(L \), together with product terms between each component of \(L \) and treatment \(A \), to the marginal structural model. Then the stabilized weights \(SW^A(L) \) equal 1 and no IP weighting is necessary because the (unweighted) outcome regression model, if correctly specified, fully adjusts for all confounding by \(L \) (see Chapter 15).

In this chapter we will use g-estimation to estimate the average causal effect of smoking cessation \(A \) on weight gain \(\varphi \) in each strata defined by the covariates \(L \). This conditional effect is represented by

\[
E[\varphi \mid A = 0] - E[\varphi \mid A = 0, c = 0] | L
\]

Before describing g-estimation, we will present structural nested models and rank preservation, and, in the next section, articulate the condition of exchangeability given \(L \) in a new way.

14.2 Exchangeability revisited

You may find the first paragraph of this section repetitious and unnecessary given our previous discussions of conditional exchangeability. If that is the case, we could not be happier.

As a reminder (see Chapter 2), in our example, conditional exchangeability implies that, in any subset of the study population in which all individuals have the same values of \(L \), those who did not quit smoking \((A = 0)\) would have had the same mean weight gain as those who did quit smoking \((A = 1)\) if they had not quit, and vice versa. In other words, conditional exchangeability means that the outcome distribution in the treated and the untreated would be the same if both groups had received the same treatment level. When the distribution of the outcomes \(Y^a \) under treatment level \(a \) is the same for the treated and the untreated, each of the counterfactual outcomes \(Y^a \) is independent of the actual treatment level \(A \), within levels of the covariates, or \(Y^a \perp\!\!\!\perp A | L \) for both \(a = 1 \) and \(a = 0 \).

Take the counterfactual outcome under no treatment \(Y^a=0 \). When conditional exchangeability holds, knowing the value of \(Y^a=0 \) does not help differentiate between quitters and nonquitters with a particular value of \(L \). That is, the conditional (on \(L \)) probability of being a quitter is the same for all values of the counterfactual outcome \(Y^a=0 \). Mathematically, we write

\[
Pr[A = 1 | Y^a=0, L] = Pr[A = 1 | L]
\]

which is an equivalent definition of conditional exchangeability for a dichotomous treatment \(A \).

Expressing conditional exchangeability in terms of the conditional probability of treatment will be helpful when we describe g-estimation later in this chapter. Specifically, suppose we propose the following parametric logistic model for the probability of treatment

\[
\logit Pr[A = 1 | Y^a=0, L] = \alpha_0 + \alpha_1 Y^a=0 + \alpha_2 L
\]

where \(\alpha_2 \) is a vector of parameters, one for each component of \(L \). If \(L \) has \(p \) components \(L_1, \ldots, L_p \) then \(\alpha_2 L = \sum_{j=1}^{p} \alpha_{2j} L_j \). This model is the same one we used to estimate the denominator of the IP weights in Chapter 12, except that this model also includes the counterfactual outcome \(Y^a=0 \) as a covariate.

Of course, we can never fit this model to a real data set because we do not know the value of the variable \(Y^a=0 \) for all individuals. But suppose for
Robins (1991) first described the class of structural nested models. These models are “nested” when the treatment is time-varying. See Part III for an explanation.

14.3 Structural nested mean models

We are interested in estimating the average causal effect of treatment A within levels of L, that is, $E[Y^{a=1}|L] - E[Y^{a=0}|L]$. (For simplicity, suppose there is no censoring until later in this section.) Note that we can also represent this effect by $E[Y^{a=1} - Y^{a=0}|L]$ because the difference of the means is equal to the mean of the differences. If there were no effect-measure modification by L, these differences would be constant across strata, i.e., $E[Y^{a=1} - Y^{a=0}|L] = \beta_1$ where β_1 would be the average causal effect in each stratum and also in the entire population. Our structural model for the conditional causal effect would be $E[Y^a - Y^{a=0}|L] = \beta_1 a$.

More generally, there may be effect modification by L. For example, the causal effect of smoking cessation may be greater among heavy smokers than among light smokers. To allow for the causal effect to depend on L we can add a product term to the structural model, i.e., $E[Y^a - Y^{a=0}|L] = \beta_1 a + \beta_2 aL$, where β_2 is a vector of parameters. Under conditional exchangeability $Y^a \perp L|A$, the conditional effect will be the same in the treated and in the untreated because the treated and the untreated are, on average, the same type of people within levels of L. Thus, under exchangeability, the structural model can also be written as

$$E[Y^a - Y^{a=0}|A = a, L] = \beta_1 a + \beta_2 aL$$

which is referred to as a structural nested mean model. The parameters β_1 and β_2 (again, a vector), which are estimated by g-estimation, quantify the average causal effect of smoking cessation A on Y within levels of A and L.

In Chapter 13 we considered parametric models for the mean outcome Y that, like structural nested models, were also conditional on treatment A and covariates L. Those outcome models were the basis for standardization when estimating the parametric g-formula. In contrast with those parametric models, structural nested models are semiparametric because they are agnostic about both the intercept and the main effect of L—that is, there is no parameter β_0 and no parameter β_2 for a term $\beta_2 L$. As a result of leaving these parameters unspecified, structural nested models make fewer assumptions and can be more robust to model misspecification than the parametric g-formula. See Fine Point 14.1 for a description of the relation between structural nested models and the marginal structural models of Chapter 12.

In the presence of censoring, our causal effect of interest is not $E[Y^{a=1} - Y^{a=0}|A, L]$ but $E[Y^{a=1,L=0} - Y^{a=0,L=0} | A, L]$, that is, the average causal effect if everybody had remained uncensored. Estimating this difference requires adjustment for both confounding and selection bias (due to censoring $C = 1$) for the effect of treatment A. As described in the previous two chapters, IP
Relation between marginal structural models and structural nested models. Consider a marginal structural mean model for the average outcome under treatment level a within levels of the dichotomous covariate V, a component of L,

$$E[Y^a|V] = \beta_0 + \beta_1 a + \beta_2 a V + \beta_3 V$$

The sum $\beta_1 + \beta_2 V$ is the average causal effect $E[Y^{a=1} - Y^{a=0}|V = v]$ in the stratum $V = v$, and the sum $\beta_0 + \beta_3 V$ is the mean counterfactual outcome under no treatment $E[Y^{a=0}|V = v]$ in the stratum $V = v$. Suppose the only inferential goal is the average causal effect $\beta_1 + \beta_2 V$, i.e., we are not interested in estimating $\beta_0 + \beta_3 V$. Then we would write the model as

$$E[Y^a - Y^{a=0}|V] = \beta_1 a + \beta_2 a V$$

which is referred to as a semiparametric marginal structural mean model because, unlike the marginal structural models in Chapter 12, leaves the mean counterfactual outcomes under no treatment $E[Y^{a=0}|V]$ completely unspecified.

To estimate the parameters of this semiparametric marginal structural model in the absence of censoring, we first create a pseudo-population with IP weights $SW^A(V) = f(A|V) / f(A|L)$. In this pseudo-population there is only confounding by V and therefore the semiparametric marginal structural model is a structural nested model whose parameters are estimated by g-estimation with V substituted by L and each individual’s contribution weighted by $SW^A(V)$. Therefore, in settings without time-varying treatments, structural nested models are identical to semiparametric marginal structural models that leave the mean counterfactual outcomes under no treatment unspecified. Because marginal structural mean models include more parameters than structural nested mean models, the latter may be more robust to model misspecification.

Consider the special case of a semiparametric marginal structural mean model within levels of all variables in L, rather than only a subset V so that $SW^A(V)$ are equal to 1 for all individuals. That is, let us consider the model $E[Y^{a} - Y^{a=0}|L] = \beta_1 a + \beta_2 a L$, which we refer to as a faux semiparametric marginal structural model. Under conditional exchangeability, this model is the structural nested mean model we use in this chapter.
Technical Point 14.1

Multiplicative structural nested mean models. In the text we only consider additive structural nested mean models. When the outcome variable Y can only take positive values, a multiplicative structural nested mean model is preferred. An example of a multiplicative structural nested mean model is

$$\log \left(\frac{E[Y^a|A = a, L]}{E[Y^a=0|A = a, L]} \right) = \beta_1 a + \beta_2 L$$

which can be fit by g-estimation with $H(\psi^1)$ defined to be $Y \exp \left[-\psi^1 a - \psi^2 L \right]$.

The above multiplicative model can also be used for binary (0, 1) outcome variables as long as the probability of $Y = 1$ is small in all strata of L. Otherwise, the model might predict probabilities greater than 1. If the probability is not small, one can consider a structural nested logistic model for a dichotomous outcome Y such as

$$\log \text{Pr}[Y^a = 1|A = a, L] - \log \text{Pr}[Y^a=0 = 1|A = a, L] = \beta_1 a + \beta_2 L$$

Unfortunately, structural nested logistic models do not generalize easily to time-varying treatments and their parameters cannot be estimated using the g-estimation algorithm described in the text. For details, see Robins (1999) and Tchetgen Tchetgen and Rotnitzky (2011).

Unlike IP weighting, g-estimation cannot be easily extended to estimate the parameters of structural logistic models for dichotomous outcomes. See Technical Point 14.1.

In this chapter we will use g-estimation of a structural nested mean model to estimate the effect of the dichotomous treatment “smoking cessation”, but structural nested models can also be used for continuous treatment variables—like “change in smoking intensity” (see Chapter 12). For continuous variables, the model needs to specify the dose-response function for the effect of treatment A on the mean outcome Y. For example, $E[Y^a - Y^a=0|A = a, L] = \beta_1 a + \beta_2 a^2 + \beta_3 aL + \beta_4 a^2L$, or $E[Y^a - Y^a=0|A = a, L]$ could be a smooth function, e.g., splines, of A and L.

We now turn our attention to the concept of rank preservation, which will help us describe g-estimation of structural nested models.

14.4 Rank preservation

CODE: Program 14.1

In our smoking cessation example, all individuals can be ranked according to the value of their observed outcome Y. Subject 23522 is ranked first with weight gain of 48.5 kg, individual 6928 is ranked second with weight gain 47.5 kg, and individual 23321 is ranked last with weight gain of -41.3 kg. Similarly we could think of ranking all individuals according to the value of their counterfactual outcome under treatment $Y^a=1$ if the value of $Y^a=1$ were known for all individuals rather than only for those who were actually treated. Suppose for a second that we could actually rank everybody according to $Y^a=1$ and also according to $Y^a=0$. We would then have two lists of individuals ordered from larger to smaller value of the corresponding counterfactual outcome. If both lists are in identical order we say that there is rank preservation.

When the effect of treatment A on the outcome Y is exactly the same, on the additive scale, for all individuals in the study population, we say that additive rank preservation holds. For example, if smoking cessation increases everybody’s body weight by exactly 3 kg, then the ranking of individuals according to $Y^a=0$ would be equal to the ranking according to $Y^a=1$, except...
that in the latter list all individuals will be 3 kg heavier. A particular case of additive rank preservation occurs when the sharp null hypothesis is true (see Chapter 1), i.e., if treatment has no effect on the outcomes of any individual in the study population. For the purposes of structural nested mean models we will care about additive rank preservation within levels of \(L \). This conditional additive rank preservation holds if the effect of treatment \(A \) on the outcome \(Y \) is exactly the same for all individuals with the same values of \(L \).

An example of an (additive conditional) rank-preserving structural model is

\[
Y_i^a - Y_i^{a=0} = \psi_1 a + \psi_2 a L_i \quad \text{for all individuals } i
\]

where \(\psi_1 + \psi_2 l \) is the constant causal effect for all individuals with covariate values \(L = l \). That is, for every individual \(i \) with \(L = l \), the value of \(Y_i^{a=1} \) is equal to \(Y_i^{a=0} + \psi_1 + \psi_2 l \). An individual’s counterfactual outcome under no treatment \(Y_i^{a=0} \) is shifted by \(\psi_1 + \psi_2 l \) to obtain the value of her counterfactual outcome under treatment.

Figure 14.1 shows an example of additive rank preservation within the stratum \(L = l \). The bell-shaped curves represent the distribution of the counterfactual outcomes \(Y^{a=0} \) (left curve) and \(Y^{a=1} \) (right curve). The two dots in the upper part of the figure represent the values of the two counterfactual outcomes for individual \(i \), and the two dots in the lower part represent the values of the two counterfactual outcomes for individual \(j \). The arrows represent the shifts from \(Y^{a=0} \) to \(Y^{a=1} \), which are equal to \(\psi_1 + \psi_2 l \) for all individuals in this stratum. Figure 14.2 shows an example of rank preservation within another stratum \(L = l' \). The distribution of the counterfactual outcomes is different from that in stratum \(L = l \). For example, the mean of \(Y^{a=0} \) in Figure 14.1 is to the left of the mean of \(Y^{a=0} \) in Figure 14.2, which means that, on average, individuals in stratum \(L = l \) have a smaller weight gain under no smoking cessation than individuals in stratum \(L = l' \). The shift from \(Y^{a=0} \) to \(Y^{a=1} \) is \(\psi_1 + \psi_2 l' \) for all individuals with \(L = l' \), as shown for individuals \(p \) and \(q \).

For most treatments and outcomes, the individual causal effect is not expected to be constant—not even approximately constant—across individuals with the same covariate values, and thus (additive conditional) rank preservation is scientifically implausible. In our example we do not expect that smoking cessation affects equally the body weight of all individuals with the same values of \(L \). Some people are—genetically or otherwise—more susceptible to the effects of smoking cessation than others, even within levels of the covariates \(L \). The individual causal effect of smoking cessation will vary across people: after quitting smoking some individuals will gain a lot of weight, some will gain little, and others may even lose some weight. Reality may look more like the situation depicted in Figure 14.3, in which the shift from \(Y^{a=0} \) to \(Y^{a=1} \) varies across individuals with the same covariate values, and even ranks are not preserved since the outcome for individual \(i \) is less than that for individual \(j \) when \(a = 0 \) but not when \(a = 1 \).

Because of the implausibility of rank preservation, one should not generally use methods for causal inference that rely on it. In fact none of the methods we consider in this book require rank preservation. For example, the marginal structural mean models from Chapter 12 are models for average causal effects, not for individual causal effects, and thus they do not assume rank preservation. The estimated average causal effect of smoking cessation on weight gain was 3.5 kg (95% confidence interval: 2.5, 4.5). This average effect is agnostic as to whether rank preservation of individual causal effects holds. Similarly, the structural nested mean model in the previous section made no assumptions about rank preservation.
The additive rank-preserving model in this section makes a much stronger assumption than non-rank-preserving models: the assumption of constant treatment effect for all individuals with the same value of L. There is no reason why we would want to use such an unrealistic rank-preserving model in practice. And yet we use it in the next section to introduce g-estimation because g-estimation is easier to understand for rank-preserving models, and because the g-estimation procedure is actually the same for rank-preserving and non-rank-preserving models. Note that the (conditional additive) rank-preserving structural model is a structural mean model—the mean of the individual shifts from $Y^{a=0}$ to $Y^{a=1}$ is equal to each of the individual shifts within levels of L.

14.5 G-estimation

This section links the material in the previous three sections. Suppose the goal is estimating the parameters of the structural nested mean model $E[Y^{a} - Y^{a=0} | A = a, L] = \beta_1 a$. For simplicity, we first consider a model with a single parameter β_1. Because the model lacks product terms $\beta_2 aL$, we are effectively assuming that the average causal effect of smoking cessation is constant across strata of L, i.e., no effect modification by L.

We also assume that the additive rank-preserving model $Y^{a=0} = \psi_1 a$ is correctly specified for all individuals i. Then the individual causal effect ψ_1 is equal to the average causal effect β_1 in which we are interested. We write the rank-preserving model as $Y^{a} - Y^{a=0} = \psi_1 a$, without a subscript i to index individuals because the model is the same for all individuals. For reasons that will soon be obvious, we write the model in the equivalent form

$$Y^{a=0} = Y^{a} - \psi_1 a$$

The first step in g-estimation is linking the model to the observed data. To do so, remember that an individual’s observed outcome Y is, by consistency, the counterfactual outcome $Y^{a=1}$ if the person received treatment $A = 1$ or the counterfactual outcome $Y^{a=0}$ if the person received no treatment $A = 0$. Therefore, if we replace the fixed value a in the structural model by each individual’s value A—which will be 1 for some and 0 for others—then we can replace the counterfactual outcome Y^{a} by the individual’s observed outcome $Y^{A} = Y$. The rank-preserving structural model then implies an equation in which each individual’s counterfactual outcome $Y^{a=0}$ is a function of his observed data on treatment and outcome and the unknown parameter ψ_1:

$$Y^{a=0} = Y - \psi_1 A$$

If this model were correct and we knew the value of ψ_1 then we could calculate the counterfactual outcome under no treatment $Y^{a=0}$ for each individual in the study population. But we don’t know ψ_1. Estimating it is precisely the goal of our analysis.

Let us play a game. Suppose a friend of yours knows the value of ψ_1 but he only tells you that ψ_1 is one of the following: $\psi_1 = -20$, $\psi_1 = 0$, or $\psi_1 = 10$. He challenges you: “Can you identify the true value ψ_1 among the 3 possible values ψ_1?” You accept the challenge. For each individual, you compute

$$H(\psi_1) = Y - \psi_1 A$$
for each of the three possible values ψ^\dagger. The newly created variables $H(-20)$, $H(0)$, and $H(10)$ are candidate counterfactuals. Only one of them is the counterfactual outcome $Y_{a=0}$. More specifically, $H(\psi^\dagger) = Y_{a=0}$ if $\psi^\dagger = \psi_1$. In this game, choosing the correct value of ψ_1 is equivalent to choosing which one of the three candidate counterfactuals $H(\psi^\dagger)$ is the true counterfactual $Y_{a=0} = H(\psi_1)$. Can you think of a way to choose the right $H(\psi^\dagger)$?

Remember from Section 14.2 that the assumption of conditional exchangeability can be expressed as a logistic model for treatment given the counterfactual outcome and the covariates L. When conditional exchangeability holds, the parameter α_1 for the counterfactual outcome should be zero. So we have a simple method to choose the true counterfactual out of the three variables $H(\psi^\dagger)$. We fit three separate logistic models

$$
\logit \Pr[A = 1|H(\psi^\dagger), L] = \alpha_0 + \alpha_1 H(\psi^\dagger) + \alpha_2 L,
$$

one per each of the three candidates $H(\psi^\dagger)$. The candidate $H(\psi^\dagger)$ with $\alpha_1 = 0$ is the counterfactual $Y_{a=0}$, and the corresponding ψ^\dagger is the true value ψ_1. For example, suppose that $H(\psi^\dagger = 10)$ is unassociated with treatment A given the covariates L. Then our estimate $\hat{\psi}_1$ of ψ_1 is 10. We are done. That was g-estimation.

In practice, however, we need to g-estimate the parameter ψ_1 in the absence of a friend who knows the right answer and likes to play games. Therefore we will need to search over all possible values ψ^\dagger until we find the one that results in an $H(\psi^\dagger)$ with $\alpha_1 = 0$. Because not all possible values can be tested—there is an infinite number of values ψ^\dagger in any given interval—we can conduct a fine search over the possible range of ψ^\dagger values (e.g., from -20 to 20 by increments of 0.01). The finer the search, the closer to the true estimate ψ_1 we will get, but also the greater the computational demands.

In our smoking cessation example, we first computed each individual’s value of the 31 candidates $H(2.0), H(2.1), H(2.2), \ldots H(4.9)$, and $H(5.0)$ for values ψ^\dagger between 2.0 and 5.0 by increments of 0.1. We then fit 31 separate logistic models for the probability of smoking cessation. These models were exactly like the one used to estimate the denominator of the IP weights in Chapter 12, except that we added to each model one of the 31 candidates $H(\psi^\dagger)$. The parameter estimate $\hat{\alpha}_1$ for $H(\psi^\dagger)$ was closest to zero for values $H(3.4)$ and $H(3.5)$. A finer search found that the minimum value of $\hat{\alpha}_1$ (which was essentially zero) was for $H(3.446)$. Thus, our g-estimate $\hat{\psi}_1$ of the average causal effect $\psi_1 = \beta_1$ of smoking cessation on weight gain is 3.4 kg.

To compute a 95% confidence interval around our g-estimate of 3.4, we used the P-value for a test of $\alpha_1 = 0$ in the logistic models fit above. As expected, the P-value was 1—it was actually 0.998—for $\psi^\dagger = 3.446$, which is the value ψ^\dagger that results in a candidate $H(\psi^\dagger)$ with a parameter estimate $\hat{\alpha}_1 = 0$. Of the 31 logistic models that we fit for ψ^\dagger values between 2.0 and 5.0, the P-value was greater than 0.05 in all models with $H(\psi^\dagger)$ based on ψ^\dagger values between approximately 2.5 and 4.5. That is, the test did not reject the null hypothesis at the 5% level for the subset of ψ^\dagger values between 2.5 and 4.5. By inverting the test results, we concluded that the limits of the 95% confidence interval around 3.4 are 2.5 and 4.5. Another option to compute the 95% confidence interval is bootstrapping of the g-estimation procedure.

More generally, the 95% confidence interval for a g-estimate is determined by finding the set of values of ψ^\dagger that result in a P-value > 0.05 when testing for $\alpha_1 = 0$. The 95% confidence interval is obtained by inversion of the statistical test for $\alpha_1 = 0$, with the limits of the 95% confidence interval being the limits

Rosenbaum (1987) proposed a version of this procedure for non-time-varying treatments.

Important: g-estimation does not test whether conditional exchangeability holds; it assumes that conditional exchangeability holds.

CODE: Program 14.2

We calculated the P-value from a Wald test. Any other valid test may be used. For example, we could have used a Score test, which simplifies the calculations (it doesn’t require fitting multiple models) and, in large samples, is equivalent to a Wald test.
Sensitivity analysis for unmeasured confounding. G-estimation relies on the fact that $\alpha_1 = 0$ if conditional exchangeability given L holds. Now consider a setting in which conditional exchangeability does not hold. For example, suppose that the probability of quitting smoking A is lower for individuals whose spouse is a smoker, and that the spouse’s smoking status is associated with important determinants of weight gain Y not included in L. That is, there is unmeasured confounding by spouse’s smoking status. Because now the variables in L are insufficient to achieve exchangeability of the treated and the untreated, the treatment A and the counterfactual $Y^{a=0}$ are associated conditional on L. That is, $\alpha_1 \neq 0$ and we cannot apply g-estimation as described in the main text.

But g-estimation does not require that $\alpha_1 = 0$. Suppose that, because of unmeasured confounding by the spouse’s smoking status, α_1 is expected to be 0.1 rather than 0. Then we can apply g-estimation as described in the text except that we will test whether $\alpha_1 = 0.1$ rather than whether $\alpha_1 = 0$. G-estimation does not require that conditional exchangeability given L holds, but that the magnitude of nonexchangeability—the value of α_1—is known. This property of g-estimation can be used to conduct sensitivity analyses for unmeasured confounding.

If we believe that L may not sufficiently adjust for confounding, then we can repeat our g-estimation analysis under different scenarios of unmeasured confounding, represented by a range of values of α_1, and plot the effect estimates under each of them. Such plot shows how sensitive our effect estimate is to unmeasured confounding of different direction and magnitude. One practical problem for this approach is how to quantify the unmeasured confounding on exchangeability of the treated and the untreated, the treatment A and the counterfactual $Y^{a=0}$ are associated conditional on L. That is, $\alpha_1 \neq 0$ and we cannot apply g-estimation as described in the main text.

In the presence of censoring, the fit of the logistic models is necessarily restricted to uncensored individuals ($C = 0$), and the contribution of each individual is weighted by the estimate of his/her IP weight SW^C. See Technical Point 14.2.

of the set of values ψ with P-value > 0.05. In our example, the statistical test was based on a robust variance estimator because of the use of IP weighting to adjust for censoring. Therefore our 95% confidence interval is conservative in large samples, i.e., it will trap the true value at least 95% of the time. In large samples, bootstrapping would result in a non-conservative, and thus possibly narrower, 95% confidence interval for the g-estimate.

Back to non-rank-preserving models. The g-estimation algorithm (i.e., the computer code implementing the procedure) for ψ_1 produces a consistent estimate of the parameter β_1 of the mean model, assuming the mean model is correctly specified (that is, if the average treatment effect is equal in all levels of L). This is true regardless of whether the individual treatment effect is constant, that is, regardless of whether the conditional additive rank preservation holds. In other words, the validity of the g-estimation algorithm does not actually require that $H(\beta_1) = Y^{a=0}$ for all individuals, where β_1 is the parameter value in the mean model. Rather, the algorithm only requires that $H(\beta_1)$ and $Y^{a=0}$ have the same conditional mean given L.

Interestingly, the above g-estimation procedure can be readily modified to incorporate a sensitivity analysis for unmeasured confounding, as described in Fine Point 14.2.

14.6 Structural nested models with two or more parameters

We have so far considered a structural nested mean model with a single parameter β_1. The lack of product terms β_2aL implies that we believe that the average causal effect of smoking cessation does not vary across strata of L. The structural nested model will be misspecified—and thus our causal inferences will be wrong—if there is indeed effect modification by some components V of
As discussed in Chapter 12, a desirable property of marginal structural models is null preservation: when the null hypothesis of no average causal effect is true, the model is never misspecified. Structural nested models preserve the null too. In contrast, although the g-formula preserves the null for time-fixed treatments, it loses this property in the time-varying setting (see Part III).

The Nelder-Mead Simplex method is an example of a directed search method.

CODE: Program 14.3

You may argue that structural nested models with multiple parameters may not be necessary. If all variables \(L \) are discrete and the study population is large, one could fit separate 1-parameter models to each subset of the population defined by a combination of values of \(L \). True for fixed treatments \(A \), but not true for the time-varying treatments we will discuss in Part III.

\(L \) but we failed to add a product term \(\beta_2 a V \). This is in contrast with marginal structural models, which are not misspecified if we fail to add terms \(\beta_2 a V \) and \(\beta_3 V \) even if there is effect modification by \(V \). Marginal structural models that do not condition on \(V \) estimate the average causal effect in the population, whereas those that condition on \(V \) estimate the average causal effect within levels of \(V \). Structural nested models estimate, by definition, the average causal effect within levels of the confounders \(L \), not the average causal effect in the population. Omitting product terms in structural nested models when there is effect modification will generally lead to bias due to model misspecification.

Fortunately, the g-estimation procedure described in the previous section can be generalized to models with product terms. For example, suppose we believe that the average causal effect of smoking cessation depends on the baseline level of smoking intensity \(V \). We may then consider the structural nested mean model \(E[Y^a - Y^{a=0}|A = a, L] = \beta_1 a + \beta_2 a V \) and, for g-estimation purposes, the corresponding rank-preserving model \(Y^a - Y^{a=0} = \psi_1 a + \psi_2 a V \). Because the structural model has two parameters, \(\psi_1 \) and \(\psi_2 \), we also need to include two parameters in the IP weighted logistic model for \(Pr[A = 1|H(\psi^f), L] \) with \(\psi^f = (\psi_1, \psi_2) \). For example, we could fit the logistic model

\[
\logit Pr[A = 1|H(\psi^f), L] = \alpha_0 + \alpha_1 H(\psi^f) + \alpha_2 H(\psi^f) V + \alpha_3 L
\]

and find the combination of values of \(\psi_1^f \) and \(\psi_2^f \) that result in a \(H(\psi^f) \) that is independent of treatment \(A \) conditional on the covariates \(L \). That is, we need to search the combination of values \(\psi_1^f \) and \(\psi_2^f \) that make both \(\alpha_1 \) and \(\alpha_2 \) equal to zero.

Because the model has two parameters, the search must be conducted over a two-dimensional space. Thus a systematic, brute force search will be more involved than that described in the previous section. Less computationally intensive approaches, known as directed search methods, for approximate searching are available in statistical software. For linear mean models like the one discussed here—but not, for example, for certain survival analysis models—the estimate can be directly calculated using a formula, i.e., the estimator has closed form and a search over the possible values of the parameters is not necessary (see Technical Point 14.2 for details). In our smoking cessation example, the g-estimates were \(\hat{\psi}_1 = 2.86 \) and \(\hat{\psi}_2 = 0.03 \). The corresponding 95% confidence intervals can be calculated by using the P-value of a joint test for \(\alpha_1 = \alpha_2 = 0 \) or, more simply, by bootstrapping.

In the more general case, we would consider a model that allows the average causal effect of smoking cessation to vary across all strata of the variables in \(L \). For dichotomous variables, the corresponding rank-preserving model \(Y_i^a - Y_i^{a=0} = \psi_1 a + a \sum_{j=1}^p \psi_{2j} L_j \) has \(p + 1 \) parameters \(\psi_1, \psi_{21}, \ldots, \psi_{2p} \), where \(\psi_{2j} \) is the parameter corresponding to the product term \(a L_j \) and \(L_j \) represents one of the \(p \) components of \(L \). The average causal effect in the entire study population can then be calculated as \(\hat{\psi}_1 + \frac{1}{n} \sum_{j=1}^p \psi_{2j} L_j \), where \(n \) is the number of individuals in the study. In practice, structural nested models with multiple parameters have rarely been used.

In fact, structural nested models of any type have rarely been used, partly because of the lack of user-friendly software and partly because the extension of these models to survival analysis requires some additional considerations (see Chapter 17). We now review two methods that are arguably the most commonly used approaches to adjust for confounding: outcome regression and propensity scores.
G-estimation of structural nested mean models. Consider the structural nested model $E[Y^a - Y^{a=0} | A = a, L] = \beta_1 a$. A consistent estimate of β_1 can be obtained by g-estimation under the assumptions described in the text. Specifically, our estimate of β_1 is the value of $H(\psi^1)$ that minimizes the association between $H(\psi^1)$ and A. When we base our g-estimate on the score test (see, for example, Casella and Berger 2002), this procedure is equivalent to finding the parameter value ψ^1 that solves the estimating equation

$$
\sum_{i=1}^n I[C_i = 0] W_i^C H_i(\psi^1) (A_i - E[A|L_i]) = 0
$$

where the indicator $I[C_i = 0]$ takes value 1 for individual i if $C_i = 0$ and takes value 0 otherwise, and the IP weight W_i^C and the expectation $E[A|L_i]$ are replaced by their estimates. $E[A|L_i]$ can be estimated from a logistic model for treatment conditional on the covariates L in which individual i contribution is weighted by W_i^C if $C_i = 0$ and it is zero otherwise. [Because A and L are observed on all individuals, we could also estimate $E[A|L_i]$ by an unweighted logistic regression of A on L using all individuals.]

The solution to the equation has a closed form and can therefore be calculated directly, i.e., no search over the parameter space is required. Specifically, using the fact that $H_i(\psi^1) = Y_i - \psi^1 A_i$ we obtain that ψ_1 equals

$$
\sum_{i=1}^n I[C_i = 0] W_i^C Y_i (A_i - E[A|L_i]) / \sum_{i=1}^n I[C_i = 0] W_i^C A_i (A_i - E[A|L_i])
$$

If ψ is D-dimensional, we multiply the left-hand side of the estimating equation by a D-dimensional vector function of L. The choice of the function affects the statistical efficiency of the estimator, but not its consistency. That is, although all choices of the function will result in valid confidence intervals, the length of the confidence interval will depend on the function. Robins (1994) provided a formal description of structural nested mean models, and derived the function that minimizes confidence interval length.

A natural question is whether we can further increase efficiency by replacing $H_i(\psi^1)$ by a nonlinear function, such as $[H_i(\psi^1)]^3$, in the above estimating equation and still preserve consistency of the estimate. Nonlinear functions of $H_i(\psi^1)$ can be used in our estimating equation for models that, like the structural nested mean models described in this chapter, require only mean independence conditional on L, i.e., $E[H(\beta_i)|A,L] = E[H(\beta_i)|L]$, for identification. Nonlinear functions of $H_i(\psi^1)$ cannot be used for models that require distributional independence, i.e., $H(\beta_i) \perp A|L$, like structural nested distribution models (not described in this chapter) that map percentiles of the distribution of Y^a given $(A = a, L)$ into percentiles of the distribution of $Y^{a=0}$ given $(A = a, L)$.

The estimator of ψ is consistent only if the models used to estimate $E[A|L]$ and $Pr[C = 1|A,L]$ are both correct. We can construct a more robust estimator by replacing $H(\psi^1)$ by $H(\psi^1) - E[H(\psi^1)|L]$ in the estimating equation, and then estimating the latter conditional expectation by fitting an unweighted linear model for $E[H(\psi^1)|L] = E[Y^{a=0}|L]$ among the uncensored individuals. If this model is correct then the estimate of ψ solving the modified estimating equation remains consistent even if both the above models for $E[A|L]$ and $Pr[C = 1|A,L]$ are incorrect. Thus we obtain a consistent estimator of ψ if either (i) the model for $E[H(\psi^1)|L]$ or (ii) both models for $E[A|L]$ and $Pr[C = 1|A,L]$ are correct, without knowing which of (i) or (ii) is correct. We refer to such an estimator as being doubly robust. Robins (2000) described a closed-form of the doubly robust estimator for the linear structural nested mean model.
Chapter 15
OUTCOME REGRESSION AND PROPENSITY SCORES

Outcome regression and various versions of propensity score analyses are the most commonly used parametric methods for causal inference. You may rightly wonder why it took us so long to include a chapter that discusses these methods. So far we have described IP weighting, the g-formula, and g-estimation—the g-methods. Presenting the most commonly used methods after the least commonly used ones seems an odd choice on our part. Why didn’t we start with the simpler and widely used methods based on outcome regression and propensity scores? Because these methods do not work in general.

More precisely, the simpler outcome regression and propensity score methods—as described in a zillion publications that this chapter cannot possibly summarize—work fine in simpler settings, but these methods are not designed to handle the complexities associated with causal inference for time-varying treatments. In Part III we will again discuss IP weighting, the g-formula, and g-estimation but will say less about conventional outcome regression and propensity score methods. This chapter is devoted to causal methods that are commonly used but have limited applicability for complex longitudinal data.

15.1 Outcome regression

Reminder: We defined the average causal effect as $E[Y_{a=1,c=0}] - E[Y_{a=0,c=0}]$. We assumed that exchangeability of the treated and the untreated was achieved conditional on the L variables sex, age, race, education, intensity and duration of smoking, physical activity in daily life, recreational exercise, and weight.

In Chapter 12, we referred to this model as a faux marginal structural model because it has the form of a marginal structural model but IP weighting is not required to estimate its parameters. The stabilized IP weights $SW^A(L)$ are all equal to 1 because the model is conditional on the entire vector L rather than on a subset V of L.

In the last three chapters we have described IP weighting, standardization, and g-estimation to estimate the average causal effect of smoking cessation (the treatment) A on weight gain (the outcome) Y. We also described how to estimate the average causal effect within subsets of the population, either by restricting the analysis to the subset of interest or by adding product terms in marginal structural models (Chapter 12) and structural nested models (Chapter 14). Take structural nested models. These models include parameters for the product terms between treatment A and the variables L, but no parameters for the variables L themselves. This is an attractive property of structural nested models because we are interested in the causal effect of A on Y within levels of L but not in the (noncausal) relation between L and Y. A method—g-estimation of structural nested models—that is agnostic about the functional form of the L-Y relation is protected from bias due to misspecifying this relation.

On the other hand, if we were willing to specify the L-Y association within levels of A, we would consider the structural model

$$E[Y_{a,c=0}|L] = \beta_0 + \beta_1 a + \beta_2 aL + \beta_3 L$$

where β_2 and β_3 are vector parameters. The average causal effects of smoking cessation A on weight gain Y in each stratum of L are a function of β_1 and β_2, the mean counterfactual outcomes under no treatment in each stratum of L are a function of β_0 and β_3. The parameter β_3 is usually referred as the main effect of L, but the use of the word effect is misleading because β_3 may not have an interpretation as the causal effect of L (there may be confounding for L). The parameter β_3 simply quantifies how the mean of the counterfactual $Y_{a=0,c=0}$ varies as a function of L, as we can see in our structural model.
Nuisance parameters. Suppose our goal is to estimate the causal parameters β_1 and β_2. If we do so by fitting the outcome regression model $E[Y^{a,c=0}|L] = \beta_0 + \beta_1 a + \beta_2 aL + \beta_3 L$, our estimates of β_1 and β_2 will in general be consistent only if β_0 and $\beta_2 L$ correctly models the dependence of the mean $E[Y^{a=0,c=0}|L]$ on L. We refer to the parameters β_0 and β_2 as nuisance parameters because they are not our parameters of primary interest.

On the other hand, if we estimate β_1 and β_2 by g-estimation of the structural nested model $E[Y^{a,c=0} - Y^{a=0,c=0}|L] = \beta_1 a + \beta_2 aL$, then our estimates of β_1 and β_2 will in general be consistent only if the conditional probability of treatment given L, $\Pr[A = 1|L]$ is correct. That is, the parameters of the treatment model such as $\text{logit} \Pr[A = 1|L] = \alpha_0 + \alpha_1 L$ are now the nuisance parameters.

For example, bias would arise in the outcome regression model if a covariate L is modeled with a linear term $\beta_3 L$ when it should actually be linear and quadratic $\beta_3 L + \beta_4 L^2$. Structural nested models are not subject to misspecification of an outcome regression model because the L-Y relation is not specified in the structural model. However, bias would arise when using g-estimation of structural nested models if the L-A relation is misspecified in the treatment model. Symmetrically, outcome regression models are not subject to misspecification of a treatment model. For fixed treatments that do not vary over time, deciding what method to use boils down to deciding which nuisance parameters—those in the outcome model or in the treatment model—we believe can be more accurately estimated. When possible, a better alternative is to use doubly robust methods (see Fine Point 13.2).

Fine Point 15.1 for a discussion of parameters that, like β_0 and β_3, do not have a causal interpretation.

The counterfactual mean outcomes if everybody in stratum l of L had been treated and remained uncensored, $E[Y^{a=1,c=0}|L = l]$, are equal to the corresponding mean outcomes in the uncensored treated, $E[Y|A = 1, C = 0, L = l]$, under exchangeability, positivity, and well-defined interventions. And analogously for the untreated. Therefore the parameters of the above structural model can be estimated via ordinary least squares by fitting the outcome regression model

$$E[Y|A, C = 0, L] = \alpha_0 + \alpha_1 A + \alpha_2 AL + \alpha_3 L$$

as described in Section 13.2. Like stratification in Chapter 3, outcome regression adjusts for confounding by estimating the causal effect of treatment in each stratum of L. If the variables L are sufficient to adjust for confounding (and selection bias) and the outcome model is correctly specified, no further adjustment is needed. That is, the parameters α of the regression model equal the parameters β of the structural model.

In Section 13.2, outcome regression was an intermediate step towards the estimation of a standardized outcome mean. Here, outcome regression is the end of the procedure. Rather than standardizing the estimates of the conditional means to estimate a marginal mean, we just compare the conditional mean estimates. In Section 13.2, we fit a regression model with only one product term in β_2 (between A and smoking intensity). That is, a model in which we a priori set most product terms equal to zero. Using the same model as in Section 13.2, here we obtained the parameter estimates $\hat{\beta}_1 = 2.6$ and $\hat{\beta}_2 = 0.05$. As an example, the effect estimate $E[Y|A = 1, C = 0, L] - E[Y|A = 0, C = 0, L]$ was 2.8 (95% confidence interval: 1.5, 4.1) for those smoking 5 cigarettes/day, and 4.4 (95% confidence interval: 2.8, 6.1) for 40 cigarettes/day. A common approach to outcome regression is to assume that there is no effect modification by any variable in L. Then the model is fit without any product terms and $\hat{\beta}_1$ is an estimate of both the conditional and marginal average causal effects.
of treatment. In our example, a model without any product terms yielded the estimate 3.5 (95% confidence interval: 2.6, 4.3) kg.

In this chapter we did not need to explain how to fit an outcome regression model because we had already done it in Chapter 13 when estimating the components of the g-formula. It is equally straightforward to use outcome regression for discrete outcomes, e.g., for a dichotomous outcome \(Y \) one could fit a logistic model for \(\Pr \{Y = 1 | A = a, C = 0, L\} \).

15.2 Propensity scores

When using IP weighting (Chapter 12) and g-estimation (Chapter 14), we estimated the probability of treatment given the covariates \(L \), \(\Pr \{ A = 1 | L \} \), for each individual. Let us refer to this conditional probability as \(\pi(L) \). The value of \(\pi(L) \) is close to 0 for individuals who have a low probability of receiving treatment and is close to 1 for those who have a high probability of receiving treatment. That is, \(\pi(L) \) measures the propensity of individuals to receive treatment given the information available in the covariates \(L \). No wonder that \(\pi(L) \) is referred to as the *propensity score*.

In an ideal randomized trial in which half of the individuals are assigned to treatment \(A = 1 \), the propensity score \(\pi(L) = 0.5 \) for all individuals. Also note that \(\pi(L) = 0.5 \) for any choice of \(L \). In contrast, in observational studies some individuals may be more likely to receive treatment than others. Because treatment assignment is beyond the control of the investigators, the true propensity score \(\pi(L) \) is unknown, and therefore needs to be estimated from the data.

In our example, we can estimate the propensity score \(\pi(L) \) by fitting a logistic model for the probability of quitting smoking \(A \) conditional on the covariates \(L \). This is the same model that we used for IP weighting and g-estimation. Under this model, individual 22941 was estimated to have the lowest estimated propensity score (0.053), and individual 24949 the highest (0.793). Figure 15.1 shows the distribution of the estimated propensity score in quitters \(A = 1 \) (bottom) and nonquitters \(A = 0 \) (top). As expected, those who quit smoking had, on average, a greater estimated probability of quitting (0.312) than those who did not quit (0.245). If the distribution of \(\pi(L) \) were the same for the treated \(A = 1 \) and the untreated \(A = 0 \), then there would be no confounding due to \(L \), i.e., there would be no open path from \(L \) to \(A \) on a causal diagram.

Individuals with same propensity score \(\pi(L) \) will generally have different values of some covariates \(L \). For example, two individuals with \(\pi(L) = 0.2 \) may differ with respect to smoking intensity and exercise, and yet they may be equally likely to quit smoking given all the variables in \(L \). That is, both individuals have the same conditional probability of ending up in the treated group \(A = 1 \). If we consider all individuals with a given value of \(\pi(L) \) in the superpopulation, this group will include individuals with different values of \(L \) (e.g., different values of smoking intensity and exercise), but the distribution of \(L \) will be the same in the treated and the untreated, that is, \(A \perp L | \pi(L) \).

We say the propensity score balances the covariates between the treated and the untreated.

Of course, the propensity score only balances the measured covariates \(L \), which does not prevent residual confounding by unmeasured factors. Randomization balances both the measured and the unmeasured covariates, and thus
Balancing scores and prognostic scores. As discussed in the text, the propensity score $\pi(L)$ balances the covariates between the treated and the untreated. In fact, the propensity score $\pi(L)$ is the simplest example of a balancing score. More generally, a balancing score $b(L)$ is any function of the covariates L such that $A \perp L | b(L)$. That is, for each value of the balancing score, the distribution of the covariates L is the same in the treated and the untreated. Rosenbaum and Rubin (1983) proved that exchangeability and positivity based on the variables L implies exchangeability and positivity based on a balancing score $b(L)$. If it is sufficient to adjust for L, then it is sufficient to adjust for a balancing score $b(L)$, including the propensity score $\pi(L)$. The causal diagram in Figure 15.2 depicts the propensity score for the setting represented in Figure 7.1: the $\pi(L)$ can be viewed as an intermediate node between L and A with a deterministic arrow from L to $\pi(L)$.

An alternative to a balancing score $b(L)$ is a prognostic score $s(L)$, i.e., a function of the covariates L such that $Y^{a = 0} \perp L | s(L)$. Adjustment methods can be developed for both balancing scores and prognostic scores, but methods for prognostic scores require stronger assumptions and cannot be readily extended to time-varying treatments. See Hansen (2008) and Abadie et al (2013) for a discussion of prognostic scores.

If L is sufficient to adjust for confounding and selection bias, then $\pi(L)$ is sufficient too. This result was derived by Rosenbaum and Rubin in a seminal paper published in 1983.

Technical Point 15.1

it is the preferred method to eliminate confounding. See Technical Point 15.1 for a formal definition of a balancing score.

Like all methods for causal inference that we have discussed, the use of propensity score methods requires the identifying conditions of exchangeability, positivity, and consistency. The use of propensity score methods is justified by the following key result: Exchangeability of the treated and the untreated within levels of the covariates L implies exchangeability within levels of the propensity score $\pi(L)$. That is, conditional exchangeability $Y^{a = 0} \perp A | L$ implies $Y^{a = 0} \perp A | \pi(L)$.

Further, positivity within levels of the propensity score $\pi(L)$—which means that no individual has a propensity score equal to either 0 or 1—holds if and only if positivity within levels of the covariates L, as defined in Chapter 2, holds.

Under exchangeability and positivity within levels of the propensity score $\pi(L)$, the propensity score can be used to estimate causal effects using stratification (including outcome regression), standardization, and matching. The next two sections describe how to implement each of these methods. As a first step, we must start by estimating the propensity score $\pi(L)$ from the observational data and then proceeding to use the estimated propensity score in lieu of the covariates L for stratification, standardization, or matching.

15.3 Propensity stratification and standardization

The average causal effect among individuals with a particular value s of the propensity score $\pi(L)$, i.e., $E[Y^{a=1,c=0} | \pi(L) = s] - E[Y^{a=0,c=0} | \pi(L) = s]$ is equal to $E[Y | A = 1, C = 0, \pi(L) = s] - E[Y | A = 0, C = 0, \pi(L) = s]$ under the identifying conditions. This conditional effect might be estimated by restricting the analysis to individuals with the value s of the true propensity score. However, the propensity score $\pi(L)$ is a continuous variable that can take any value between 0 and 1. It is therefore unlikely that two individuals will have exactly the same value s. For example, only individual 22005 had an estimated $\pi(L)$ of 0.6563, which means that we cannot estimate the causal effect among individuals with $\pi(L) = 0.6563$ by comparing the treated and the untreated...
with that particular value.

One approach to deal with the continuous propensity score is to create strata that contain individuals with similar, but not identical, values of \(\pi(L) \). The deciles of the estimated \(\pi(L) \) is a popular choice: individuals in the population are classified in 10 strata of approximately equal size, then the causal effect is estimated in each of the strata. In our example, each decile contained approximately 162 individuals. The effect of smoking cessation on weight gain ranged across deciles from 0.0 to 6.6 kg, but the 95% confidence intervals around these point estimates were wide.

We could have also obtained these effect estimates by fitting an outcome regression model for \(E[Y|A, C = 0, \pi(L)] \) that included as covariates treatment \(A \), 9 indicators for the deciles of the estimated \(\pi(L) \) (one of the deciles is the reference level and is already incorporated in the intercept of the model), and 9 product terms between \(A \) and the indicators. Most applications of outcome regression with deciles of the estimated \(\pi(L) \) do not include the product terms, i.e., they assume no effect modification by \(\pi(L) \). In our example, a model without product terms yields an effect estimate of 3.5 kg (95% confidence interval: 2.6, 4.4). See Fine Point 15.2 for more on effect modification by the propensity score.

Stratification on deciles or other functions of the propensity score raises a potential problem: in general the distribution of the continuous \(\pi(L) \) will differ between the treated and the untreated within some strata (e.g., deciles). If, for example, the average \(\pi(L) \) were greater in the treated than in the untreated in some strata, then the treated and the untreated might not be exchangeable in those strata. This problem did not arise in previous chapters, when we used functions of the propensity score to estimate the parameters of structural models via IP weighting and g-estimation, because those methods used the numerical value of the estimated probability rather than a categorical transformation like deciles. Similarly, the problem does not arise when using outcome regression for \(E[Y|A, C = 0, \pi(L)] \) with the estimated propensity score \(\pi(L) \) as a continuous covariate rather than as a set of indicators. When we used this latter approach in our example the effect estimate was 3.6 (95% confidence interval: 2.7, 4.5) kg.

The validity of our inference depends on the correct specification of the relationship between \(\pi(L) \) and the mean outcome \(Y \) (which we assumed to be linear). However, because the propensity score is a one-dimensional summary of the multi-dimensional \(L \), it is easy to guard against misspecification of this relationship by fitting flexible models, e.g., cubic splines rather than a single linear term for the propensity score. Note that IP weighting and g-estimation were agnostic about the relationship between propensity score and outcome.

When our parametric assumptions for \(E[Y|A, C = 0, \pi(L)] \) are correct, plus exchangeability and positivity hold, the model estimates the average causal effects within all levels \(s \) of the propensity score \(E[Y^{s=1,c=0}|\pi(L) = s] - E[Y^{s=0,c=0}|\pi(L) = s] \). If we were interested in the average causal effect in the entire study population \(E[Y^{s=1,c=0}] - E[Y^{s=0,c=0}] \), we would standardize the conditional means \(E[Y|A, C = 0, \pi(L)] \) by using the distribution of the propensity score. The procedure is the same one described in Chapter 13 for continuous variables, except that we replace the variables \(L \) by the estimated \(\pi(L) \). Note that the procedure can naturally incorporate a product term between treatment \(A \) and the estimated \(\pi(L) \) in the outcome model. In our example, the standardized effect estimate was 3.6 (95% confidence interval: 2.7, 4.6) kg.

Caution: the denominator of the IP weights for a dichotomous treatment \(A \) is not the propensity score \(\pi(L) \), but a function of \(\pi(L) \). The denominator is \(\pi(L) \) for the treated \((A = 1) \) and \(1 - \pi(L) \) for the untreated \((A = 0) \).

The one-dimensional nature of the propensity score is not a panacea from a modeling standpoint. We still need to estimate the propensity score from a model that regresses treatment on a high-dimensional \(L \). The same applies to IP weighting and g-estimation.
15.4 Propensity matching

After propensity matching, the matched population has the \(\pi(L) \) distribution of the treated, of the untreated, or any other arbitrary distribution.

A drawback of matching used to be that nobody knew how to compute the variance of the effect estimate. That is no longer the case thanks to the work of Abadie and Imbens (2006).

The process of matching on the propensity score \(\pi(L) \) is analogous to matching on a single continuous variable \(L \), a procedure described in Chapter 4. There are many forms of propensity matching. All of them attempt to form a matched population in which the treated and the untreated are exchangeable because they have the same distribution of \(\pi(L) \). For example, one can match the untreated to the treated: each treated individual is paired with one (or more) untreated individuals with the same propensity score value. The subset of the original population comprised by the treated-untreated pairs (or sets) is the matched population. Under exchangeability and positivity given \(\pi(L) \), association measures in the matched population are consistent estimates of effect measures, e.g., the associational risk ratio in the matched population consistently estimates the causal risk ratio in the matched population.

Again, it is unlikely that two individuals will have exactly the same values of the propensity score \(\pi(L) \). In our example, propensity score matching will be carried out by identifying, for each treated individual, one (or more) untreated individuals with a close value of \(\pi(L) \). A common approach is to match treated individuals with a value \(s \) of the estimated \(\pi(L) \) with untreated individuals who have a value \(s \pm 0.05 \), or some other small difference. For example, treated individual 1089 (estimated \(\pi(L) \) of 0.6563) might be matched with untreated individual 1088 (estimated \(\pi(L) \) of 0.6579). There are numerous ways of defining closeness, and a detailed description of these definitions is beyond the scope of this book.

Defining closeness in propensity matching entails a bias-variance trade-off. If the closeness criteria are too loose, individuals with relatively different values of \(\pi(L) \) will be matched to each other, the distribution of \(\pi(L) \) will differ between the treated and the untreated in the matched population, and exchangeability will not hold. On the other hand, if the closeness criteria are too tight and many individuals are excluded by the matching procedure, there will be approximate exchangeability but the effect estimate may have wider 95% confidence intervals.

The definition of closeness is also related to that of positivity. In our smoking cessation example, the distributions of the estimated \(\pi(L) \) in the treated and the untreated overlapped throughout most of the range (see Figure 15.1). Only 2 treated individuals (0.01% of the study population) had values greater than those of any untreated individual. When using outcome regression on the estimated \(\pi(L) \) in the previous section, we effectively assumed that the lack of untreated individuals with high \(\pi(L) \) estimates was due to chance—random nonpositivity—and thus included all individuals in the analysis. In contrast, most propensity matched analyses would not consider those two treated individuals close enough to any of the untreated individuals, and would exclude them. Matching does not distinguish between random and structural nonpositivity.

The above discussion illustrates how the matched population may be very different from the target (super)population. In theory, propensity matching can be used to estimate the causal effect in a well characterized target population. For example, when matching each treated individual with one or more untreated individuals and excluding the unmatched untreated, one is estimating the effect in the treated (see Fine Point 15.2). In practice, however, propensity matching may yield an effect estimate in a hard-to-describe subset of the study population. For example, under a given definition of closeness, some treated individuals cannot be matched with any untreated individuals.
and thus they are excluded from the analysis. As a result, the effect estimate corresponds to a subset of the population that is defined by the values of the estimated propensity score that have successful matches.

That propensity matching forces investigators to restrict the analysis to treatment groups with overlapping distributions of the estimated propensity score is often presented as a strength of the method. One surely would not want to have biased estimates because of violations of positivity, right? However, leaving aside issues related to random variability (see above), there is a price to be paid for restrictions based on the propensity score. Suppose that, after inspecting Figure 15.1, we conclude that we can only estimate the effect of smoking cessation for individuals with an estimated propensity score less than 0.67. Who are these people? It is unclear because individuals do not come with a propensity score tattooed on their forehead. Because the matched population is not well characterized, it is hard to assess the transportability of the effect estimate to other populations.

When positivity concerns arise, restriction based on real-world variables (e.g., age, number of cigarettes) leads to a more natural characterization of the causal effect. In our smoking cessation example, the two treated individuals with estimated $\pi(L) > 0.67$ were the only ones in the study who were over age 50 and had smoked for less than 10 years. We could exclude them and explain that our effect estimate only applies to smokers under age 50 and to smokers 50 and over who had smoked for at least 10 years. This way of defining the target population is more natural than defining it as those with estimated $\pi(L) < 0.67$.

Using propensity scores to detect the overlapping range of the treated and the untreated may be useful, but simply restricting the study population to that range is a lazy way to ensure positivity. The automatic positivity ensured by propensity matching needs to be weighed against the difficulty of assessing transportability when restriction is solely based on the value of the estimated propensity scores.

15.5 Propensity models, structural models, predictive models

In Part II of this book we have described two different types of models for causal inference: propensity models and structural models. Let us now compare them.

Propensity models are models for the probability of treatment A given the variables L used to try to achieve conditional exchangeability. We have used propensity models for matching and stratification in this chapter, for IP weighting in Chapter 12, and for g-estimation in Chapter 14. The parameters of propensity models are nuisance parameters (see Fine Point 15.1) without a causal interpretation because a variable L and treatment A may be associated for many reasons—not only because the variable L causes A. For example, the association between L and A can be interpreted as the effect of L on A under Figure 7.1, but not under Figure 7.2. Yet propensity models are useful for causal inference, often as the basis of the estimation of the parameters of structural models, as we have described in this and previous chapters.

Structural models describe the relation between the treatment A and some component of the distribution (e.g., the mean) of the counterfactual outcome Y^a, either marginally or within levels of the variables L. For continuous treatments, a structural model is often referred to as a dose-response model. The parameters for treatment in structural models are not nuisance parameters:
Fine Point 15.2

Effect modification and the propensity score. A reason why matched and unmatched estimates may differ is effect modification. As an example, consider the common setting in which the number of untreated individuals is much larger than the number of treated individuals. Propensity matching often results in almost all treated individuals being matched and many untreated individuals being unmatched and therefore excluded from the analysis. When this occurs, the distribution of causal effect modifiers in the matched population will resemble that in the treated. Therefore, the effect in the matched population will be closer to the effect in the treated than to the effect that would have been estimated by methods that use data from the entire population. See Technical Point 4.1 for alternative ways to estimate the effect of treatment in the treated via IP weighting and standardization.

Effect modification across propensity strata may be interpreted as evidence that decision makers know what they are doing, e.g. that doctors tend to treat patients who are more likely to benefit from treatment (Kurth et al 2006). However, the presence of effect modification by $\pi(L)$ may complicate the interpretation of the estimates. Consider a situation with qualitative effect modification: “Doctor, according to our study, this drug is beneficial for patients who have a propensity score between 0.11 and 0.93 when they arrive at your office, but it may kill those with propensity scores below 0.11,” or “Ms. Minister, let’s apply this educational intervention to children with propensity scores below 0.57 only.” The above statements are of little policy relevance because, as discussed in the main text, they are not expressed in terms of the measured variables L.

Finally, besides effect modification, there are other reasons why matched estimates may differ from the overall effect estimate: violations of positivity in the non-matched, an unmeasured confounder that is more/less prevalent (or that is better/worse measured) in the matched population than in the unmatched population, etc. As discussed for individual variables L in Chapter 4, remember that effect modification might be explained by differences in residual confounding across propensity strata.

Refer back to Fine Point 14.1 for a discussion of the relation between structural nested models and faux semiparametric marginal structural models, and other subtleties.

A study found that Facebook Likes predict sexual orientation, political views, and personality traits (Kosinski et al, 2013). Low intelligence was predicted by, among other things, a “Harley Davidson” Like. This is purely predictive, not necessarily causal.

they have a direct causal interpretation as outcome differences under different treatment values a. We have described two classes of structural models: marginal structural models and structural nested models. Marginal structural models include parameters for treatment, for the variables V that may be effect modifiers, and for product terms between treatment and variables V. The choice of V reflects only the investigator’s substantive interest in effect modification (see Section 12.5). If no covariates V are included, then the model is truly marginal. If all variables L are included as possible effect modifiers, then the marginal structural model becomes a faux marginal structural model.

Structural nested models include parameters for treatment and for product terms between treatment A and all variables in L that are effect modifiers.

We have presented outcome regression as a method to estimate the parameters of faux marginal structural models for causal inference. However, outcome regression is also widely used for purely predictive, as opposed to causal, purposes. For example, online retailers use sophisticated outcome regression models to predict which customers are more likely to purchase their products. The goal is not to determine whether your age, sex, income, geographic origin, and previous purchases have a causal effect on your current purchase. Rather, the goal is to identify those customers who are more likely to make a purchase so that specific marketing programs can be targeted to them. It is all about association, not causation. Similarly, doctors use algorithms based on outcome regression to identify patients at high risk of developing a serious disease or dying. The parameters of these predictive models do not necessarily have any causal interpretation and all covariates in the model have the same status, i.e., there are no treatment variable A and variables L.

The dual use of outcome regression in both causal inference method and
Outcome regression and propensity scores

in prediction has led to many misunderstandings. One of the most important misunderstandings has to do with variable selection procedures. When the interest lies exclusively on outcome prediction, investigators want to select any variables that, when included as covariates in the model, improve its predictive ability. Many well-known variable selection procedures—e.g., forward selection, backward elimination, stepwise selection—and more recent developments in machine learning are used to enhance prediction. These are powerful tools for investigators who are interested in prediction, especially when dealing with very high-dimensional data.

Unfortunately, statistics courses and textbooks have not always made a sharp difference between causal inference and prediction. As a result, these variable selection procedures for predictive models have often been applied to causal inference models. A possible result of this mismatch is the inclusion of superfluous—or even harmful—covariates in propensity models and structural models. Specifically, the application of predictive algorithms to causal inference models may result in inflated variances, as discussed in Chapter 18.

One of the reasons for variance inflation is the widespread, but mistaken, belief that propensity models should predict treatment \(\tau \) as well as possible. Propensity models do not need to predict treatment very well. They just need to include the variables \(L \) that guarantee exchangeability. Covariates that are strongly associated with treatment, but are not necessary to guarantee exchangeability, do not help reduce bias. If these covariates were included in \(L \), adjustment can actually result in estimates with very large variances.

Consider the following example. Suppose all individuals in certain study attend either hospital Aceso or hospital Panacea. Doctors in hospital Aceso give treatment \(\tau = 1 \) to 99% of the individuals, and those in hospital Panacea give \(\tau = 0 \) to 99% of the individuals. Suppose the variable Hospital has no effect on the outcome (except through its effect on treatment \(\tau \)) and is therefore not necessary to achieve conditional exchangeability. Say we decide to add Hospital as a covariate in our propensity model anyway. The propensity score \(\pi(L) \) in the target population is at least 0.99 for everybody in the study, but by chance we may end up with a study population in which everybody in hospital Aceso has \(\tau = 1 \) or everybody in hospital Panacea has \(\tau = 0 \) for some strata defined by \(L \). That is, our effect estimate may have a near-infinite variance without any reduction in confounding. That treatment is now very well predicted is irrelevant for causal inference purposes.

Besides variance inflation, a predictive attitude towards variable selection for causal inference models—both propensity models and outcome regression models—may also result in self-inflicted bias. For example, the inclusion of colliders as covariates may result in systematic bias even if colliders may be effective covariates for purely predictive purposes. We will return to these issues in Chapter 18.

All causal inference methods based on models—propensity models and structural models—require no misspecification of the functional form of the covariates. To reduce the possibility of model misspecification, we use flexible specifications, e.g., cubic splines rather than linear terms. In addition, these causal inference methods require the conditions of exchangeability, positivity, and well-defined interventions for unbiased causal inferences. In the next chapter we describe a very different type of causal inference method that does not require exchangeability as we know it.
Chapter 16
INSTRUMENTAL VARIABLE ESTIMATION

The causal inference methods described so far in this book rely on a key untestable assumption: all variables needed to adjust for confounding and selection bias have been identified and correctly measured. If this assumption is incorrect—and it will always be to a certain extent—there will be residual bias in our causal estimates.

It turns out that there exist other methods that can validly estimate causal effects under an alternative set of assumptions that do not require measuring all adjustment factors. Instrumental variable estimation is one of those methods. Economists and other social scientists reading this book can breathe now. We are finally going to describe a very common method in their fields, a method that is unlike any other we have discussed so far.

16.1 The three instrumental conditions

The causal diagram in Figure 16.1 depicts the structure of a double-blind randomized trial with noncompliance: Z is the randomization assignment indicator (1: treatment, 0: placebo), A is an indicator for receiving treatment (1: yes, 0: no), Y the outcome, and U all factors (some unmeasured) that affect both the outcome and the adherence to the assigned treatment.

Suppose we want to consistently estimate the average causal effect of A on Y. Whether we use IP weighting, standardization, g-estimation, stratification, or matching, we need to correctly measure, and adjust for, variables that block the backdoor path $A \leftarrow U \rightarrow Y$, i.e., we need to ensure conditional exchangeability of the treated and the untreated. Unfortunately, all these methods will result in biased effect estimates if some of the necessary variables are unmeasured, imperfectly measured, or misspecified in the model.

Instrumental variable (IV) methods are different: they may be used to identify the average causal effect of A on Y in this randomized trial, even if we did not measure the variables normally required to adjust for the confounding caused by U. To perform their magic, IV methods need an instrumental variable Z, or an instrument. A variable Z is an instrument because it meets three instrumental conditions:

(i) Z is associated with A
(ii) Z does not affect Y except through its potential effect on A
(iii) Z and Y do not share causes

See Technical Point 16.1 for a more rigorous definition of these conditions.

In the double-blind randomized trial described above, the randomization indicator Z is an instrument. Condition (i) is met because trial participants are more likely to receive treatment if they were assigned to treatment, condition (ii) is expected by the double-blind design, and condition (iii) is expected by the random assignment of Z.

Figure 16.1 depicts a special case in which the instrument Z has a causal effect on the treatment A. We then refer to Z as a causal instrument. Other instruments do not have a causal effect on treatment A. The variable Z in Figure 16.2 also meets the instrumental conditions with the Z-A association (i) now resulting from the cause U_Z shared by Z and A. We then refer to
Technical Point 16.1

The instrumental conditions, formally. Instrumental condition (i), sometimes referred to as the relevance condition, is non-null association between Z and A, or $Z \bot \bot A$ does not hold.

Instrumental condition (ii), commonly known as the exclusion restriction, is the condition of “no direct effect of Z on Y.“ At the individual level, condition (ii) is $Y_i^{z,a} = Y_i^{z',a} = Y_i^a$ for all z, z', all a, and all individuals i. However, for some results presented in this chapter, only the population level condition (ii) is needed, i.e., $E[Y_{i}^{z,a}] = E[Y_{i}^{z',a}]$. Both versions of condition (ii) are trivially true for proxy instruments.

Instrumental condition (iii) can be written as marginal exchangeability $Y_i^{a,z} \bot \bot Z$ for all a, z, which holds in the SWIGs corresponding to Figures 16.1, 16.2, and 16.3. Together with condition (ii) at the individual level, it implies $Y_i^{a} \bot \bot Z$. A stronger condition (iii) is joint exchangeability, or $\{Y_i^{a,z}; a \in [0, 1], z \in [0, 1]\} \bot \bot Z$ for dichotomous treatment and instrument. See Technical Point 2.1 for a discussion on different types of exchangeability and Technical Point 16.2 for a description of results that require each version of exchangeability. Both versions of condition (iii) are expected to hold in randomized experiments in which the instrument Z is the randomized assignment.

![Figure 16.3](image)

Condition (i) is met if the candidate instrument Z “price in state of birth” is associated with smoking cessation A through the unmeasured variable U_Z “price in place of residence”.

U_Z as the unmeasured causal instrument and to Z as the measured surrogate or proxy instrument. (That Z and Y have U_Z as a common cause does not violate condition (iii) because U_Z is a causal instrument; see Technical Point 16.1.) Figure 16.3 depicts another case of proxy instrument Z in a selected population: the Z-A association arises from conditioning on a common effect S of the unmeasured causal instrument U_Z and the proxy instrument Z. Both causal and proxy instruments can be used for IV estimation, with some caveats described in Section 16.4.

In previous chapters we have estimated the effect of smoking cessation on weight change using various causal inference methods applied to observational data. To estimate this effect using IV methods, we need an instrument Z. Since there is no randomization indicator in an observational study, consider the following candidate for an instrument: the price of cigarettes. It can be argued that this variable meets the three instrumental conditions if (i) cigarette price affects the decision to quit smoking, (ii) cigarette price affects weight change only through its effect on smoking cessation, and (iii) no common causes of cigarette price and weight change exist. Fine Point 16.1 reviews some proposed instruments in observational studies.

To fix ideas, let us propose an instrument Z that takes value 1 when the average price of a pack of cigarettes in the U.S. state where the individual was born was greater than $1.50, and takes value 0 otherwise. Unfortunately, we cannot determine whether our variable Z is actually an instrument. Of the three instrumental conditions, only condition (i) is empirically verifiable. To verify this condition we need to confirm that the proposed instrument Z and the treatment A are associated, i.e., that $\Pr[A = 1|Z = 1] - \Pr[A = 1|Z = 0] > 0$. The probability of quitting smoking is 25.8% among those with $Z = 1$ and 19.5% among those with $Z = 0$; the risk difference $\Pr[A = 1|Z = 1] - \Pr[A = 1|Z = 0]$ is therefore 6%. When, as in this case, Z and A are weakly associated, Z is often referred as a weak instrument (more on weak instruments in Section 16.5).

On the other hand, conditions (ii) and (iii) cannot be empirically verified. To verify condition (ii), we would need to prove that Z can only cause the outcome Y through the treatment A. We cannot prove it by conditioning on A, which is a collider on the pathway $Z \leftarrow U_Z \rightarrow A \leftarrow U \rightarrow Y$, because that would induce an association between Z and Y even if condition (ii) held.
Candidate instruments in observational studies. Many variables have been proposed as instruments in observational studies and it is not possible to review all of them here. Three commonly used categories of candidate instruments are

- Genetic factors: The proposed instrument is a genetic variant Z that is associated with treatment A and that, supposedly, is only related with the outcome Y through A. For example, when estimating the effects of alcohol intake on the risk of coronary heart disease, Z can be a polymorphism associated with alcohol metabolism (say, ALDH2 in Asian populations). Causal inference from observational data via IV estimation using genetic variants is part of the framework known as Mendelian randomization (Katan 1986, Davey Smith and Ebrahim 2004, Didelez and Sheehan 2007, VanderWeele et al. 2014).

- Preference: The proposed instrument Z is a measure of the physician’s (or a care provider’s) preference for one treatment over the other. The idea is that a physician’s preference influences the prescribed treatment A without having a direct effect on the outcome Y. For example, when estimating the effect of prescribing COX-2 selective versus non-selective nonsteroidal anti-inflammatory drugs on gastrointestinal bleeding, U_Z can be the physician’s prescribing preference for drug class (COX-2 selective or non-selective). Because U_Z is unmeasured, investigators replace it in the analysis by a (measured) surrogate instrument Z, such as “last prescription issued by the physician before current prescription” (Korn and Baumrind 1998, Earle et al. 2001, Brookhart and Schneeweiss 2007).

- Access: The proposed instrument Z is a measure of access to the treatment. The idea is that access impacts the use of treatment A but does not directly affect the outcome Y. For example, physical distance or travel time to a facility has been proposed as an instrument for treatments available at such facilities (McClellan et al. 1994, Card 1995, Baiocchi et al. 2010). Another example: calendar period has been proposed as an instrument for a treatment whose accessibility varies over time (Hoover et al. 1994, Detels et al. 1998). In the main text we use “price of the treatment”, another measure of access, as a candidate instrument.

Conditions (ii) and (iii) can sometimes be empirically falsified by using data on instrument, treatment, and outcome. However, falsification tests only reject the conditions for a small subset of violations. For most violations, the test has no statistical power, even for an arbitrarily large sample size (Bonet 2001, Glymour et al. 2012).
Technical Point 16.2

Bounds: Partial identification of causal effects. For a dichotomous outcome Y, the average causal effect $\Pr[Y_{a=1} = 1] - \Pr[Y_{a=0} = 1]$ can take values between -1 (if all individuals develop the outcome unless they were treated) and 1 (if no individuals develop the outcome unless treated). The bounds of the average causal effect are $(-1, 1)$. The distance between these bounds can be cut in half by using the data: because for each individual we know the value of either her counterfactual outcome $Y_{a=1}$ (if the individual was actually treated) or $Y_{a=0}$ (if the individual was actually untreated), we can compute the causal effect after assigning the most extreme values possible to each individual’s unknown counterfactual outcome. This will result in bounds of the average causal effect that are narrower but still include the null value 0. For a continuous outcome Y, deriving bounds requires the specification of the minimum and maximum values for the outcome; the width of the bounds will vary depending on the chosen values.

The bounds for $\Pr[Y_{a=1} = 1] - \Pr[Y_{a=0} = 1]$ can be further narrowed when there exists a variable Z that meets instrumental condition (ii) at the population level and marginal exchangeability (iii) (Robins 1989; Manski 1990). The width of these so-called natural bounds, $\Pr[A = 1 | Z = 0] + \Pr[A = 0 | Z = 1]$, is narrower than that of the bounds identified from the data alone. Sometimes narrower bounds—the so-called sharp bounds—can be achieved when marginal exchangeability is replaced by joint exchangeability (Balke and Pearl 1997; Richardson and Robins 2014).

The conditions necessary to achieve the sharp bounds can also be derived from the SWIGs under joint interventions on z and a corresponding to any of the causal diagrams depicted in Figures 16.1, 16.2, and 16.3. Richardson and Robins (2010, 2014) showed that the conditions $Y_{a=1}, z \perp \perp (Z, A) | U$ and $Z \perp \perp U$, together with a population level condition (ii) within levels of U, i.e., $\E[Y_{z,a} | U] = \E[Y_{z,a} | U]$, are sufficient to obtain the sharp bounds. Specifically, these conditions imply $Z \perp \perp U, Y \perp \perp Z | U, A$, and that $\E[Y_{z,a}]$ is given by the g-formula $\int \E[Y | A = a, U = u] dF(u)$ ignoring Z, which reflects that Z has no direct effect on Y within levels of U. Dawid (2003) proved that these latter conditions lead to the sharp bounds. Under further assumptions, Richardson and Robins derived yet narrower bounds. See also Richardson, Evans, and Robins (2011).

Unfortunately, all these partial identification methods (i.e., methods for bounding the effect) are often relatively uninformative because the bounds are wide. Swanson et al. (2018) review partial identification methods for binary instruments, treatments, and outcomes. Swanson et al. (2015c) describe a real-world application of several partial identification methods and discuss their relative advantages and disadvantages.

There is a way to decrease the width of the bounds: making parametric assumptions about the form of the effect of A on Y. Under sufficiently strong assumptions described in Section 16.2, the upper and lower bounds converge into a single number and the average causal effect is point identified.

one is willing to make additional unverifiable assumptions. Sections 16.3 and 16.4 review additional conditions under which the IV estimand is the average causal effect. Before that, we review the methods to do so.

16.2 The usual IV estimand

We will focus on dichotomous instruments, which are the commonest ones. For a continuous instrument Z, the usual IV estimand is $\frac{\text{Cov}(Y,Z)}{\text{Cov}(A,Z)}$, where Cov means covariance.

When a dichotomous variable Z is an instrument, i.e., meets the three instrumental conditions (i)-(iii), and an additional condition (iv) described in the next section holds, then the average causal effect of treatment on the additive scale $\E[Y_{a=1}] - \E[Y_{a=0}]$ is identified and equals

$$\E[Y | Z = 1] - \E[Y | Z = 0]$$

$$\E[A | Z = 1] - \E[A | Z = 0],$$

which is the usual IV estimand for a dichotomous instrument. (Note $\E[A | Z = 1] = \Pr[A = 1 | Z = 1]$ for a dichotomous treatment). Technical Point 16.3 provides
In randomized experiments, the IV estimator is the ratio of two effects of Z: the effect of Z on Y and the effect of Z on A. Each of these effects can be consistently estimated without adjustment because Z is randomly assigned.

Also known as the Wald estimator (Wald 1940).

Code: Program 16.1

For simplicity, we exclude individuals with missing outcome or instrument. In practice, we could use IP weighting to adjust for possible selection bias before using IV estimation.

Code: Program 16.2

a proof of this result in terms of an additive structural mean model, but you might want to wait until the next section before reading it.

To intuitively understand the usual IV estimand, consider again the randomized trial from the previous section. The numerator of the IV estimand—the average causal effect of Z on Y—is the intention-to-treat effect, and the denominator—the average causal effect of Z on A—is a measure of adherence to, or compliance with, the assigned treatment. When there is perfect compliance, the denominator is equal to 1, and the effect of A on Y equals the effect of Z on Y. As compliance worsens, the denominator starts to get closer to 0, and the effect of A on Y becomes greater than the effect of Z on Y. The greater the rate of noncompliance, the greater the difference between the effect of A on Y—the IV estimand—and the effect of Z on Y.

The IV estimand bypasses the need to adjust for the confounders by inflating the intention-to-treat effect in the numerator. The magnitude of the inflation increases as compliance decreases, i.e., as the Z-A risk difference gets closer to zero. The same rationale applies to the instruments used in observational studies, where the denominator of the IV estimator may equal either the causal effect of the causal instrument Z on A (Figure 16.1), or the noncausal association between the proxy instrument Z and the treatment A (Figures 16.2 and 16.3).

The standard IV estimator is the ratio of the estimates of the numerator and the denominator of the usual IV estimand. In our smoking cessation example with a dichotomous instrument Z (1: state with high cigarette price, 0: otherwise), the numerator estimate $\hat{E}[Y|Z = 1] - \hat{E}[Y|Z = 0]$ equals $2.686 - 2.536 = 0.1503$ and the denominator $\hat{E}[A|Z = 1] - \hat{E}[A|Z = 0]$ equals $0.2578 - 0.1951 = 0.0627$. Therefore, the usual IV estimate is the ratio $0.1503/0.0627 = 2.4$ kg. Under the three instrumental conditions (i)-(iii) plus condition (iv) from next section, this is an estimate of the average causal effect of smoking cessation on weight gain in the population.

We estimated the numerator and denominator of the IV estimand by simply calculating the four sample averages $E[A|Z = 1]$, $E[A|Z = 0]$, $E[Y|Z = 1]$, and $E[Y|Z = 0]$. Equivalently, we could have fit two (saturated) linear models to estimate the differences in the denominator and the numerator. The model for the denominator would be $E[A|Z] = \alpha_0 + \alpha_1 Z$, and the model for the numerator $E[Y|Z] = \beta_0 + \beta_1 Z$.

Linear models are used as an alternative method to calculate the standard IV estimator: the two-stage-least-squares estimator. The procedure is as follows. First, fit the first-stage treatment model $E[A|Z] = \alpha_0 + \alpha_1 Z$, and generate the predicted values $\hat{E}[A|Z]$ for each individual. Second, fit the second-stage outcome model $E[Y|Z] = \beta_0 + \beta_1 \hat{E}[A|Z]$. The parameter estimate β_1 will always be numerically equivalent to the standard IV estimate. Thus, in our example, the two-stage-least-squares estimate was again 2.4 kg.

The 2.4 point estimate has a very large 95% confidence interval: -36.5 to 41.3. This is expected for our proposed instrument because the Z-A association is weak and there is much uncertainty in the first-stage model. A commonly used rule of thumb is to declare an instrument as weak if the F-statistic from the first-stage model is less than 10 (it was a meager 0.8 in our example). We will revisit the problems raised by weak instruments in Section 16.5.

The two-stage-least-squares estimator and its variations forces investigators to make strong parametric assumptions. Some of these assumptions can be avoided by using additive or multiplicative structural mean models, like the ones described in Technical Points 16.3 and 16.4, for IV estimation. The
parameters of structural mean models can be estimated via g-estimation. The trade-offs involved in the choice between two-stage-least-squares linear models and structural mean models are similar to those involved in the choice between outcome regression and structural nested models for non-IV estimation (see Chapters 14 and 15).

Anyway, the above estimators are only valid when the usual IV estimand can be interpreted as the average causal effect of treatment A on the outcome Y. For that to be true, a fourth identifying condition needs to hold in addition to the three instrumental conditions.

16.3 A fourth identifying condition: homogeneity

The three instrumental conditions (i)-(iii) are insufficient to ensure that the IV estimand is the average causal effect of treatment A on Y. A fourth condition, *effect homogeneity* (iv), is needed. Here we describe four possible homogeneity conditions (iv) in order of (historical) appearance.

The most extreme, and oldest, version of homogeneity condition (iv) is constant effect of treatment A on outcome Y across individuals. In our example, this constant effect condition would hold if smoking cessation made every individual in the population gain (or lose) the same amount of body weight, say, exactly 2.4 kg. A constant effect is equivalent to additive rank preservation which, as we discussed in Section 14.4, is scientifically implausible for most treatments and outcomes—and impossible for dichotomous outcomes, except under the sharp null or universal harm (or benefit). In our example, we expect that, after quitting smoking, some individuals will gain a lot of weight, some will gain little, and others may even lose some weight. Therefore, we are not generally willing to accept the homogeneity assumption of constant effect as a reasonable condition (iv).

A second, less extreme homogeneity condition (iv) for dichotomous Z and A is equality of the average causal effect of A on Y across levels of Z in both the treated and in the untreated, i.e., $E[Y_{a=1} - Y_{a=0} | Z=1, A=a] = E[Y_{a=1} - Y_{a=0} | Z=0, A=a]$ for $a = 0, 1$. This additive homogeneity condition (iv) was the one used in the mathematical proof of Technical Point 16.3. An alternative homogeneity condition on the multiplicative scale is discussed in Technical Point 16.4. (This multiplicative homogeneity condition leads to an IV estimand that is different from the usual IV estimand.)

The above homogeneity condition is expressed in terms that are not naturally intuitive. How can subject-matter experts provide arguments in support of a constant average causal effect within levels of the proposed instrument Z and the treatment A in any particular study? More natural—even if still untestable—homogeneity conditions (iv) would be stated in terms of effect modification by possibly known (even if unmeasured) confounders U. One such condition is that U is not an additive effect modifier, i.e., that the average causal effect of A on Y is the same at every level of the unmeasured confounder U or $E[Y_{a=1} | U] - E[Y_{a=0} | U] = E[Y_{a=1} - Y_{a=0}]$. This third homogeneity condition (iv) is often implausible because some unmeasured confounders may also be effect modifiers. For example, the magnitude of weight gain after smoking cessation may vary with prior intensity of smoking, which may itself be an unmeasured confounder for the effect of smoking cessation on weight gain.

Another type of homogeneity condition (iv) is that the $Z-A$ association on
Additive structural mean models and IV estimation. Consider the following saturated, additive structural mean model for a dichotomous treatment A and an instrument Z as depicted in Figures 16.1, 16.2, or 16.3:

$$E[Y^{a=1} - Y^{a=0}| A = 1, Z] = \beta_0 + \beta_1 Z$$

This model can also be written as $E[Y - Y^{a=0}| A, Z] = A(\beta_0 + \beta_1 Z)$. The parameter β_0 is the average causal effect of treatment among the treated individuals with $Z = 0$, and $\beta_0 + \beta_1$ is the average causal effect of treatment among the treated individuals with $Z = 1$. Thus β_1 quantifies additive effect modification by Z.

If we a priori assume that there is no additive effect modification by Z, then $\beta_1 = 0$ and β_0 is exactly the usual IV estimand (Robins 1994). That is, the usual IV estimand is the parameter of an additive structural mean model for the effect of treatment on the treated under no effect modification by Z.

The proof is simple. When Z is an instrument, condition (ii) holds, which implies $E[Y^{a=0}| Z = 1] = E[Y^{a=0}| Z = 0]$. Using the structural model notation, this conditional mean independence can be rewritten as $E[Y - A(\beta_0 + \beta_1) | Z = 1] = E[Y - A\beta_0 | Z = 0]$. Solving the above equation with $\beta_1 = 0$ we have

$$\beta_0 = \frac{E[Y|Z = 1] - E[Y|Z = 0]}{E[A|Z = 1] - E[A|Z = 0]}$$

You may wonder why we a priori set $\beta_1 = 0$. The reason is that we have an equation with two unknowns (β_0 and β_1) and that equation exhausts the constraints on the data distribution implied by the three instrumental conditions. Since we need an additional constraint, which by definition will be untestable, we arbitrarily choose $\beta_1 = 0$ (rather than, say, $\beta_1 = 2$). This is what we mean when we say that an instrument is insufficient to identify the average causal effect.

Therefore, to conclude that the average causal effect of treatment in the treated $\beta_0 = E[Y^{a=1} - Y^{a=0}| A = 1, Z = z] = E[Y^{a=1} - Y^{a=0}| A = 1]$ equals the average causal effect in the study population $E[Y^{a=1}] - E[Y^{a=0}]$—and thus that the usual IV estimand is $E[Y^{a=1}] - E[Y^{a=0}]$—we must assume that the effects of treatment in the treated and in the untreated are identical, which is an additional untestable assumption. Hence, under the additional assumption $\beta_1 = 0$, $\beta_0 = E[Y^{a=1} - Y^{a=0}| A = 1, Z = z] = E[Y^{a=1} - Y^{a=0}| A = 1]$ for any z is the average causal effect of treatment in the treated. To conclude that β_0 is the average causal effect in the study population $E[Y^{a=1}] - E[Y^{a=0}]$—and thus that $E[Y^{a=1}] - E[Y^{a=0}]$ is the usual IV estimand—we must assume that the effects of treatment are identical in the treated and in the untreated, i.e., the parameter for Z is also 0 in the structural model for $A = 0$. This is an additional untestable assumption.

Wang and Tchetgen-Tchetgen (2018) proposed these last two homogeneity conditions.
Multiplicative structural mean models and IV estimation. Consider the following saturated, multiplicative (log-linear) structural mean model for a dichotomous treatment \(A \)

\[
\frac{E[Y^a=1|A=1, Z]}{E[Y^a=0|A=1, Z]} = \exp(\beta_0 + \beta_1 Z),
\]

which can also be written as \(E[Y|A, Z] = E[Y^a=0|A, Z] \exp[A(\beta_0 + \beta_1 Z)] \). For a dichotomous \(Y \), \(\exp(\beta_0) \) is the causal risk ratio in the treated individuals with \(Z = 0 \) and \(\exp(\beta_0 + \beta_1) \) is the causal risk ratio in the treated with \(Z = 1 \). Thus \(\beta_1 \) quantifies multiplicative effect modification by \(Z \). If we a priori assume that \(\beta_1 = 0 \)—and additionally assume no multiplicative effect modification by \(Z \) in the untreated—then the causal effect on the multiplicative (risk ratio) scale is \(E[Y^a=1]/E[Y^a=0] = \exp(\beta_0) \), and the causal effect on the additive (risk difference) scale is

\[
E[Y^a=1] - E[Y^a=0] = E[Y|A=0](1-E[A])\exp(\beta_0) - 1 + E[Y|A=1]E[A][1-\exp(-\beta_0)]
\]

The proof, which relies on the instrumental conditions, can be found in Robins (1989) and Hernán and Robins (2006b).

That is, if we assume a multiplicative structural mean model with no multiplicative effect modification by \(Z \) in the treated and in the untreated, then the average causal effect \(E[Y^a=1] - E[Y^a=0] \) remains identified, but no longer equals the usual IV estimator. As a consequence, our estimate of \(E[Y^a=1] - E[Y^a=0] \) will depend on whether we assume no additive or multiplicative effect modification by \(Z \). Unfortunately, it is not possible to determine which, if either, assumption is true even if we had an infinite sample size (Robins 1994) because, when considering saturated additive or multiplicative structural mean models, we have more unknown parameters to estimate than equations to estimate them with. That is precisely why we need to make modelling assumptions such as homogeneity.

Also, models can be used to incorporate multiple proposed instruments simultaneously, to handle continuous treatments, and to estimate causal risk ratios when the outcome is dichotomous (see Palmer et al. 2011 for a review).

16.4 An alternative fourth condition: monotonicity

Consider again the double-blind randomized trial with randomization indicator \(Z \), treatment \(A \), and outcome \(Y \). For each individual in the trial, the counterfactual variable \(A^{z=1} \) is the value of treatment—1 or 0—that an individual would have taken if he had been assigned to receive treatment \((z = 1) \). The counterfactual variable \(A^{z=0} \) is analogously defined as the treatment value if the individual had been assigned to receive no treatment \((z = 0) \).

If we knew the values of the two counterfactual treatment variables \(A^{z=1} \) and \(A^{z=0} \) for each individual, we could classify all individuals in the study population into four disjoint subpopulations:

1. **Always-takers**: Individuals who will always take treatment, regardless of the treatment group they were assigned to. That is, individuals with

Figure 16.4
Technical Point 16.5

More general structural mean models. Consider an additive structural mean model that allows for continuous and/or multivariate treatments A, instruments Z, and pre-instrument covariates V. Such model assumes

$$E \left[Y - Y^{a=0} | Z, A, V \right] = \gamma (Z, A, V; \psi)$$

where $\gamma (Z, A, V; \psi)$ is a known function, ψ is an unknown (possibly vector-valued) parameter, and $\gamma (Z, A = 0, V; \psi) = 0$. That is, an additive structural mean model is a model for the average causal effect of treatment level A compared with treatment level 0 among the subset of individuals at level Z of the instrument and level V of the confounders whose observed treatment is precisely A. The parameters of this model can be identified via g-estimation under the conditional counterfactual mean independence assumption $E \left[Y^{a=0} | Z = 1, V \right] = E \left[Y^{a=0} | Z = 0, V \right]$.

Analogously, a general multiplicative structural mean model assumes

$$E \left[Y | Z, A, V \right] = E \left[Y^{a=0} | Z, A, V \right] \exp \left[\gamma (Z, A, V; \psi) \right]$$

where $\gamma (Z, A, V; \psi)$ is a known function, ψ is an unknown parameter vector, and $\gamma (Z, A = 0, V; \psi) = 0$. The parameters of this model can also be identified via g-estimation under analogous conditions. Identification conditions and efficient estimators for structural mean models were discussed by Robins (1994) and reviewed by Vansteelandt and Goetghebeur (2003). More generally, g-estimation of nested additive and multiplicative structural mean models can extend IV methods for time-fixed treatments and confounders to settings with time-varying treatments and confounders.

Diagram 16.5

Figure 16.5

Diagram 16.6

Figure 16.6

Diagram 16.7

Figure 16.7

- Both $A^z=1$ and $A^z=0$.

2. **Never-takers:** Individuals who will never take treatment, regardless of the treatment group they were assigned to. That is, individuals with both $A^z=1$ and $A^z=0$.

3. **Compliers** or cooperative: Individuals who will take treatment when assigned to treatment, and no treatment when assigned to no treatment. That is, individuals with $A^z=1$ and $A^z=0$.

4. **Defiers** or contrarians: Individuals who will take no treatment when assigned to treatment, and treatment when assigned to no treatment. That is, individuals with $A^z=1$ and $A^z=0$.

Note that these subpopulations—often referred as compliance types or principal strata—are not generally identified. If we observe that an individual was assigned to $Z = 1$ and took treatment $A = 1$, we do not know whether she is a complier or an always-taker. If we observe that an individual was assigned to $Z = 1$ and took treatment $A = 0$, we do not know whether he is a defier or a never-taker.

When no defiers exist, we say that there is monotonicity because the instrument Z either does not change treatment A—as shown in Figure 16.4 for always-takers and Figure 16.5 for never-takers—or increases the value of treatment A—as shown in Figure 16.6 for compliers. For defiers, the instrument Z would decrease the value of treatment A—as shown in Figure 16.7. More generally, monotonicity holds when $A^z=1 \geq A^z=0$ for all individuals.

Now let us replace any of the homogeneity conditions from the last section by the monotonicity condition, which will become our new condition (iv). Then the usual IV estimand does not equal the average causal effect of treatment $E \left[Y^{a=1} \right] - E \left[Y^{a=0} \right]$ any more. Rather, under monotonicity (iv), the usual IV
estimand equals the average causal effect of treatment in the compliers, that is
\[E[Y^a=1 - Y^a=0 | A^z=1 = 1, A^z=0 = 0]. \]

Technical Point 16.6 shows a proof for this equality under the assumption that \(Z \) was effectively randomly assigned. As a sketch of the proof, the equality between the usual IV estimand and the effect in the compliers holds because the effect of assignment \(Z \) on \(Y \)—the numerator of the IV estimand—is a weighted average of the effect of \(Z \) in each of the four principal strata. However, the effect of \(Z \) on \(Y \) is exactly zero in always-takers and never-takers because the effect of \(Z \) is entirely mediated through \(A \) and the value of \(A \) in those subpopulations is fixed, regardless of the value of \(Z \) they are assigned to. Also, no defiers exist under monotonicity (iv). Therefore the numerator of the IV estimand is the effect of \(Z \) on \(Y \) in the compliers—which is the same as the effect of \(A \) on \(Y \) in the compliers—times the proportion of compliers in the population, which is precisely the denominator of the usual IV estimand.

In observational studies, the usual IV estimand can also be used to estimate the effect in the compliers in the absence of defiers. Technically, there are no compliers or defiers in observational studies because the proposed instrument \(Z \) is not treatment assignment, but the term compliers refers to individuals with \((A^z=1 A^z=0 = 0)\) and the term defiers to those with \((A^z=1 A^z=0 = 1)\). In our smoking cessation example, the compliers are the individuals who would quit smoking in a state with high cigarette price and who would not quit smoking in a state with low price. Conversely, the defiers are the individuals who would not quit smoking in a state with high cigarette price and who would quit smoking in a state with low price. If no defiers exist and the causal instrument is dichotomous (see below and Technical Point 16.6), then 2.4 kg is the IV effect estimate in the compliers.

The replacement of homogeneity by monotonicity was welcomed in the mid-1990s as the salvation of IV methods. While homogeneity is often an implausible condition (iv), monotonicity appeared credible in many settings. IV methods under monotonicity (iv) cannot identify the average causal effect in the population, only in the subpopulation of compliers, but that seemed a price worth paying in order to keep powerful IV methods in our toolbox. However, the estimation of the average causal effect of treatment in the compliers under monotonicity (iv) has been criticized on several grounds.

First, the relevance of the effect in the compliers is questionable. The subpopulation of compliers is not identified and, even though the proportion of compliers in the population can be calculated (it is the denominator of the usual IV estimand, see Technical Point 16.6), it varies from instrument to instrument and from study to study. Therefore, causal inferences about the effect in the compliers are difficult to use by decision makers. Should they prioritize the administration of treatment \(A = 1 \) to the entire population because treatment has been estimated to be beneficial among the compliers, which happen to be 6% of the population in our example but could be a smaller or larger group in the real world? What if treatment is not as beneficial in always-takers and never-takers, the majority of the population? Unfortunately, the decision maker cannot know who is included in the 6%. Rather than arguing that the effect of the compliers is of primary interest, it may be more honest to accept that interest in this estimand is not the result of its practical relevance, but rather of the (often erroneous) perception that it is easy to identify.

Second, monotonicity is not always a reasonable assumption in observational studies. The absence of defiers seems a safe assumption in randomized
trials: we do not expect that some individuals will provide consent for participation in a trial with the perverse intention to do exactly the opposite of what they are asked to do. Further, monotonicity is ensured by design in trials in which those assigned to no treatment are prevented from receiving treatment, i.e., there are no always-takers or defiers. However, monotonicity is harder to justify for some instruments proposed in observational studies. Consider the proposed instrument “physician preference” to estimate the treatment effect in patients attending a clinic where two physicians with different preferences work. The first physician usually prefers to prescribe the treatment, but she makes exceptions for her patients with diabetes (because of some known contraindications). The second usually prefers to not prescribe the treatment, but he makes exceptions for his more physically active patients (because of some perceived benefits). Any patient who was both physically active and diabetic would have been treated contrary to both of these physicians’ preferences, and therefore would be labeled as a defier. That is, monotonicity is unlikely to hold when the decision to treat is the result of weighing multiple criteria or dimensions of encouragement that include both risks and benefits. In these settings, the proportion of defiers may not be negligible.

The situation is even more complicated for the proxy instruments Z represented by Figures 16.2 and 16.3. If the causal instrument U_Z is continuous (e.g., the true, unmeasured physician’s preference), then the standard IV estimand using a dichotomous proxy instrument Z (e.g., some measured surrogate of preference) is not the effect in a particular subpopulation of compliers. Rather, the standard IV estimand identifies a particular weighted average of the effect in all individuals in the population, which makes makes it difficult to interpret. Therefore the interpretation of the IV estimand as the effect in the compliers is questionable when the proposed dichotomous instrument is not causal, even if monotonicity held for the continuous causal instrument U_Z (see Technical Point 16.6 for details).

Last, but definitely not least important, the partitioning of the population into four subpopulations or principal strata may not be justifiable. In many realistic settings, the subpopulation of compliers is an ill-defined subset of the population. For example, using the proposed instrument “physician preference” in settings with multiple physicians, all physicians with the same preference level who could have seen a patient would have to treat the patient in the exact same way. This is not only an unrealistic assumption, but also essentially impossible to define in many observational studies in which it is unknown which physicians could have seen a patient. A stable partitioning into compliers, defiers, always takers and never takers also requires deterministic counterfactuals (not generally required to estimate average causal effects), no interference (e.g., I may be an always-taker, but decide not to take treatment when my friend doesn’t), absence of multiple versions of treatment and other forms of heterogeneity (a complier in one setting, or for a particular instrument, may not be a complier in another setting).

In summary, if the effect in the compliers is considered to be of interest, relying on monotonicity (iv) seems a promising approach in double-blind randomized trials with two arms and all-or-nothing compliance, especially when one of the arms will exhibit full adherence by design. However, caution is needed when using this approach in more complex settings and observational studies, even if the proposed instrument were really an instrument.
Fine Point 16.2

Defining weak instruments. There are two related, but different, definitions of weak instrument in the literature:

1. An instrument is weak if the true value of the $Z \rightarrow A$ association—the denominator of the IV estimand—is "small."

2. An instrument is weak if the F-statistic associated to the observed $Z \rightarrow A$ association is "small," typically meaning less than 10.

In our smoking cessation example, the proposed instrument met both definitions: the risk difference was only 6% and the F-statistic was a meager 0.8.

The first definition, based on the true value of the $Z \rightarrow A$ association, reminds us that, even if we had an infinite sample, the IV estimator greatly amplifies any biases in the numerator when using a proposed weak instrument (the second problem of weak instruments in the main text). The second definition, based on the statistical properties of the $Z \rightarrow A$ association, reminds us that, even if we had a perfect instrument Z, the IV estimator can be biased in finite samples (the third problem of weak instruments in the main text).

16.5 The three instrumental conditions revisited

The previous sections have discussed the relative advantages and disadvantages of choosing monotonicity or homogeneity as the condition (iv). Our discussion implicitly assumed that the proposed instrument Z was in fact an instrument. However, in observational studies, the proposed instrument Z will fail to be a valid instrument if it violates either of the instrumental conditions (ii) or (iii), and will be a weak instrument if it only barely meets condition (i). In all these cases, the use of IV estimation may result in substantial bias even if condition (iv) held perfectly. We now discuss each of the three instrumental conditions.

Condition (i), a $Z \rightarrow A$ association, is empirically verifiable. Before declaring Z as their proposed instrument, investigators will check that Z is associated with treatment A. However, when the $Z \rightarrow A$ association is weak as in our smoking cessation example, the instrument is said to be weak (see Fine Point 16.2). Three serious problems arise when the proposed instrument is weak.

First, weak instruments yield effect estimates with wide 95% confidence intervals, as in our smoking cessation example in Section 16.2. Second, weak instruments amplify bias due to violations of conditions (ii) and (iii). A proposed instrument Z which is weakly associated with treatment A yields a small denominator of the IV estimator. Therefore, violations of conditions (ii) and (iii) that affect the numerator of the IV estimator (e.g., unmeasured confounding for the instrument, a direct effect of the instrument) will be greatly exaggerated. In our example, any bias affecting the numerator of the IV estimator would be multiplied by approximately 15.9 ($1/0.0627$). Third, even in large samples, weak instruments introduce bias in the standard IV estimator and result in underestimation of its variance. That is, the effect estimate is in the wrong place and the width of the confidence interval around it is too narrow.

To understand the nature of this third problem, consider a randomly generated dichotomous variable Z. In an infinite population, the denominator of the IV estimand will be exactly zero—there is a zero association between treatment A and a completely random variable—and the IV estimate will be undefined. However, in a study with a finite sample, chance will lead to an association between the randomly generated Z and the unmeasured confounders
U—and therefore between Z and treatment A—that is weak but not exactly zero. If we propose this random Z as an instrument, the denominator of the IV estimator will be very small rather than zero. As a result the numerator will be incorrectly inflated, which will yield potentially very large bias. In fact, our proposed instrument “Price higher than $1.50” behaves like a randomly generated variable. Had we decided to define Z as price higher than $1.60, $1.70, $1.80, or $1.90, the IV estimate would have been 41.3, −40.9, −21.1, or −12.8 kg, respectively. In each case, the 95% confidence interval around the estimate was huge, though still an underestimate of the true uncertainty. Given how much bias and variability weak instruments may create, a strong proposed instrument that slightly violates conditions (ii) and (iii) may be preferable to a less invalid, but weaker, proposed instrument.

Condition (ii), the absence of a direct effect of the instrument on the outcome, cannot be verified from the data. A deviation from condition (ii) can be represented by a direct arrow from the instrument Z to the outcome Y, as shown in Figure 16.8. This direct effect of the instrument that is not mediated through treatment A will contribute to the numerator of the IV estimator, and it will be incorrectly inflated by the denominator as if it were part of the effect of treatment A. Condition (ii) may be violated when a continuous or multi-valued treatment A is replaced in the analysis by a coarser (e.g., dichotomized) version A*. Figure 16.9 shows that, even if condition (ii) holds for the original treatment A, it does not have to hold for its dichotomized version A*, because the path Z → A → Y represents a direct effect of the instrument Z that is not mediated through the treatment A whose effect is being estimated in the IV analysis. In practice, many treatments are replaced by coarser versions for simplicity of interpretation. Coarsening of treatment is problematic for IV estimation, but not necessarily for the methods discussed in previous chapters.

Condition (iii), no confounding for the effect of the instrument on the outcome, is also unverifiable. Figure 16.10 shows confounding due to common causes of the proposed instrument Z and outcome Y that are (U1) and are not (U2) shared with treatment A. In observational studies, the possibility of confounding for the proposed instrument always exists (same as for any other variable not under the investigator’s control). Confounding contributes to the numerator of the IV estimator and is incorrectly inflated by the denominator as if it were part of the effect of treatment A on the outcome Y.

Sometimes condition (iii), and the other conditions too, can appear more plausible within levels of the measured covariates. Rather than making the unverifiable assumption that there is absolutely no confounding for the effect of Z on Y; we might feel more comfortable making the unverifiable assumption that there is no unmeasured confounding for the effect of Z on Y within levels of the measured pre-instrument covariates V. We could then apply IV estimation repeatedly in each stratum of V, and pool the IV effect estimates under the assumption that the effect in the population (under homogeneity) or in the compliers (under monotonicity) is constant within levels of V. Alternatively we could include the variables V as covariates in the two-stage modeling. In our example, this reduced the size of the effect estimate and increased its 95% confidence interval.

Another frequent strategy to support condition (iii) is to check for balanced distributions of the measured confounders across levels of the proposed instrument Z. The idea is that, if the measured confounders are balanced, it may be more likely that the unmeasured ones are balanced too. However, this practice may offer a false sense of security: even small imbalances can lead to counterintuitively large biases because of the bias amplification discussed
A violation of condition (iii) may occur even in the absence of confounding for the effect of Z on Y. The formal version of condition (iii) requires exchangeability between individuals with different levels of the proposed instrument. Such exchangeability may be violated because of either confounding (see above) or selection bias. A surprisingly common way in which selection bias may be introduced in IV analyses is the exclusion of individuals with certain values of treatment A. For example, if individuals in the population may receive treatment levels $A = 0$, $A = 1$, or $A = 2$, an IV analysis restricted to individuals with $A = 1$ or $A = 2$ may yield a non-null effect estimate even if the true causal effect is null. This exclusion does not introduce bias in non-IV analyses whose goal is to estimate the effect of treatment $A = 1$ versus $A = 2$.

All the above problems related to conditions (i)-(iii) are exacerbated in IV analyses that use simultaneously multiple proposed instruments in an attempt to alleviate the weakness of a single proposed instrument. Unfortunately, the larger the number of proposed instruments, the more likely that some of them will violate one of the instrumental conditions.

16.6 Instrumental variable estimation versus other methods

IV estimation differs from all previously discussed methods in at least three aspects.

First, IV estimation requires modeling assumptions even if infinite data were available. This is not the case for previous methods like IP weighting or standardization: If we had treatment, outcome, and confounder data from all individuals in the super-population, we would simply calculate the average treatment effect as we did in Part I of this book, nonparametrically. In contrast, even if we had data on instrument, treatment, and outcome from all individuals in the super-population, IV estimation effectively requires the use of modeling assumptions in order to identify the average causal effect in the population. The homogeneity condition (iv) is mathematically equivalent to setting to zero the parameter corresponding to a product term in a structural mean model (see Technical Point 16.1). That is, IV estimation cannot be nonparametric—models are required for identification—which explains why the method was not discussed in Part I of this book.

Second, relatively minor violations of conditions (i)-(iv) for IV estimation may result in large biases of unpredictable or counterintuitive direction. The foundation of IV estimation is that the denominator blows up the numerator. Therefore, when the conditions do not hold perfectly or the instrument is weak, there is potential for explosive bias in either direction. As a result, an IV estimate may often be more biased than an unadjusted estimate. In contrast, previous methods tend to result in slightly biased estimates when their identifiability conditions are only slightly violated, and adjustment is less likely to introduce a large bias. The exquisite sensitivity of IV estimates to departures from its identifiability conditions makes the method especially dangerous for novice users, and highlights the importance of sensitivity analyses. In addition, it is often easier to use subject-matter knowledge to think about unmeasured confounders of the effect of A on Y and how they may bias our estimates than to think about unmeasured confounders of the effect of Z on Y and how they and the existence of defiers or effect heterogeneity may bias our estimates.

Third, the ideal setting for the applicability of standard IV estimation is
more restrictive than that for other methods. As discussed in this chapter, standard IV estimation is better reserved for settings with lots of unmeasured confounding, a truly dichotomous and time-fixed treatment A, a strong and causal proposed instrument Z, and in which either effect homogeneity is expected to hold, or one is genuinely interested in the effect in the compliers and monotonicity is expected to hold. A consequence of these restrictions is that IV estimation is generally used to answer relatively simple causal questions, such as the contrast $A = 1$ versus $A = 0$. For this reason, IV estimation will not be a prominent method in Part III of this book, which is devoted to time-varying treatments and the contrast of complex treatment strategies that are sustained over time.

Causal inference relies on transparency of assumptions and on triangulation of results from methods that depend on different sets of assumptions. IV estimation is therefore an attractive approach because it depends on a different set of assumptions than other methods. However, because of the wide 95% confidence intervals typical of IV estimates, the value added by using this approach will often be small. Also, users of IV estimation need to be critically aware of the limitations of the method. While this statement obviously applies to any causal inference method, the potentially counterintuitive direction and magnitude of bias in IV estimation requires especial attention.
Monotonicity and the effect in the compliers. Consider a dichotomous causal instrument Z, like the randomization indicator described in the text, and treatment A. Imbens and Angrist (1994) proved that the usual IV estimand equals the average causal effect in the compliers $E \left[Y_{a=1} - Y_{a=0} | A_{z=1} - A_{z=0} = 1 \right]$ under monotonicity (iv), i.e., when no defiers exist. Baker and Lindeman (1994) had a related proof for a binary outcome. See also Angrist, Imbens, and Rubin (1996), and the associated discussion, and Baker, Kramer, and Lindeman (2016). A proof follows.

The intention-to-treat effect can be written as the weighted average of the intention-to-treat effects in the four principal strata:

$$E \left[Y_{z=1} - Y_{z=0} \right] = E \left[Y_{z=1} - Y_{z=0} | A_{z=1} = 1, A_{z=0} = 1 \right] \Pr \left[A_{z=1} = 1, A_{z=0} = 1 \right]$$

(always-takers)

$$+ E \left[Y_{z=1} - Y_{z=0} | A_{z=1} = 0, A_{z=0} = 0 \right] \Pr \left[A_{z=1} = 0, A_{z=0} = 0 \right]$$

(never-takers)

$$+ E \left[Y_{z=1} - Y_{z=0} | A_{z=1} = 1, A_{z=0} = 0 \right] \Pr \left[A_{z=1} = 1, A_{z=0} = 0 \right]$$

(compliers)

$$+ E \left[Y_{z=1} - Y_{z=0} | A_{z=1} = 0, A_{z=0} = 1 \right] \Pr \left[A_{z=1} = 0, A_{z=0} = 1 \right]$$

(defiers)

However, the intention-to-treat effect in both the always-takers and the never-takers is zero, because Z does not affect A in these two strata and, by individual-level condition (ii) of Technical Point 16.1, Z has no independent effect on Y. If we assume that no defiers exist, then the above sum is simplified to

$$E \left[Y_{z=1} - Y_{z=0} \right] = E \left[Y_{z=1} - Y_{z=0} | A_{z=1} = 1, A_{z=0} = 0 \right] \Pr \left[A_{z=1} = 1, A_{z=0} = 0 \right]$$

(compliers).

But, in the compliers, the effect of Z on Y equals the effect of A on Y (because $Z = A$), that is $E \left[Y_{z=1} - Y_{z=0} | A_{z=1} = 1, A_{z=0} = 0 \right] = E \left[Y_{a=1} - Y_{a=0} | A_{z=1} = 1, A_{z=0} = 0 \right]$. Therefore, the effect in the compliers is

$$E \left[Y_{a=1} - Y_{a=0} | A_{z=1} = 1, A_{z=0} = 0 \right] = \frac{E \left[Y_{z=1} - Y_{z=0} \right]}{\Pr \left[A_{z=1} = 1, A_{z=0} = 0 \right]}$$

which is the usual IV estimand if we assume that Z is randomly assigned, as random assignment implies $Z \perp \{ Y_{a,z}, A_{z}: z = 0, 1; a = 0, 1 \}$. Under this joint independence and consistency, the intention-to-treat effect $E \left[Y_{z=1} - Y_{z=0} \right]$ in the numerator equals $E \left[Y | Z = 1 \right] - E \left[Y | Z = 0 \right]$, and the proportion of compliers $\Pr \left[A_{z=1} = 1, A_{z=0} = 0 \right]$ in the denominator equals $\Pr \left[A = 1 | Z = 1 \right] - \Pr \left[A = 1 | Z = 0 \right]$. To see why the latter equality holds, note that the proportion of always-takers $\Pr \left[A_{z=0} = 1 \right] = \Pr \left[A = 1 | Z = 0 \right]$ and the proportion of never-takers $\Pr \left[A_{z=0} = 0 \right] = \Pr \left[A = 0 | Z = 1 \right]$. Since, under monotonicity (iv), there are no defiers, the proportion of compliers $\Pr \left[A_{z=1} = 1, A_{z=0} = 0 \right]$ is the remainder $1 - \Pr \left[A = 1 | Z = 0 \right] - \Pr \left[A = 0 | Z = 1 \right] = 1 - \Pr \left[A = 1 | Z = 0 \right] - (1 - \Pr \left[A = 1 | Z = 1 \right]) = \Pr \left[A = 1 | Z = 1 \right] - \Pr \left[A = 1 | Z = 0 \right]$, which completes the proof.

The above proof only considers the setting depicted in Figure 16.1 in which the instrument Z is causal. When, as depicted in Figures 16.2 and 16.3, data on a surrogate instrument Z—but not on the causal instrument U_Z—are available, Hernán and Robins (2006b) proved that the average causal effect in the compliers (defined according to U_Z) is also identified by the usual IV estimator. Their proof depends critically on two assumptions: that Z is independent of A and Y given the causal instrument U_Z, and that U_Z is binary. However, this independence assumption has often little substantive plausibility unless U_Z is continuous. A corollary is that the interpretation of the IV estimand as the effect in the compliers is questionable in many applications of IV methods to observational data in which Z is at best a surrogate for U_Z.

Technical Point 16.6

Causal Inference
In previous chapters we have been concerned with causal questions about the treatment effects on outcomes occurring at a particular time point. For example, we have estimated the effect of smoking cessation on weight gain measured in the year 1982. Many causal questions, however, are concerned with treatment effects on the time until the occurrence of an event of interest. For example, we may want to estimate the causal effect of smoking cessation on the time until death, whenever death occurs. This is an example of a survival analysis.

The use of the word “survival” does not imply that the event of interest must be death. The term “survival analysis”, or the equivalent term “failure time analysis”, is applied to any analyses about time to an event, where the event may be death, marriage, incarceration, cancer, flu infection, etc. Survival analyses require some special considerations and techniques because the failure time of many individuals may occur after the study has ended and is therefore unknown. This chapter outlines basic techniques for survival analysis in the simplified setting of time-fixed treatments.

17.1 Hazards and risks

Suppose we want to estimate the average causal effect of smoking cessation A (1: yes, 0: no) on the time to death T with time measured from the start of follow-up. This is an example of a survival analysis: the outcome is time to an event of interest that can occur at any time after the start of follow-up. In most follow-up studies, the event of interest is not observed to happen for all, or even the majority of, individuals in the study. This is so because most follow-up studies have a date after which there is no information on any individuals: the administrative end of follow-up. After the administrative end of follow-up, no additional data can be used. Individuals who do not develop the event of interest before the administrative end of follow-up have their survival time administratively censored, that is, we know that they survived beyond the administrative end of follow-up, but we do not know for how much longer. For example, let us say that we conduct the above survival analysis among the 1629 cigarette smokers from the NHEFS who were aged 25-74 years at baseline and who were alive through 1982. For all individuals, the start of follow-up is January 1, 1983 and the administrative end of follow-up is December 31, 1992. We define the administrative censoring time to be the difference between the date of administrative end of follow-up and date at which follow-up begins. In our example, this time the same—120 months—for all individuals because the start of follow-up and the administrative end of follow-up are the same for everybody. Of the 1629 individuals, only 318 individuals died before the end of 1992, so the survival time of the remaining 1311 individuals is administratively censored.

Administrative censoring is a problem intrinsic to survival analyses—studies of smoking cessation and death will rarely, if ever, follow a cohort of individuals until extinction—but administrative censoring is not the only type of censoring that may occur in survival analyses. Like any other causal analyses, survival analysis may also need to handle non-administrative types of censoring, such as...
Competing events. As described in Section 8.5, a competing event is an event (typically, death) that prevents the event of interest (e.g., stroke) from happening: individual who die from other causes (say, cancer) cannot ever develop stroke. In survival analyses, the key decision is whether to consider competing events a form of non-administrative censoring.

- If the competing event is considered a censoring event, then the analysis is effectively an attempt to simulate a population in which death from other causes is somehow either abolished or rendered independent of the risk factors for stroke. The resulting effect estimate is hard to interpret and may not correspond to a meaningful estimand (see Chapter 8). In addition, the censoring may introduce selection bias under the null, which would require adjustment (by, say, IP weighting) using data on the measured risk factors for the event of interest.

- If the competing event is not considered a censoring event, then the analysis effectively sets the time to event to be infinite. That is, dead individuals are considered to have probability zero of developing stroke between their death and the administrative end of follow-up. The estimate of the effect of treatment on stroke is hard to interpret because a non-null estimate may arise from a direct effect of treatment on death, which would prevent the occurrence of stroke.

An alternative to the handling of competing events is to create a composite event that includes both the competing event and the event of interest (e.g., death and stroke) and conduct a survival analysis for the composite event. This approach effectively eliminates the competing events, but fundamentally changes the causal question. Again, the resulting effect estimate is hard to interpret because a non-null estimate may arise from either an effect of treatment on stroke or on death. Another alternative is to restrict the inference to the principal stratum of individuals who would not die regardless of the treatment level they received. This approach targets a sort of local average effect, as defined in Chapter 16, which makes both interpretation and valid estimation especially challenging.

None of the above strategies provides a satisfactory solution to the problem of competing events. Indeed the presence of competing events raises logical questions about the meaning of the causal estimand that cannot be bypassed by statistical techniques. For a detailed description of approaches to handle competing events and their challenges, see the discussion by Young et al. (2019).

For simplicity, we assume that anyone without confirmed death survived the follow-up period. In reality, some individuals may have died but confirmation (by, say, a death certificate or a proxy interview) was not feasible. Also for simplicity, we will ignore the problem described in Fine Point 12.1.

as loss to follow-up (e.g., dropout from the study) and competing events (see Fine Point 17.1). In previous chapters we have discussed how to adjust for the selection bias introduced by non-administrative censoring via standardization or IP weighting. The same approaches can be applied to survival analyses. Therefore, in this chapter, we will focus on administrative censoring. We defer a more detailed consideration of non-administrative censoring to Part III of the book because non-administrative censoring is generally a time-varying process, whereas the time of administrative censoring is fixed at baseline.

In our example, the month of death T can take values subsequent from 1 (January 1983) to 120 (December 1992). T is known for 102 treated ($A = 1$) and 216 untreated ($A = 0$) individuals who died during the follow-up, and is administratively censored (that is, all we know is that it is greater than 120 months) for the remaining 1311 individuals. Therefore we cannot compute the mean survival $\E[T]$ as we did in previous chapters with the outcome of interest. Rather, in survival analysis we need to use other measures that can accommodate administrative censoring. Some common measures are the survival probability, the risk, and the hazard. Let us define these quantities, which are functions of the survival time T.

The survival probability $\Pr[T > k]$, or simply the survival at month k, is the proportion of individuals who survived through time k. If we calculate the
survivals at each month until the administrative end of follow-up \(k_{\text{end}} = 120 \) and plot them along a horizontal time axis, we obtain the survival curve. The survival curve starts at \(\Pr[T > 0] = 1 \) for \(k = 0 \) and then decreases monotonically—that is, it does not increase—with subsequent values of \(k = 1, 2, \ldots, k_{\text{end}} \). Alternatively, we can define risk, or cumulative incidence, at time \(k \) as one minus the survival \(1 - \Pr[T > k] = \Pr[T \leq k] \). The cumulative incidence curve starts at \(\Pr[T \leq 0] = 0 \) and increases monotonically during the follow-up.

In survival analyses, a natural approach to quantify the treatment effect is to compare the survival or risk under each treatment level at some or all times \(k \). Of course, in our smoking cessation example, a contrast of these curves may not have a causal interpretation because the treated and the untreated are probably not exchangeable. However, suppose for a second (actually, until Section 17.4) that quitters (\(A = 1 \)) and non-quitters (\(A = 0 \)) are marginally exchangeable. Then we can construct the survival curves shown in Figure 17.1 and compare \(\Pr[T > k|A = 1] \) versus \(\Pr[T > k|A = 0] \) for all times \(k \). For example, the survival at 120 months was 76.2% among quitters and 82.0% among non-quitters. Alternatively, we could contrast the risks rather than the survivals. For example, the 120-month risk was 23.8% among quitters and 18.0% among non-quitters.

At any time \(k \), we can also calculate the proportion of individuals who develop the event among those who had not developed it before \(k \). This is the hazard \(\Pr[T = k|T > k - 1] \). Technically, this is the discrete time hazard, that is, the hazard in a study in which time is measured in discrete intervals—as opposed to measured continuously. Because in real-world studies, time is indeed measured in discrete intervals (years, months, weeks, days...) rather than in a truly continuous fashion, here we will refer to the discrete time hazard as, simply, the hazard.

The risk and the hazard are different measures. The denominator of the risk—the number of individuals at baseline—is constant across times \(k \) and its numerator—all events between baseline and \(k \)—is cumulative. That is, the risk will stay flat or increase as \(k \) increases. On the other hand, the denominator of the hazard—the number of individuals alive at \(k \)—varies over time \(t \) and its numerator includes only recent events—those during interval \(k \). That is, the hazard may increase or decrease over time. In our example, the hazard at 120 months was 0% among quitters (because the last death happened at 113 months in this group) and 1/986 = 0.10% among non-quitters, and the hazard curves between 0 and 120 months had roughly the shape of a letter \(M \).

A frequent approach to quantify the treatment effect in survival analyses is to estimate the ratio of the hazards in the treated and the untreated, known as the hazard ratio. However, the hazard ratio is problematic for the reasons described in Fine Point 17.2. Therefore, the survival analyses in this book privilege survival/risk over hazard. However, that does not mean that we should completely ignore hazards. The estimation of hazards is often a useful intermediate step for the estimation of survivals and risks.

17.2 From hazards to risks

In survival analyses, there are two main ways to arrange the analytic dataset. In the first data arrangement each row of the database corresponds to one person. This data format—often referred to as the long or wide format when
there are time-varying treatments and confounders—is the one we have used so far in this book. In the analyses of the previous section, the dataset had 1629 rows, one per individual.

In the second data arrangement each row of the database corresponds to a person-time. That is, the first row contains the information for person 1 at \(k = 0\), the second row the information for person one at \(k = 1\), the third row the information for person 1 at \(k = 2\), and so on until the follow-up of person one ends. The next row contains the information of person 2 at \(k = 0\), etc. This person-time data format is the one we will use in most survival analyses in this chapter and in all analysis with time-varying treatments in Part III. In our smoking cessation example, the person-time dataset has 176, 764 rows, one per person-month.

To encode survival information through \(k\) in the person-time data format, it is helpful to define a time-varying indicator of event \(D_k\). For each person at each month \(k\), the indicator \(D_k\) takes value 1 if \(T \leq k\) and value 0 if \(T > k\). The causal diagram in Figure 17.2 shows the treatment \(A\) and the event indicators \(D_1\) and \(D_2\) at times 1 and 2, respectively. The variable \(U\) represents the (generally unmeasured) factors that increase susceptibility to the event of interest. Note that sometimes these susceptibility factors are time-varying too. In that case, they can be depicted in the causal diagram as \(U_0, U_1, \ldots\), and so on. Part III deals with the case in which the treatment itself is time-varying.

In the person-time data format, the row for a particular individual at time \(k\) includes the indicator \(D_{k+1}\). In our example, the first row of the person-time dataset, for individual one at \(k = 0\), includes the indicator \(D_1\), which is 1 if the individual died during month 1 and 0 otherwise; the second row, for individual one at \(k = 1\), includes the indicator \(D_2\), which is 1 if the individual died during month 2 and 0 otherwise; and so on. The last row in the dataset for each individual is either her first row with \(D_{k+1} = 1\) or the row corresponding to \(k+1\).

Using the time-varying outcome variable \(D_k\), we can define survival at \(k\) as \(\Pr [D_k = 0]\), which is equal to \(\Pr [T > k]\), and risk at \(k\) as \(\Pr [D_k = 1]\), which is equal to \(\Pr [T \leq k]\). The hazard at \(k\) is defined as \(\Pr [D_k = 1|D_{k-1} = 0]\). For \(k = 1\) the hazard is equal to the risk because everybody is, by definition, alive at \(k = 0\).

The survival probability at \(k\) is the product of the conditional probabilities of having survived each interval between 0 and \(k\). For example, the survival at \(k = 2\), \(\Pr [D_2 = 0]\), is equal to survival probability at \(k = 1\), \(\Pr [D_1 = 0]\), times the survival probability at \(k = 2\) conditional on having survived through \(k = 1\), \(\Pr [D_2 = 0|D_1 = 0]\). More generally, the survival at \(k\) is

\[
\Pr [D_k = 0] = \prod_{m=1}^{k} \Pr [D_m = 0|D_{m-1} = 0]
\]

That is, the survival at \(k\) equals the product of one minus the hazard at all previous times. If we know the hazards through \(k\) we can easily compute the survival at \(k\) (or the risk at \(k\), which is just one minus the survival).

The hazard at \(k\), \(\Pr [D_k = 1|D_{k-1} = 0]\), can be estimated nonparametrically by dividing the number of cases during the interval \(k\) by the number of individuals alive at the end of interval \(k-1\). If we substitute this estimate into the above formula the resulting nonparametric estimate of the survival \(\Pr [D_k = 0]\) at \(k\) is referred to as the Kaplan-Meier, or product-limit, estimator. Figure 17.1 was constructed using the Kaplan-Meier estimator, which is
The hazards of hazard ratios. When using the hazard ratio as a measure of causal effect, two important properties of the hazard ratio need to be taken into account.

First, because the hazards vary over time, the hazard ratio generally does too. That is, the ratio at time \(k \) may differ from that at time \(k + 1 \). However, many published survival analyses report a single hazard ratio, which is usually the consequence of fitting a Cox proportional hazards model that assumes a constant hazard ratio by ignoring interactions with time. The reported hazard ratio is a weighted average of the \(k \)-specific hazard ratios, which makes it hard to interpret. If the risk is rare and censoring only occurs at a common administrative censoring time \(k_{\text{end}} \), then the weight of the hazard ratio at time \(k \) is proportional to the total number of events among untreated individuals that occur at \(k \). (Technically, the weights are equal to the conditional density at \(k \) of \(T \) given \(A = 0 \) and \(T < k_{\text{end}} \).) Because it is a weighted average, the reported hazard ratio may be 1 even if the survival curves are not identical. In contrast to the hazard ratio, survival and risks are always presented as depending on time, e.g., the 5-year survival, the 120-month risk.

Second, even if we presented the time-specific hazard ratios, their causal interpretation is not straightforward. Suppose treatment kills all high-risk individuals by time \(k \) and has no effects on others. Then the hazard ratio at time \(k + 1 \) compares the treated and the untreated individuals who survived through \(k \). In the treated group, the survivors are all low-risk individuals (because the high-risk ones have already been killed by treatment); in the untreated group, the survivors are a mixture of high-risk and low-risk individuals (because treatment did not weed out the former). As a result the hazard ratio at \(k + 1 \) will be less than 1 even though treatment is not beneficial for any individual.

This apparent paradox is an example of selection bias due to conditioning on a post-treatment variable (i.e., being alive at \(k \)) which is affected by treatment. For example, the hazard ratio at time 2 is the probability \(\Pr[D_2 = 1 | D_1 = 0, A] \) of the event at time 2 among those who survived time 1. As depicted in the causal diagram of Figure 17.3, the conditioning on the collider \(D_1 \) will generally open the path \(A \rightarrow D_1 \leftarrow U \rightarrow D_2 \) and therefore induce an association between treatment \(A \) and event \(D_1 \) among those with \(D_1 = 0 \). This built-in selection bias of hazard ratios does not happen if the survival curves are the same in the treated and the untreated, that is, if there are no arrows from \(A \) into the indicators for the event. Hernán (2010) described an example of this problem.

Functions other than the logit (e.g., the probit) can also be used to model dichotomous outcomes and therefore to estimate hazards.

Fine Point 17.2

An excellent estimator of the survival curve, provided the total number of failures over the follow up period is reasonably large. Typically, the number of cases during each interval is low (or even zero) and thus the nonparametric estimates of the hazard \(\Pr[D_k = 1 | D_{k-1} = 0] \) at \(k \) will be very unstable. If our interest is in estimation of the hazard at a particular \(k \), smoothing via a parametric model may be required (see Chapter 11 and Fine Point 17.3).

An easy way to parametrically estimate the hazards is to fit a logistic regression model for \(\Pr[D_{k+1} = 1 | D_k = 0] \) that, at each \(k \), is restricted to individuals who survived through \(k \). The fit of this model is straightforward when using the person-time data format. In our example, we can estimate the hazards in the treated and the untreated by fitting the logistic model

\[
\logit \Pr[D_{k+1} = 1 | D_k = 0, A] = \theta_{0,k} + \theta_1 A + \theta_2 A \times k + \theta_3 A \times k^2
\]

where \(\theta_{0,k} \) is a time-varying intercept that can be estimated by some flexible function of time such as \(\theta_{0,k} = \theta_0 + \theta_4 k + \theta_5 k^2 \). The flexible time-varying intercept allows for a time-varying hazard and the product terms between treatment \(A \) and time \((\theta_2 A \times k + \theta_3 A \times k^2)\) allow the hazard ratio to vary over time. See Technical Point 17.1 for details on how a logistic model approximates a hazards model.

We then compute estimates of the survival \(\Pr[D_{k+1} = 0 | A = a] \) by multiplying the estimates of one minus the estimates of \(\Pr[D_{k+1} = 1 | D_k = 0, A = a] \) provided by the logistic model, separately for the treated and the untreated.

Figure 17.4 shows the survival curves obtained after parametric estimation of the hazards. These curves are a smooth version of those in Figure 17.1.
Fine Point 17.3

Models for survival analysis. Methods for survival analysis need to accommodate the expected censoring of failure times due to administrative end of follow-up.

Nonparametric approaches to survival analysis, like constructing Kaplan-Meier curves, make no assumptions about the distribution of the unobserved failure times due to administrative censoring. On the other hand, parametric models for survival analysis assume a particular statistical distribution (e.g., exponential, Weibull) for the failure times or hazards. The logistic model described in the main text to estimate hazards is an example of a parametric model.

Other models for survival analysis, like the Cox proportional hazards model and the accelerated failure time (AFT) model, do not assume a particular distribution for the failure times or hazards. In particular, these models are agnostic about the shape of the hazard when all covariates in the model have value zero—often referred to as the baseline hazard. These models, however, impose a priori restrictions on the relation between the baseline hazard and the hazard under other combinations of covariate values. As a result, these methods are referred to as semiparametric methods.

The validity of this procedure requires no misspecification of the hazards model. In our example, this assumption seems plausible because we obtained essentially the same survival estimates as in the previous section when we estimated the survival in a fully nonparametric way. A 95% confidence interval around the survival estimates can be easily constructed via bootstrapping of the individuals in the population.

17.3 Why censoring matters

The only source of censoring in our study is a common administrative censoring time $k_{\text{end}} = 120$ that is identical for all individuals. In this simple setting the procedure described in the previous section to estimate the survival is overkill. One can simply estimate the survival probabilities $\Pr[D_{k+1} = 0 | A = a]$ by the fraction of individuals who received treatment a and survived to $k + 1$, or by fitting separate logistic models for $\Pr[D_{k+1} = 0 | A]$ at each time, for $k = 0, 1, \ldots, k_{\text{end}}$.

Now suppose that individuals start the follow-up at different dates—there is staggered entry into the study—but the administrative end of follow-up date is common to all. Because the administrative censoring time is the difference between the administrative end of follow-up and the time of start of follow-up, different individuals will have different administrative censoring times. In this setting it is helpful to define a time-varying indicator C_k for censoring by time k. For each person at each month k, the indicator C_k takes value 0 if the administrative end of follow-up is greater than k and takes value 1 otherwise. In the person-time data format, the row for a particular individual at time k includes the indicator C_{k+1}. We did not include this variable in our dataset because $C_{k+1} = 0$ for all individuals at all times k before 120 months. In the general case with random (i.e., individual-specific) administrative censoring, the indicator C_{k+1} will transition from 0 to 1 at different times k for different people.

Our goal is to estimate the survival curve that would have been observed if nobody had been censored before k_{end}, where k_{end} is the maximum administra-
Approximating the hazard ratio via a logistic model. The (discrete-time) hazard ratio at time $k + 1$ is $\exp(\alpha_1)$ in the hazards model $\Pr[D_{k+1} = 1|D_k = 0, A = 1] = \Pr[D_{k+1} = 1|D_k = 0, A = 0] \times \exp(\alpha_1 A)$ if we take logs on both sides of the equation, we obtain $\log \Pr[D_{k+1} = 1|D_k = 0, A] = \alpha_{0,k} + \alpha_1 A$ where $\alpha_{0,k} = \log \Pr[D_{k+1} = 1|D_k = 0, A = 0]$. Suppose the hazard at $k + 1$ is small, i.e., $\Pr[D_{k+1} = 1|D_k = 0, A] \approx 0$. Then one minus the hazard at $k + 1$ is close to one, and the hazard is approximately equal to the odds: $\Pr[D_{k+1} = 1|D_k = 0, A] \approx \frac{\Pr[D_{k+1} = 1|D_k = 0, A]}{\Pr[D_{k+1} = 1|D_k = 0, A = 0]}$. We then have $\log \frac{\Pr[D_{k+1} = 1|D_k = 0, A]}{\Pr[D_{k+1} = 0|D_k = 0, A]} = \logit \Pr[D_{k+1} = 1|D_k = 0, A] \approx \alpha_{0,k} + \alpha_1 A$

That is, if the hazard is close to zero at $k + 1$, we can approximate the log hazard ratio α_1 by θ_1 in a logistic model $\logit \Pr[D_{k+1} = 1|D_k = 0, A] = \theta_{0,k} + \theta_1 A$ like the one we used in the main text. As a rule of thumb, the approximation is often considered to be accurate enough when $\Pr[D_{k+1} = 1|D_k = 0, A] < 0.1$ for all k.

This rare event condition can almost always be guaranteed to hold: we just need to define a time unit k that is short enough for $\Pr[D_{k+1} = 1|D_k = 0, A] < 0.1$. For example, if D_k stands for lung cancer, k may be measured in years; if D_k stands for infection with the common cold virus, k may be measured in days. The shorter the time unit, the more rows in the person-time dataset used to fit the logistic model.

tive censoring time in the study. That is, our goal is to estimate the survival $\Pr[D_k = 0|A = a]$ that would have been observed if the value of the time-varying indicators D_k were known even after censoring. Technically, we can also refer to this quantity as $\Pr[D_{\mathcal{E} = 0} = 0|A = a]$ where $\mathcal{E} = (c_1, c_2, \ldots, c_{k_{\text{end}}})$.

As discussed in Chapter 12, the use of the superscript $\mathcal{E} = \mathcal{O}$ makes explicit the quantity that we have in mind. We sometimes choose to omit the superscript \mathcal{E} when no confusion can arise. For simplicity, suppose that the time of start of follow-up was as if randomly assigned to each individual, which would be the case if there were no secular trends in any variable. Then the administrative censoring time, and therefore the indicator \mathcal{C}, is independent of both treatment and death time.

We cannot validly estimate this survival $\Pr[D_k = 0|A = a]$ at time k by simply computing the fraction of individuals who received treatment level a and survived and were not censored through k. This fraction is a valid estimator of the joint probability $\Pr[C_{k+1} = 1, D_{k+1} = 0|A = a]$, which is not what we want. To see why, consider a study with $k_{\text{end}} = 2$ and in which the following happens:

- $\Pr[C_1 = 0] = 1$, i.e., nobody is censored by $k = 1$
- $\Pr[D_1 = 0|C_1 = 0] = 0.9$, i.e., 90% of individuals survive through $k = 1$
- $\Pr[C_2 = 0|D_1 = 0, C_1 = 0] = 0.5$, i.e., a random half of survivors is censored by $k = 2$
- $\Pr[D_2 = 0|C_2 = 0, D_1 = 0, C_1 = 0] = 0.9$, i.e., 90% of the remaining individuals survive through $k = 2$

The fraction of uncensored survivors at $k = 2$ is $1 \times 0.9 \times 0.5 \times 0.9 = 0.405$. However, if nobody had been censored, i.e., if $\Pr[C_2 = 0|D_1 = 0, C_1 = 0] = 1$, the survival would have been $1 \times 0.9 \times 1 \times 0.9 = 0.81$. This example motivates how correct estimation of the survivals $\Pr[D_k = 0|A = a]$ requires
the procedures described in the previous section. Specifically, under (as if) randomly assigned censoring, the survival \(\Pr[D_k = 0 | A = a] \) at \(k \) is

\[
\prod_{m=1}^{k} \Pr[D_m = 0, D_{m-1} = 0, C_m = 0, A = a] \quad \text{for } k < k_{end}
\]

The estimation procedure is the same as described above except that we either use a nonparametric estimate of, or fit a logistic model for, the cause-specific hazard \(\Pr[D_{k+1} = 1 | D_k = 0, C_{k+1} = 0, A = a] \).

Often we are not ready to assume that censoring is as if randomly assigned. When there is staggered entry, an individual’s time of administrative censoring depends on the calendar time at study entry (later entries have shorter values of \(k_{end} \)) and calendar time may itself be associated with the outcome. Therefore, the above procedure will need to be adjusted for baseline calendar time. In addition, there may be other baseline prognostic factors that are unequally distributed between the treated \((A = 1)\) and the untreated \((A = 0)\), which also requires adjustment. The next sections extend the above procedure to incorporate adjustment for baseline confounders via g-methods. In Part III we extend the procedure to settings with time-varying treatments and confounders.

17.4 IP weighting of marginal structural models

When the treated and the untreated are not exchangeable, a direct contrast of their survival curves cannot be endowed with a causal interpretation. In our smoking cessation example, we estimated that the 120-month survival was lower in quitters than in non-quitters (76.2% versus 82.0%), but that does not necessarily imply that smoking cessation increases mortality. Older people are more likely to quit smoking and also more likely to die. This confounding by age makes smoking cessation look bad because the proportion of older people is greater among quitters than among non-quitters.

Let us define \(D_{k}^{a,\infty,l} = 0 \) as a counterfactual time-varying indicator for death at \(k \) under treatment level \(a \) and no censoring. For simplicity of notation, we will write \(D_{k}^{a,\infty,l} = 0 \) as \(D_{k}^{a} = 0 \) when, as in this chapter, it is clear that the goal is estimating the survival in the absence of censoring. For additional simplicity, in the remainder of this chapter we omit \(C_k = 0 \) from the conditioning event of the hazard at \(k \), \(\Pr[D_{k+1} = 0 | D_k = 0, L = l, A] \). That is, we write all expressions as if all individuals had a common administrative censoring time, like in our smoking cessation example.

Suppose we want to compare the counterfactual survivals \(\Pr[D_{k+1}^{a=1} = 0] \) and \(\Pr[D_{k+1}^{a=0} = 0] \) that would have been observed if everybody had received treatment \((a = 1)\) and no treatment \((a = 0)\), respectively. That is, the causal contrast of interest is

\[
\Pr[D_{k+1}^{a=1} = 0] \quad \text{vs.} \quad \Pr[D_{k+1}^{a=0} = 0]
\]

for \(k = 0, 2, \ldots, k_{end} - 1 \). Because of confounding, this contrast may not be validly estimated by the contrast of the survivals \(\Pr[D_{k+1} = 0 | A = 1] \) and \(\Pr[D_{k+1} = 0 | A = 0] \) that we described in the previous sections. Rather, a valid estimation of the quantities \(\Pr[D_{k+1}^{a=1} = 0] \) for \(a = 1 \) and \(a = 0 \) typically requires adjustment for confounders, which can be achieved through several methods. This section focuses on IP weighting.
Let us assume that the treated \((A = 1)\) and the untreated \((A = 0)\) are exchangeable within levels of the \(L\) variables, as represented in the causal diagram of Figure 17.5. Like in Chapters 12 to 15, \(L\) includes the variables sex, age, race, education, intensity and duration of smoking, physical activity in daily life, recreational exercise, and weight. We also assume positivity and consistency. The estimation of IP weighted survival curves has two steps.

First, we estimate the stabilized IP weight \(SW^A\) for each individual in the study population. The procedure is exactly the same as the one described in Chapter 12. We fit a logistic model for the conditional probability \(\text{Pr}[A = 1|L]\) of treatment (i.e., smoking cessation) given the variables in \(L\). The denominator of the estimated \(SW^A\) is \(\hat{\text{Pr}}[A = 1|L]\) for treated individuals and \((1 - \hat{\text{Pr}}[A = 1|L])\) for untreated individuals, where \(\hat{\text{Pr}}[A = 1|L]\) is the predicted value from the logistic model. The numerator of the estimated weight \(SW^A\) is \(\hat{\text{Pr}}[A = 1]\) for the treated and \((1 - \hat{\text{Pr}}[A = 1])\) for the untreated, where \(\hat{\text{Pr}}[A = 1]\) can be estimated nonparametrically or as the predicted value from a logistic model for the marginal probability \(\text{Pr}[A = 1]\) of treatment. See Chapter 11 for details on predicted values.

The application of the estimated weights \(SW^A\) creates a pseudo-population in which the variables in \(L\) are independent from the treatment \(A\), which eliminates confounding by those variables. In our example, the weights had mean 1 (as expected) and ranged from 0.33 to 4.21.

Second, using the person-time data format, we fit a hazards model like the one described in the previous section except that individuals are weighted by their estimated \(SW^A\). Technically, this IP weighted logistic model estimates the parameters of the marginal structural logistic model
\[
\logit \text{Pr}[D^a_{k+1} = 0|D^a_k = 0] = \beta_{0,k} + \beta_1 a + \beta_2 a \times k + \beta_3 a \times k^2
\]
That is, the IP weighted model estimates the time-varying hazards that would have been observed if all individuals in the study population had been treated \((a = 1)\) and the time-varying hazards if they had been untreated \((a = 0)\).

The estimates of \(\text{Pr}[D^a_{k+1} = 0|D^a_k = 0]\) from the IP weighted hazards models can then be multiplied over time (see previous section) to obtain an estimate of the survival \(\text{Pr}[D^a_{k+1} = 0]\) that would have been observed under treatment \(a = 1\) and under no treatment \(a = 0\). The resulting curves are shown in Figure 17.6.

In our example, the 120-month survival estimates were 80.7% under smoking cessation and 80.5% under no smoking cessation; difference 0.2% (95% confidence interval from -4.1% to 3.7% based on 500 bootstrap samples). Though the survival curve under treatment was lower than the curve under no treatment for most of the follow-up, the maximum difference never exceeded -1.4% with a 95% confidence interval from -3.4% to 0.7%. That is, after adjustment for the covariates \(L\) via IP weighting, we found little evidence of an effect of smoking cessation on mortality at any time during the follow-up. The validity of this procedure requires no misspecification of both the treatment model and the marginal hazards model.

17.5 The parametric g-formula

In the previous section we estimated the survival curve under treatment and under no treatment in the entire study population via IP weighting. To do
so, we adjusted for L and assumed exchangeability and positivity given L as well as well-defined interventions. Another method to estimate the marginal survival curves under those assumptions is standardization or, more generally, the parametric g-formula.

The g-formula to compute the survival \(\Pr[D_{k+1}^a = 0] \) at \(k + 1 \) under treatment level \(a \) is the weighted average of the survival conditional probabilities at \(k + 1 \) within levels of the covariates in \(L \) and treatment level \(A = a \), with the proportion of individuals in each level \(l \) of \(L \) as the weights. That is, the g-formula in the absence of censoring is just the standardized survival

\[
\sum_l \Pr[D_{k+1} = 0|L = l, A = a] \Pr[L = l]
\]

because we are working with time-fixed treatment \(A \) and confounders \(L \). For a formal proof, see Section 2.3.

Therefore the estimation of the parametric g-formula has two steps. First, we need to estimate the conditional survivals \(\Pr[D_{k+1} = 0|L = l, A = a] \) using our administratively censored data. Second, we need to compute their weighted average over all values \(l \) of the covariates \(L \). We describe each of these two steps in our smoking cessation example.

For the first step we fit a parametric hazards model like the one described in Section 17.2 except that the variables in \(L \) are included as covariates. If the model is correctly specified, it validly estimates the time-varying hazards \(\Pr[D_{k+1} = 1|D_k = 0, L, A] \) within levels of treatment \(A \) and covariates \(L \). The product of one minus the conditional hazards

\[
\prod_{m=0}^{k} \Pr[D_{m+1} = 0|D_m = 0, L = l, A = a]
\]

is equal to the conditional survival \(\Pr[D_{k+1} = 0|L = l, A = a] \). Because of conditional exchangeability given \(L \), the conditional survival for a particular set of covariate values \(L = l \) and \(A = a \) can be causally interpreted as the survival that would have been observed if everybody with that set of covariates had received treatment value \(a \). That is,

\[
\Pr[D_{k+1} = 0|L = l, A = a] = \Pr[D_{k+1}^a = 0|L = l]
\]

Therefore the conditional hazards can be used to estimate the survival curve under treatment \((a = 1) \) and no treatment \((a = 0) \) within each combination of values \(l \) of \(L \). For example, we can use this model to estimate the survival curves under treatment and no treatment for white men aged 61, with college education, low levels of exercise, etc. However, our goal is estimating the marginal, not the conditional, survival curves under treatment and under no treatment.

For the second step we compute the weighted average of the conditional survival across all values \(l \) of the covariates \(L \), that is, we standardize the survival to the confounder distribution. To do so, we use the method described in Section 13.3 to standardize means: standardization by averaging after expansion of dataset, outcome modeling, and prediction. This method can be used even when some the variables in \(L \) are continuous so that the sum over values \(l \) is formally an integral. The resulting curves are shown in Figure 17.7.

In our example, the survival curve under treatment was lower than the curve under no treatment during the entire follow-up, but the maximum difference never exceeded \(-2.0\%\) (95% confidence interval from \(-5.6\%\) to \(1.8\%\)). The 120-month survival estimates were 80.4% under smoking cessation and 80.6% under

In Chapter 12 we referred to models conditional on all the covariates \(L \) as faux marginal structural models.

Code: Program 17.4
The procedure is analogous to the one described in Chapter 13.
no smoking cessation; difference 0.2% (95% confidence interval from −4.6% to 4.1%). That is, after adjustment for the covariates L via standardization, we found little evidence of an effect of smoking cessation on mortality at any time during the follow-up. Note that the survival curves estimated via IP weighting (previous section) and the parametric g-formula (this section) are similar but not identical because they rely on different parametric assumptions: the IP weighted estimates require no misspecification of a model for treatment and a model for the unconditional hazards; the parametric g-formula estimates require no misspecification of a model for the conditional hazards.

17.6 G-estimation of structural nested models

The previous sections describe causal contrasts that compare survivals, or risks, under different levels of treatment A. The survival was computed from hazards estimated by logistic regression models. This approach is feasible when the analytic method is IP weighting of marginal structural models or the parametric g-formula, but not when the method is g-estimation of structural nested models. As explained in Chapter 14, structural nested models are models for conditional causal contrasts (e.g., the difference or ratio of covariate-specific means under different treatment levels), not for the components of those contrasts (e.g., each of the means under different treatment levels). Therefore we cannot estimate survivals or hazards using a structural nested model.

We can, however, consider a structural nested log-linear model to model the ratio of cumulative incidences (i.e., risks) under different treatment levels. _Structural nested cumulative failure time models_ do precisely that (see Technical Point 17.2), but they are best used when failure is a rare event because log-linear models do not naturally impose an upper limit of 1 on the risk. For non-rare failures, we can instead consider a structural nested log-linear model to model the ratio of cumulative survival probabilities (i.e., 1 − risk) under different treatment levels. _Structural nested cumulative survival time models_ do precisely that (see Technical Point 17.2), but they are best used when survival is rare because log-linear models do not naturally impose an upper limit of 1 on the survival. A more general option is to use a structural nested model that models the ratio of survival times under different treatment options. That is, an accelerated failure time (AFT) model.

Let T_i^{a} be the counterfactual time of survival for individual i under treatment level a. The effect of treatment A on individual i’s survival time can be measured by the ratio $T_i^{a=1}/T_i^{a=0}$ of her counterfactual survival times under treatment and under no treatment. If the survival time ratio is greater than 1, then treatment is beneficial because it increases the survival time; if the ratio is less than 1, then treatment is harmful; if the ratio is 1, then treatment has no effect. Suppose, temporarily, that the effect of treatment is the same for every individual in the population.

We could then consider the _structural nested accelerated failure time (AFT) model_ $T_i^a/T_i^{a=0} = \exp(-\psi_1 a)$, where ψ_1 measures the expansion (or contraction) of each individual’s survival time attributable to treatment. If $\psi_1 < 0$ then treatment increases survival time, if $\psi_1 > 0$ then treatment decreases survival time, if $\psi_1 = 0$ then treatment does not affect survival time. More generally, the effect of treatment may depend on covariates L so a more general structural AFT would be $T_i^a/T_i^{a=0} = \exp(-\psi_2 a L)$, with ψ_1 and ψ_2 (a vector) constant across individuals. Rearranging the terms, the model can be

The 'nested' component is only evident when treatment is time-varying. See Chapter 21.

The negative sign in front of ψ preserves the usual interpretation of positive parameters indicating harm and negative parameters indicating benefit.
Structural nested cumulative failure time (CFT) models and cumulative survival time (CST) models. For a time-fixed treatment, a (non-nested) structural CFT model is a model for the ratio of the counterfactual risk under treatment value \(a \) divided by the counterfactual risk under treatment value \(0 \) conditional on treatment \(A \) and covariates \(L \). The general form of the model is

\[
\Pr[D_k^a = 1|L, A] / \Pr[D_k^a = 0|L, A] = \exp[\gamma_k(L, A; \psi)]
\]

where \(\gamma_k(L, A; \psi) \) is a function of treatment and covariate history indexed by the (possibly vector-valued) parameter \(\psi \). For consistency, \(\exp[\gamma_k(L, A; \psi)] \) must be 1 when \(A = 0 \) because then the two treatment values being compared are identical, and when there is no effect of treatment at time \(m \) on outcome at time \(k \). An example of such a function is \(\gamma_k(L, A; \psi) = \psi A \) so \(\psi = 0 \) corresponds to no effect, \(\psi < 0 \) to beneficial effect, and \(\psi > 0 \) to harmful effect.

Analogously, for a time-fixed treatment, a (non-nested) structural CST model is a model for the ratio of the conditional cumulative failure under treatment value \(a \) divided by the counterfactual survival under treatment level \(0 \) conditional on treatment \(A \) and covariates \(L \). The general form of the model is

\[
\Pr[D_k^a = 0|L, A] / \Pr[D_k^a = 0|L, A] = \exp[\gamma_k(L, A; \psi)]
\]

Although CFT and CST models differ only in whether we specify a multiplicative model for \(\Pr[D_k^a = 1|L, A] \) versus for \(\Pr[D_k^a = 0|L, A] \), the meaning of \(\gamma_k(L, A; \psi) \) differs because a multiplicative model for risk is not a multiplicative model for survival, whenever the treatment effect is non-null. When we let the time index \(k \) be continuous rather than discrete, a structural CST model is equivalent to a structural additive hazards model (Tchetgen Tchetgen et al., 2015) as any model for \(\Pr[D_k^a = 0|L, A] / \Pr[D_k^a = 0|L, A] \) induces a model for the difference in the time-specific hazards of \(T^a \) and \(T^{a=0} \), and vice-versa.

The use of structural CFT models requires that, for all values of the covariates \(L \), the conditional cumulative probability of failure under all treatment values satisfies a particular type of rare failure assumption. In this “rare failure” context, the structural CFT model has an advantage over AFT models: it admits unbiased estimating equations that are differentiable in the model parameters and thus are easily solved. Page (2005) and Picciotto et al. (2012) provided further details on structural CFT and CST models. For a time-varying treatment, this class of models can be viewed as a special case of the multivariate structural nested mean model (Robins 1994). See Technical Point 14.1.

written as

\[T_i^{a=0} = T_i^a \exp(\psi_1 a + \psi_2 a L_i) \quad \text{for all individuals } i \]

Following the same reasoning as in Chapter 14, consistency of counterfactuals implies the model \(T_i^{a=0} = T_i \exp(\psi_1 A_i + \psi_2 A_i L_i) \), in which the counterfactual time \(T_i^a \) is replaced by the actual survival time \(T_i^a = T_i \). The parameters \(\psi_1 \) and \(\psi_2 \) can be estimated by a modified g-estimation procedure (to account for administrative censoring) that we describe later in this section.

The above structural AFT is unrealistic because it is both deterministic and rank-preserving. It is deterministic because it assumes that, for each individual, the counterfactual survival time under no treatment \(T_i^{a=0} \) can be computed without error as a function of the observed survival time \(T \), treatment \(A \), and covariates \(L \). It is rank-preserving because, under this model, if individuals \(i \) would die before individual \(j \) had they both been untreated, i.e., \(T_i^{a=0} < T_j^{a=0} \), then individual \(i \) would also die before individual \(j \) had they both been treated, i.e., \(T_i^{a=1} < T_j^{a=1} \).

Because of the implausibility of rank preservation, one should not generally
use methods for causal inference that rely on it, as we discussed in Chapter 14. And yet again we will use a rank-preserving model here to describe g-estimation for structural AFT models because g-estimation is easier to understand for rank-preserving models, and because the g-estimation procedure is actually the same for rank-preserving and non-rank-preserving models.

For simplicity, consider the simpler rank-preserving model $T_i^{a=0} = T_i \exp(\psi A_i)$ without a product term between treatment and covariates. G-estimation of the parameter ψ of this structural AFT model would be straightforward if administrative censoring did not exist, that is, if we could observe the time of death T for all individuals. In fact, in that case the g-estimation procedure would be the same as we described in Section 14.5. The first step would be to compute candidate counterfactuals $H_i(\psi^\dagger) = T_i \exp(\psi^\dagger A_i)$ under many possible values ψ^\dagger of the causal parameter ψ. The second step would be to find the value ψ^\dagger that results in a $H_i(\psi^\dagger)$ that is independent of treatment A in a logistic model for the probability of $A = 1$ with $H_i(\psi^\dagger)$ and the confounders L as covariates. Such value ψ^\dagger would be the g-estimate of ψ.

However, this procedure cannot be implemented in the presence of administrative censoring at time K because $H_i(\psi^\dagger)$ cannot be computed for individuals with unknown T_i. One might then be tempted to restrict the g-estimation procedure to individuals with an observed survival time only, i.e., those with $T_i \leq K$. Unfortunately, that approach results in selection bias. To see why, consider the following oversimplified scenario.

We conduct a 60-month randomized experiment to estimate the effect of a dichotomous treatment A on survival time T. Only 3 types of individuals participate in our study. Type 1 individuals are those who, in the absence of treatment, would die at 36 months ($T_i^{a=0} = 36$). Type 2 individuals are those who in the absence of treatment, would die at 72 months ($T_i^{a=0} = 72$). Type 3 individuals are those who in the absence of treatment, would die at 108 months ($T_i^{a=0} = 108$). That is, type 3 individuals have the best prognosis and type 1 individuals have the worst one. Because of randomization, we expect that the proportions of type 1, type 2, and type 3 individuals are the same in each of the two treatment groups $A = 1$ and $A = 0$. That is, the treated and the untreated are expected to be exchangeable.

Suppose that treatment $A = 1$ decreases the survival time compared with $A = 0$. Table 17.1 shows the survival time under treatment and under no treatment for each type of individual. Because the administrative end of follow-up is $K = 60$ months, the death of type 1 individuals will be observed whether they are randomly assigned to $A = 1$ or $A = 0$ (both survival times are less than 60), and the death of type 3 individuals will be administratively censored whether they are randomly assigned to $A = 1$ or $A = 0$ (both survival times are greater than 60). The death of type 2 individuals, however, will only be observed if they are assigned to $A = 1$. Hence an analysis that welcomes all individuals with non-administratively censored death times will have an imbalance of individual types between the treated and the untreated. Exchangeability will be broken because the $A = 1$ group will include type 1 and type 2 individuals, whereas the $A = 0$ group will include type 1 individuals only. Individuals in the $A = 0$ group will have, on average, a worse prognosis than those in the $A = 1$ group, which will make treatment look worse than it really is. This selection bias (Chapter 8) arises when treatment has a non-null effect on survival time.

To avoid this selection bias, one needs to select individuals whose survival time would have been observed by the end of follow-up whether they had been treated or untreated, i.e., those with $T_i^{a=0} \leq K$ and $T_i^{a=1} \leq K$. In our example, we will have to exclude all type 2 individuals from the analysis in order

<table>
<thead>
<tr>
<th>Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_i^{a=0}$</td>
<td>36</td>
<td>72</td>
<td>108</td>
</tr>
<tr>
<td>$T_i^{a=1}$</td>
<td>24</td>
<td>48</td>
<td>72</td>
</tr>
</tbody>
</table>

Table 17.1

Robins (1997b) described non-deterministic non-rank-preserving structural nested AFT models.
Technical Point 17.3

Artificial censoring. Let $K(\psi)$ be the minimum survival time under no treatment that could possibly correspond to an individual who actually died at time K (the administrative end of follow-up). For a dichotomous treatment A, $K(\psi) = \inf \{ K \exp (\psi A) \}$, which implies that $K(\psi) = K \exp (\psi \times 0) = K$ if treatment contracts the survival time (i.e., $\psi > 0$), $K(\psi) = K \exp (\psi \times 1) = K \exp (\psi)$ if treatment expands the survival time (i.e., $\psi < 0$), and $K(\psi) = K \exp (0) = K$ if treatment does not affect survival time (i.e., $\psi = 0$).

All individuals who are administratively censored (i.e., $T > K$) have $\Delta(\psi) = 0$ because there is at least one treatment level (the one they actually received) under which their survival time is greater than K, i.e., $H(\psi) \geq K(\psi)$. Some of the individuals who are not administratively censored (i.e., $T \leq K$) also have $\Delta(\psi) = 0$ and are excluded from the analysis—they are artificially censored—to avoid selection bias.

The artificial censoring indicator $\Delta(\psi)$ is a function of $H(\psi)$ and K. Under conditional exchangeability given L, all such functions, when evaluated at the true value of ψ, are conditionally independent of treatment A given the covariates L. That is, g-estimation of the AFT model parameters can be performed based on $\Delta(\psi)$ rather than $H(\psi)$. Technically, $\Delta(\psi)$ is substituted for $H(\psi)$ in the estimating equation of Technical Point 14.2. For practical estimation details, see the Appendix of Hernán et al (2005).

This exclusion of uncensored individuals from the analysis is often referred to as artificial censoring.

Code: Program 17.5

The point estimate of ψ is the value that corresponds to the minimum of the estimating function described in Technical Point 17.3.; the limits of the 95% confidence interval are the values that correspond to the value 3.84 (χ^2 with one degree of freedom) of the estimating function. to preserve exchangeability. That is, we will not only exclude administratively censored individuals with $T_i > K$, but also some uncensored individuals with known survival time $T_i \leq K$ because their survival time would have been greater than K if they had received a treatment level different from the one they actually received.

We then define an indicator $\Delta(\psi)$, which takes value 0 when an individual is excluded and 1 when she is not. The g-estimation procedure is then modified by replacing the variable $H(\psi^1)$ by the indicator $\Delta(\psi^1)$. See Technical Point 17.3 for details. In our example, the g-estimate $\hat{\psi}$ from the rank-preserving structural AFT model $T_i \overset{\psi=0}{\sim} T_i \exp (\psi A_i)$ was -0.047 (95% confidence interval: -0.223 to 0.333). The number $\exp (-\hat{\psi}) = 1.05$ can be interpreted as the median survival time that would have been observed if all individuals in the study had received $a = 1$ divided by the median survival time that would have been observed if all individuals in the study had received $a = 0$. This survival time ratio suggests little effect of smoking cessation A on the time to death.

As we said in Chapter 14, structural nested models, including AFT models, have rarely been used in practice. A practical obstacle for the implementation of the method is the lack of user-friendly software. An even more serious obstacle in the survival analysis setting is that the parameters of structural AFT models need to be estimated through search algorithms that are not guaranteed to find a unique solution. This problem is exacerbated for models with two or more parameters ψ. As a result, the few published applications of this method tend to use simplistic AFT models that do not allow for the treatment effect to vary across covariate values.

This state of affairs is unfortunate because subject-matter knowledge (e.g., biological mechanisms) are easier to translate into parameters of structural AFT models than into those of structural hazards models. This is especially true when using non-deterministic and non-rank preserving structural AFT models.