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Gradient, Cambridge, MA 
 

Abstract 

Meta-analyses offer a rigorous and transparent systematic framework for data synthesis that can 

be used for a wide range of research areas, study designs, and data types.  Both the outcome of 

meta-analyses and the meta-analysis process itself can yield insights to support scientific 

understanding and policy decision-making.  A variety of meta-analysis applications can be 

illustrated by evaluations that have been or could be conducted in the context of the National 

Ambient Air Quality Standards for criteria air pollutants, for which US EPA and others have 

conducted meta-analyses on data from epidemiology and controlled exposure studies.  These 

evaluations demonstrate the strengths and limitations of meta-analysis, issues that arise in 

addressing different data categories, how the choices made in conducting a meta-analysis can 

influence the interpretation of results, and how meta-analysis can be used to address bias and 

heterogeneity.  Meta-analyses have not been used as extensively to evaluate toxicity and 

mechanistic studies, but such analyses could be beneficial.  Reviewing available data from a 

meta-analysis perspective can provide a useful framework and impetus for identifying and 

refining strategies for future research.  Moreover, increased pervasiveness of a meta-analysis 

mindset – focusing on how the pieces of the research puzzle fit together – would be beneficial to 

scientific research and data syntheses regardless of whether the data are applied in a quantitative 

meta-analysis or not.  While an individual meta-analysis can only synthesize studies addressing 

the same research question, the results of separate meta-analyses can be combined to address a 

larger question where different kinds of data need to be brought to bear.  This is not only true for 

air pollution data, but for any scientific or policy area where information from a variety of 

disciplines must be considered to address a broader research question.   

 

Key words:  Meta-analysis, air pollutants, data synthesis, bias, heterogeneity. 
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1 Background 

A meta-analysis is a type of systematic review that can be a powerful tool for assembling, 

critically appraising, and synthesizing data from multiple individual studies.  Meta-analysis 

offers quantitative methods for combining multiple datasets addressing a specific research 

question to yield an overall "consensus" of the data (Egger et al., 2001).  A well-conducted meta-

analysis prepared following the steps illustrated in Figure 1.1 incorporates a number of key 

features that can help minimize bias, random errors, and subjectivity in data evaluations (CRD, 

2009).  These features include requirements for 1) a thorough literature search; 2) clear and 

transparent eligibility criteria for selecting studies to include in the analyses; 3) a standardized 

approach for critically appraising studies; 4) appropriate statistical calculations to assess 

comparisons and trends among study findings; and 5) evaluations of potential sources of 

heterogeneity and bias.  While some of these features can be incorporated into more qualitative, 

narrative systematic study reviews (reviewed by Rhomberg et al., 2013), the more rigorous, 

quantitative perspective on the study data inherent in the meta-analysis approach can foster a 

more in-depth evaluation of study results and the factors that influence findings.  Although a 

single meta-analysis is limited to evaluating only studies of similar design addressing a specific 

research question, the methodology is adaptable to a wide range of research areas, study designs, 

and data types.  Thus, it has the potential to play a valuable role in settings that require a 

comprehensive analysis incorporating data from multiple disciplines. 
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Figure 1.1  Steps of a Meta-analysis.  Adapted from CRD, 2009. 

 

Although data from individual studies can be combined to form one dataset and analyzed in what 

is called a pooled analysis, the original data from individual studies often are not readily 

available to other researchers.  A meta-analysis provides a way to combine results from 

individual studies when primary data are not available.  Relative to the individual studies 

comprising the meta-analysis, the greater statistical power of the combined data can yield a more 

precise estimate of the outcome being studied, reduce the possibility of false negative results, 

provide evidence regarding potential study biases, and generate insights regarding sources of 

observed heterogeneity or other patterns in study results (Blair et al., 1995).  In addition, 

combining results of individual studies can make them more generally applicable (e.g., across 

various populations) (Nordmann et al., 2012).  Overall, a soundly conducted meta-analysis can 

help researchers understand and reconcile apparent contradictions in study data (e.g., where 

available studies report positive and negative outcomes for the same endpoint). 

 

Step 1:  Identify the need for a review

Step 2:  Develop review protocol

Step 3:  Develop literature search strategy

Step 4:  Study selection

Step 5:  Data extraction

Step 6:  Quality assessment

Step 7:  Data synthesis

Step 8:  Report and recommendations

Step 9:  Apply evidence to practice
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A variety of meta-analysis applications can be illustrated by evaluations that have been or could 

be conducted in the context of developing the National Ambient Air Quality Standards 

(NAAQS) as mandated by the Clean Air Act (US EPA, 2012).  Reviewing data from a variety of 

disciplines (including epidemiology, toxicology, atmospheric science, and exposure science), US 

EPA develops NAAQS for six "criteria" air pollutants:  carbon monoxide (CO), lead, nitrogen 

dioxide (NO2), ozone (O3), particulate matter (PM), and sulfur dioxide (SO2).  As part of its most 

recent NAAQS review process, US EPA is using a modified Bradford Hill framework to 

characterize the weight-of-evidence (WoE) for causal determinations for each air pollutant and 

various human health and ecological outcomes.  For each substance, US EPA documents these 

evaluations in an Integrated Science Assessment (ISA) report.  Final ISAs have been completed 

for four of the criteria pollutants: CO (US EPA, 2010a), lead (US EPA, 2013a), O3 (US EPA, 

2013b), and PM (US EPA, 2009a).  The current review processes for NO2 (US EPA, 2013c) and 

SO2 (US EPA, 2013d) are in the early stages.   

 

US EPA and others have used meta-analyses to assess a limited amount of the data supporting 

the NAAQS determinations – primarily data from epidemiology and controlled exposure studies 

(see, e.g., US EPA, 2008; Goodman et al., 2009).  However, other types of supporting data (e.g., 

toxicology and mechanistic data) have not been evaluated routinely using meta-analysis, and 

additional opportunities exist to use this methodology.  Drawing upon relevant examples from air 

pollutant research, this paper discusses how meta-analysis has been used to integrate results from 

individual studies within specific research areas (e.g., studies addressing a specific health 

endpoint), with a focus on identifying innovative applications of the methodology.  In particular, 

we examine the strengths and limitations of meta-analyses that have been conducted and identify 

opportunities for refinements to existing meta-analyses or expanding use of this methodology to 

other data types.  Although our focus is on air pollutant evaluations, we also address 1) when and 

with what kinds of data meta-analyses can be useful across a variety of disciplines, 2) the 

implications of certain design choices on the results of individual meta-analyses, and 3) how 

meta-analysis considerations can enhance the design and implementation of new research efforts.  

We also discuss how the results of separate meta-analyses can be brought together to address a 

larger question (e.g., causation determination) where findings from a variety of data types and 

research areas need to be integrated.    
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2 Controlled Exposure Studies 

In controlled exposure studies, people with regulated activity levels are exposed to known 

concentrations of substances, such as air pollutants, under carefully controlled environmental 

conditions in exposure chambers (US EPA, 2008).  This exposure method minimizes possible 

confounding by other factors, and sensitive experimental techniques can be used to measure 

health effects (and markers of injury) that are generally not evaluated in observational 

epidemiology studies.  The types of effects commonly studied in controlled exposure studies 

include reversible, acute effects from short-duration exposures that are easily measured and can 

be described as categorical or continuous variables (McDonnell, 1993).  Controlled exposure 

studies often provide important information on health effects, quantitative exposure-response 

relationships, and the biological plausibility of associations identified in observational studies, as 

well as insights regarding sensitive subpopulations.   

 

Although controlled exposure studies, by definition, allow for substantial control over 

experimental study conditions, such studies (particularly those of criteria pollutants) have a 

number of features that affect the interpretation of results (US EPA, 2008).  First, subjects must 

be healthy enough to participate in the study (and the health effects evaluated must be transient, 

reversible, and not severe).  Therefore, the results may underestimate the health effects of 

exposure for certain sensitive subpopulations and will not reflect effects that are persistent or 

occur following chronic exposures.  Second, these studies often use concentrations that are 

higher than those normally present in ambient air, so any effects seen may not occur at the lower 

concentrations people typically experience.  Third, these studies generally are conducted on a 

relatively small number of subjects, reducing the power of each study to detect statistically 

significant differences in the health outcomes of interest.  Despite these limitations, controlled 

exposure studies are generally good candidates for meta-analysis because they often have 

homogeneous study designs and address the same question.  In fact, the small number of subjects 

per study makes meta-analysis a very important tool to evaluate these studies as a whole.  

 

The current NAAQS determinations for O3, SO2, and NO2 are based largely on controlled 

exposure study results, in addition to results from observational epidemiology studies.  To date, 

NO2 is the only criteria pollutant for which US EPA has conducted a meta-analysis of controlled 
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exposure studies.  In its 2008 Integrated Science Assessment of Oxides of Nitrogen, US EPA 

evaluated the effects on airway responsiveness to nonspecific challenge agents (e.g., carbechol, 

cold-dry air, histamine, methacholine) following NO2 exposure in people with mild asthma (US 

EPA, 2008).  US EPA classified individuals as either having an increase or decrease in airway 

response based on one of three measures [i.e., specific airway conductance (sGaw), specific 

airway resistance (sRaw), and forced expiratory volume in 1 second (FEV1)] and then conducted 

a meta-analysis to determine whether the percentage of people with lung function decrements 

was greater if they were exposed to NO2 (US EPA, 2008). 

 

Altogether, the analysis included data from 17 studies of 355 asthmatics with 1-hour exposures 

ranging from 0.1-0.6 ppm NO2.  US EPA evaluated the combined data and data stratified by 

exposure level (0.1, 0.1-0.2, 0.2-0.3, and >0.3 ppm) and activity level (rest vs. exercise).  US 

EPA reported that NO2 was not associated with airway hyperresponsiveness (AHR) in people 

exposed while exercising, but it was associated with AHR in people exposed at rest at all 

exposure levels (although exposure-response was not evaluated specifically).  US EPA's overall 

conclusion was that 60-minute exposures to ≥0.1  ppm NO2 were associated with small but 

significant increases in nonspecific AHR in people with mild asthma.  In the Final Rule for NO2, 

US EPA (2010b) stated that it was appropriate to consider NO2-induced AHR in characterizing 

NO2-associated health risks; it based the 1-hour NAAQS of 0.1 ppm largely on this analysis, its 

evaluation of pertinent observational epidemiology literature, and consideration of a potential 

shift in the distribution of health effects of NO2 at the population level. 

 

US EPA reported heterogeneity in the responses among asthmatics exposed to NO2.  This 

variation may reflect differences in individual subjects and exposure protocols (e.g., use of 

mouthpieces vs. chambers to administer exposures, evaluation of effects during rest vs. exercise, 

participation by obstructed vs. non-obstructed asthmatics, and varying use of medications by 

participants) (US EPA, 2008).  US EPA did not quantitatively evaluate the possible impact of 

any these variables on the observed responses, except for comparing results based on activity 

level in a limited fashion (based on the observation that responsiveness to NO2 is often greater 

following rest than exercise).  
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Subsequent evaluations of the NO2-controlled exposure studies in humans illustrate how more 

refined meta-analyses (assessing the strength of responses), as well as meta-regressions (formally 

assessing dose-response relationships), can enhance insights regarding the quantitative 

relationship between NO2 exposures and several specific AHR measures and particular factors 

influencing exposure-response associations (Goodman et al., 2009).  Similar to US EPA, 

Goodman et al. (2009) evaluated the effects of NO2 exposure (at concentrations ranging from 

0.1-0.6 ppm) on AHR to airway challenges in a total of 570 asthmatics in 28 controlled exposure 

studies (Goodman et al., 2009).  This meta-analysis included studies of both specific and 

nonspecific responsiveness, and it stratified analyses by airway challenge (specific/nonspecific), 

exposure method (mouthpiece/whole chamber), and activity during exposure (rest/exercise), as 

all of these factors have been demonstrated to affect AHR (Cockcroft et al., 2005; Cockcroft and 

Davis, 2006).   

 

The primary difference between the US EPA (2008) and Goodman et al. (2009) analyses is that 

while US EPA (2008) evaluated only the percent of people with decreased AHR, Goodman et al. 

(2009) also evaluated the magnitude of the change in AHR following NO2 (vs. filtered air) 

exposure.  Magnitude was assessed by evaluating measurements of 1) the provocative dose of a 

challenge agent necessary to cause a specified change in lung function and 2) the change in FEV1 

after an airway challenge (e.g., Figure 2.1).  Goodman et al. (2009) concluded that although 

several effect estimates from the meta-analyses were statistically significant, they were very 

small and not likely to be clinically relevant based on US EPA (2007, 2009b) criteria for what 

constitutes moderate or severe outcomes.  Exposure-response associations – assessed by meta-

regression and evaluating effects stratified by exposure level (0.1-0.2, 0.2-0.3 ppm, etc.) for the 

fraction of asthmatics with greater AHR following NO2 exposure – were not statistically 

significant in the overall or stratified analyses (e.g., Figure 2.2).    
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Figure 2.1  Forest Plot Showing the Difference in Responses to Airway Challenge Provocative Doses 

Following Exposure of Asthmatics to NO2 vs. Air.  This figure illustrates the types of meta-analysis 

findings that can be graphically illustrated in a forest plot, e.g., the average change per dose from each 

study (the central dots within the squares), the proportional weights used in each meta-analysis (the 

squares), and summary measures and confidence intervals for each dose level and the overall study (the 

center lines and lateral tips of the diamonds).  The results from individual studies and study 

combinations can be compared with the vertical lines (with the solid line indicating no effect and the 

dotted line indicating the overall summary measure) to assess such observations as whether results are 

consistent across studies or whether a dose-response relationship appears to exist.  Adapted from 

Goodman et al. (2009). 
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Figure 2.2  Association Between NO2 Exposure and Airway Hyper-responsiveness in Asthmatics Based 

on Meta-regressions for the Difference Between Airway Challenge Provocative Dose Following 

Exposure to NO2 vs. Air.  This figure illustrates the use of a bubble plot to display meta-regression 

results.  Each circle represents the findings from one study at a given exposure, while the area of each 

circle is proportional to the weight given to each measure in the meta-regression.  Adapted from 

Goodman et al. (2009). 

 

Compared to the Goodman et al. (2009) methodology, the US EPA (2008) approach was able to 

combine a greater number of studies in each meta-analysis because it did not use specific 

outcome measurements (e.g., the magnitude of the change in a specific lung function measure, 

such as FEV1) but, rather, transformed each outcome to a binary variable (i.e., an increase or 

decrease in AHR based on any one of several possible measures).  However, the US EPA (2008) 

approach did not provide a means to evaluate the magnitude of effect or whether the magnitude 

of effect increased as exposure increased (i.e., exposure-response).  As a result, US EPA (2008) 
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was unable to fully evaluate causation or assess whether effects were indicative of homeostasis 

or more likely to indicate adversity.  As the NAAQS are intended to protect against adverse 

effects, the types of insights into causation and effect adversity afforded by the refined meta-

analysis and meta-regression approach clearly have the potential to play an important role in 

quantifying protective standards.  In particular, meta-regression is a powerful tool that has been 

underutilized to date; as illustrated above, greater use of meta-regression and more refined meta-

analysis approaches in interpreting data from controlled exposure studies would provide greater 

insights into the quantitative nature of exposure-response relationships, as well as the key factors 

influencing such relationships.  Such insights are particularly helpful when assessing whether 

observed statistically significant associations are causal and whether the observed effects 

constitute adverse impacts.  

 

Meta-analyses of controlled exposure studies have not yet played a role in NAAQS evaluations 

of other criteria air pollutants.  For O3, several controlled human exposure studies have evaluated 

associations between exposure and adverse effects on lung function (e.g., Adams, 2002, 2006; 

Schelegle et al., 2009; Kim et al., 2011), the majority of which reported no statistically 

significant changes after 6.6-hour exposures (with moderate exercise) to up to 0.06 ppm O3.  

Because they are fairly homogeneous, in theory, a meta-analysis could be used to increase the 

power to detect whether there are statistically significant effects.  Unfortunately, the publications 

from these studies do not provide sufficient data to do so. 

 

In these studies, healthy young adults were exposed to O3 while exercising for up to 6.6 hours.  

Their lung functions were measured at several time points; however, not all publications of these 

studies provided effects data for each time point.  Omitting the data from the intermediate time 

points complicates interpretation of the results (e.g., by preventing researchers from evaluating 

the possibility of false positive findings).  There is always a chance that a statistical comparison 

will make it appear that a true difference exists when, in fact, it does not (i.e., a false positive), 

and the chance of obtaining a false positive result increases with an increased number of 

statistical comparisons.  Similarly, in the absence of complete data, scientists conducting meta-

analyses cannot determine whether a statistically significant result is causal or simply a result of 

unaccounted for multiple comparisons and/or selection bias in the underlying studies.  More 
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complete data would also allow researchers to better evaluate other aspects of the study (e.g., the 

effects of exercise on the study observations). 

 

Overall, the more focused nature of study conditions in controlled exposure studies enhances 

researchers' ability to design studies with greater consistency, making meta-analysis a 

particularly attractive tool for synthesizing findings from such studies.  However, as illustrated in 

the examples presented above, the reporting choices in the original study and the meta-analysis 

design can affect the interpretation of findings.  For example, if the authors of individual studies 

provide only a subset of the available data, subsequent syntheses of those data will be hampered 

and may yield biased results.  Moreover, even when more complete information is available, 

meta-analyses of the same or similar studies on a specific topic can be interpreted differently, 

depending on how the meta-analyses are conducted.  Important factors that can affect 

interpretation include which studies are included in the analysis, the overall size of the dataset, 

the specific exposure conditions that are evaluated, how outcomes are measured, how an 

outcome is considered in the analysis (e.g., whether measurements are transformed), the 

approaches used to assess how various factors influence specific outcome measures, and how 

exposure-response analyses are conducted (e.g., using meta-regression).   

 

Because controlled exposure studies play such an important role in US EPA's NAAQS 

determinations, the use of appropriate and rigorous methodologies to analyze such data is 

critical.  Even in a relatively homogeneous class of studies such as controlled exposure studies, 

significant differences can exist amongst studies in the data that are collected, analyzed, and 

reported.  Such differences can affect choices that must be made in designing and implementing 

meta-analyses, and those choices have consequences for interpreting results.   

 

3 Observational Epidemiology Studies 

Observational epidemiology studies explore the relationships between exposures and health 

outcomes in various populations, including the general population and population groups within 

specific exposure settings (e.g., workplaces).  In contrast to controlled exposure studies, potential 

associations between exposures and outcomes are evaluated in "real world" settings in 

observational epidemiology studies.  As a result, researchers have far less control over study 
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conditions and a greater degree of heterogeneity is inherent both within and among these studies 

(e.g., in population demographics and health status, types and nature of participants' exposures, 

measures of exposures and effects, and types and extent of confounding).  Efforts to synthesize 

findings across observational studies are also complicated by the frequent lack of standardized 

approaches for presenting study methods and results, as well as the increasingly complex 

statistical methods used to analyze such data.  While this inherent heterogeneity makes it 

challenging to synthesize study results, it also highlights the importance of applying tools such as 

meta-analysis to better understand and quantify, where possible, the bases for observed 

differences in study results (e.g., Stroup et al., 2000).  In addition, when data from observational 

studies are applied in decision-making contexts, their heterogeneous nature presents more 

choices in selecting specific research areas warranting synthesis, more need to determine areas 

where information synthesis will have the greatest impact on policy decision-making, and more 

potential benefit in making the available literature more understandable. 

 

One aspect of the heterogeneity of observational epidemiology studies is the range of study 

designs that have been applied, including time-series, cross-sectional, cohort, case-control, case-

crossover, and panel studies.  These study designs have been used to assess both acute and 

chronic health effects associated with criteria air pollutants across a range of exposure durations.  

For example, standard cross-sectional studies examine exposure and outcome measures 

reflecting a single point in time, time-series studies examine exposure-response associations at 

multiple points over short time periods (e.g., days), and cohort studies typically follow study 

populations over long time periods (e.g., years or decades).  In many cases, the studies are 

"opportunistic"; i.e., they are designed around data sources collected for other purposes, such as 

data from fixed-site air monitors located across the US used to assess regulatory compliance.  

Study designs can also vary with respect to exposure measures, e.g., the averaging time used to 

calculate air concentrations or the lag time between exposure and response measurement. 

 

Ecological time-series studies are often used to assess health effects of short-term exposures to 

air pollutants.  In these studies, daily population-averaged pollution exposure estimates are 

compared with daily population-averaged health outcome event counts (e.g., hospital admissions, 

emergency department visits, disease incidence or prevalence, and mortality).  The relative rate 
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of the endpoint (e.g., percent increase in mortality per unit increase in daily air pollution) is often 

calculated using either Generalized Additive Models (GAM) or Generalized Linear Models 

(GLMs), two statistical modeling approaches that differ in their degree of flexibility and how 

confounding factors (such as effects of seasonality trends and weather variables) can be 

addressed (Dominici et al., 2003).  Different effect estimates have been observed depending on 

the methodology used.  Cohort studies, such as the American Cancer Society (ACS) Cancer 

Prevention Study, are commonly employed to assess health effects from long-term exposures 

(e.g., Jerrett et al., 2009;Krewski et al., 2009).  Inferences from these studies are based on 

differences in pollution levels between cities, as opposed to day-to-day differences in pollution 

levels in a single city.  Any factor that varies from city to city could be a potential confounder, 

including socioeconomic and lifestyle factors, making controlling for confounding particularly 

challenging.   

 

For lead, many observational epidemiology studies have focused on effects associated with 

chronic exposures.  Many such studies are cross-sectional in design, examining exposure and 

outcome data from individual studies or other sources (e.g., the National Health and Nutrition 

Examination Survey; NHANES).  Cohort studies of lead effects have also been conducted, 

including a set of studies initiated in the early 1980s that were conducted with some degree of 

coordination to enhance comparisons and synthesis of results (US EPA, 2013a; Bornschein and 

Rabinowitz, 1985).   

 

For a number of criteria air pollutants (e.g., PM, SO2 and NO2), US EPA has focused its 

evaluations on health effects related to respiratory effects, cardiovascular effects, reproductive 

and developmental effects, cancer, and mortality.  Within these general categories, US EPA has 

evaluated many specific endpoints.  For example, for respiratory effects associated with PM2.5 

(particulate matter <2.5 µm in diameter), studies have evaluated asthma, pulmonary function, 

respiratory symptoms, hospital admissions and emergency department visits, as well as markers 

of pulmonary inflammation or injury (US EPA, 2009a).  In the case of lead, US EPA has 

assessed its potential causal role in 25 types of health effects in seven categories of organ 

systems or effects (US EPA, 2013a).    
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An important source of heterogeneity is in approaches used to estimate exposure.  For example, 

because the composition and particle size distribution of different types of PM vary, studies can 

focus on specific types of PM (e.g., diesel exhaust particles), PM source areas (e.g., urban or 

rural settings), or specific size fractions [e.g., total suspended PM, particulate matter <10 µm 

(PM10), or PM2.5].  Because these different types of PM may not be comparable, it is not always 

appropriate to combine studies that evaluate them.  Some researchers have applied conversion 

factors (e.g., to convert PM10 to PM2.5) to address this problem (e.g., Stieb et al. 2002). 

 

Heterogeneity can also arise from the way in which exposure duration is averaged; e.g., health 

effects of O3 exposures have been evaluated based on a daily average, a daily maximum 8-hr 

average, or a daily 1-hr maximum.  Results based on different exposure estimates cannot easily 

be combined.  To address this issue in meta-analyses, some researchers have used conversion 

factors to derive estimates reflecting a uniform averaging time (e.g., Bell et al., 2005).  These 

conversion factors, however, have been shown to introduce error and distort observed pollution 

patterns, and they can result in biased health effect estimates (Anderson and Bell, 2010).  

 

Among the criteria pollutants, estimating exposure is particularly challenging for lead.  As a 

result of historical lead uses and environmental distribution, lead exposures can occur via 

numerous environmental media in addition to air (e.g., soil or drinking water), and historical as 

well as stored sources (e.g., bone lead) from past exposure are relevant for exposure assessment.  

In addition, exposure modeling for lead (e.g., to assess potential impacts of air emissions on 

human exposures) is a multi-step and multi-faceted process.  Moreover, because most 

epidemiological studies assess lead exposure levels based on biomonitoring data (e.g., blood lead 

levels), which reflect an integrated measure of lead exposures across media and time frames, 

studies reflecting exposures from a range of sources (e.g., including dietary or drinking water 

sources) are relevant in health evaluations for lead.  Thus, the exposure characterization for lead 

encompasses a diverse spectrum of potential sources, measurement methods, and modeling 

approaches. 
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3.1 Meta-analysis Applications 

Meta-analyses and related data synthesis methods have played an increasingly important role in 

NAAQS evaluations of observational epidemiology studies.  Such analyses include traditional 

meta-analyses, e.g., where published results from air pollution studies conducted in individual 

cities are combined using meta-analytical methods to obtain a summary estimate.  Air pollution 

research also includes multi-city studies, where a common analytic framework is used for 

estimating city-specific effects.  Applying similar techniques to those used in meta-analysis, 

these effects are then combined to obtain a summary estimate of effects across all cities.1  Both 

approaches are particularly useful in exploring sources and impacts of heterogeneity, increasing 

statistical power to detect effects, yielding overall effect estimates that may be more 

generalizable, and constructing concentration-response functions that can be used in risk 

assessments.   

 

The largest multi-city time-series study that has been conducted in the US is the National 

Morbidity, Mortality and Air Pollution Study (NMMAPS) (Samet et al., 2000).  Using data 

collected in 90 cities, researchers examined associations between short-term exposures to air 

pollutants (including PM10, PM2.5, and O3) and mortality (Bell et al., 2007; Bell and Dominici, 

2008; Smith et al., 2009; Stylianou and Nicholich, 2009).  The results have been assessed in the 

context of city-specific, regional, and national impacts of air pollution on health (e.g., 

Figure 3.1).  Specifically, semi-parametric regression statistical models (e.g., GAMs or GLMs) 

have been used to estimate city-specific effects; researchers have then applied hierarchical 

statistical models to estimate national effects, develop concentration-response functions, and 

evaluate sources of heterogeneity across cities.  

 

In addition to the multi-city studies, several reviews and meta-analyses of air pollution 

epidemiology studies have been conducted, primarily of time-series mortality studies (e.g., 

Schwartz, 1994; Stieb et al., 2002, 2003; Dominici et al., 2003; Bell et al., 2005; Ito et al., 2005; 

Levy et al., 2005).  Some of these studies evaluated the health impacts of several air pollutants 

                                                      
1 In the multi-city studies, the hierarchical data set includes subjects within cities on the first level and cities in the second level.  
These types of multi-level analyses allow for using study characteristics as potential explanatory variables that can shed light on 
differences in study outcomes.  
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(e.g., PM10, SO2, NO2, CO, and O3), both independently and in the multi-pollutant context (e.g., 

Stieb et al. 2002).  Others have focused on only one specific pollutant (e.g., O3) but considered 

the potential impacts of confounding co-pollutants (e.g., PM) (e.g., Bell et al., 2005, Levy et al., 

2005).  Overall, these reviews have explored the role of confounding factors in exposure-

outcome relationships, identified systematic approaches for selecting time-series studies and 

extracting data for meta-analysis, and evaluated the relative merits of various statistical models 

used to analyze time-series data (i.e., the GLM and GAM) and the degree to which these models 

accurately estimate health effects.   

 

For the past 20 years, researchers have used meta-analysis to synthesize diverse aspects of the 

lead literature, including studies addressing health effects [e.g., neurocognitive effects (Kaufman, 

2001), behavioral effects (Goodlad et al., 2013), cardiovascular effects such as blood pressure 

impacts (Navas-Acien et al., 2008), and cancer (Fu and Boffetta, 1995)], potential effect markers 

[e.g., genetic polymorphisms for δ-aminolevulinic acid dehydratase, an enzyme involved in 

heme biosynthesis (ALAD); Scinicariello et al., 2007], and exposure issues such as effectiveness 

of exposure reduction interventions (Yeoh et al., 2012).  These analyses have yielded estimates 

of the associations between lead exposure and various outcomes, odds or risk ratios, and 

concentration- or dose-response relationships.  

 

Overall, meta-analyses (and multi-city studies) of observational epidemiology studies are but one 

component of US EPA's descriptive discussions of specific health endpoints in US EPA's 

NAAQS evaluations.  For example, for lead, meta-analyses have been included in discussions of 

findings regarding blood pressure (Navas-Acien et al., 2008) and conduct disorder (Marcus et 

al., 2010).  For several other criteria air pollutants (e.g., PM and O3), multi-city studies have 

played a fundamental role in policy decisions regarding the NAAQS.  The effort to date to 

address the challenges of the diverse air pollution health effects literature in the context of 

NAAQS development provides opportunities to learn from previous applications of meta-

analysis techniques and identify ways that this technique could be used more systematically and 

effectively in the future. 
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Figure  3.1  Percent Increase in Total Mortality Associated with a 10 μg/m3 Increase in PM10 in 90 NMMAPS Cities, with 95% Confidence 

Intervals and Grouped by Region.  This figure illustrates another approach to displaying meta-analysis results using a forest plot.  The open 

circles represent specific cities.  Summary estimates based on two methodologies are shown, in bold, to the right of the individual city results for 

each region (as delineated by the dotted lines) and for national estimates (shown on the far right).  Adapted from Samet et al. (2000).   
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3.2 Meta-analysis Interpretation Issues 

Like the meta-analyses conducted using NO2 controlled exposure studies, the observational 

epidemiology literature for criteria air pollutant substances contains examples of how differences 

in meta-analysis choices and approaches can yield different results and interpretations.  As 

illustrated below, two key issues to consider when interpreting the findings from meta-analyses 

are bias and heterogeneity.   

 

3.2.1 Bias 

The applications of meta-analysis in air pollutant research reflect the importance of careful 

consideration of potential bias in study data collection, presentation, analysis, and synthesis.  For 

example, the meta-analyses of O3 time-series studies illustrate how bias can be introduced into 

data evaluations by the choice of averaging time or lag period between exposure and effect that 

is used in analyzing and reporting the study results (i.e., selection bias).  Analyses have shown 

that reported effect estimates can be biased if researchers choose to report time-series study 

results based on the averaging time or lag time that is most significant across studies, rather than 

choosing to analyze the data based on a single consistent averaging time or lag time for all 

studies.  For example, both Levy et al. (2005) and Bell et al. (2005) found higher effect estimates 

when using results based on the most statistically significant lag times reported in the individual 

studies vs. using a consistent lag time of 0 in the effects analyses.  In a meta-analysis of asthma 

incidence and long-term air pollution exposures, Anderson et al. (2013) reported publication 

bias, as well as bias associated with conducting evaluations that are not systematic in selecting 

and extracting study data (i.e., using only the effect estimates that were statistically significant in 

their meta-analysis versus using those that were selected based on a priori selection criteria).   

 

Meta-analyses of observational epidemiology literature regarding air pollutants have also 

provided insights into a potential source of bias in results from single-city studies relative to 

publications addressing results from coordinated multi-city studies.  For example, as shown in 

Figure 3.2, Bell et al. (2005) observed that when they compared the results from their meta-

analyses of single-city studies to those from the NMMAPS summary multi-city estimates, their 

meta-analyses yielded significantly higher mortality estimates.  The authors suggested that this 
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finding may be due to publication bias, i.e., the NMMAPS reports of findings from multiple 

cities may more routinely include negative results from individual cities, while researchers 

conducting single city studies with negative findings may be less likely to submit such findings 

for publication.  

 

 

Figure 3.2  Distributions of Summary Log-Relative Risks of All-cause Mortality 

Associated with a 10-ppb Increase in O3 in 95 Cities (NMMAPS) Compared to a 

Meta-analysis of 11 US Estimates.  The multi-city results yielded a lower and more 

precise estimate of the overall percent decrease in mortality associated with O3 

exposures than did the meta-analysis based on studies reporting results from single 

cities.  Source:  Bell et al. (2005). 

 

The issue of potential impacts of bias on interpretation of results also arises in studies of lead.  

For example, Bellinger (2009) identified numerous potential opportunities for selective reporting 

or reporting bias in neurotoxicity studies due to the many choices that researchers can make 

regarding which confounders to adjust for and how to parameterize them, how to parameterize 
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exposure (e.g., quartiles vs. quintiles, or linear vs. log-transformed), how to express 

exposure/outcome associations (e.g., highest vs. lowest quintile or piece-wise regression slopes), 

and which analyses "among the myriad typically conducted" to present.  Bellinger (2009) also 

presented several illustrative analyses demonstrating how conclusions drawn from data can vary 

depending on choices made in addressing covariates in the data analyses.  In one instance, 

conclusions regarding potential associations between lead exposures and the results of a 

continuous performance test (a measure of attention and neurological functioning) depended on 

the statistical criteria (i.e., p values) used to determine covariate inclusion in the analyses 

(Stewart, 2006, as cited in Bellinger, 2009).   

 

In another example, a series of communications regarding a pair of meta-analyses of associations 

between neurobehavioral effects and occupational lead exposures highlights the need for clear 

transparency in how data are selected and extracted to understand any sources of bias in the 

analysis (Meyer-Baron and Seeber, 2000; Goodman et al., 2001, 2002; Schwartz et al., 2002; 

Seeber et al., 2002; Seeber and Meyer-Baron, 2003).  Specifically, one meta-analysis of 

22 studies of neurobehavioral effects in occupational populations exposed to lead (blood lead 

concentrations less than 70 µg/dL) concluded, "The data available to date are inconsistent and 

are unable to provide adequate information on the neurobehavioural effects of exposure to 

moderate blood concentrations of lead" (Goodman et al., 2002).  Seeber et al. (2002) determined 

that the "conclusions from published results about neurotoxic effects of inorganic lead exposures 

< 700 µg lead/l blood [70 µg/dL] are contradictory at present"; however, the authors also noted 

that available test results "provide evidence for subtle deficits being associated with average 

blood lead levels between 370 and 520 µg/l [37 and 52 µg/dL]."  Among the areas of debate 

between these research groups regarding meta-analysis approaches and interpretation were a 

number of choices made in compiling and analyzing the component studies, including whether 

study quality and potential confounding factors were adequately accounted for, whether the 

number of neurobehavioral test measures showing significant results (reported to be two out of 

22 measures in Goodman et al., 2002) was appropriately addressed, and the degree to which 

performance prior to lead exposure was accounted for in the underlying studies.  
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A study of attention deficit hyperactivity disorder (ADHD) symptoms in young children (i.e., 

inattention and hyperactivity/impulsivity) illustrates how meta-analyses cannot remediate 

fundamental limitations in the underlying studies that may introduce bias into the meta-analysis.  

Specifically, a meta-analysis estimated the average ADHD-related effect size in 33 studies of 

children and adolescents (i.e., associations between ADHD symptoms or diagnoses and various 

measures of lead exposure; Goodlad et al., 2013).  As recognized by US EPA's Clean Air 

Science Advisory Committee in its review of US EPA's Integrated Science Assessment for Lead 

(CASAC, 2013), a substantial design limitation in most studies of potential associations between 

lead exposure and ADHD is failure to include or adequately assess information regarding 

parental psychopathology, a fundamental factor that may play an important role in children's 

ADHD status "via parenting behavior, and/or genetic contributions to disorder type."  As 

acknowledged by Goodlad et al. (2013), "the conclusions that can be drawn from the current 

study are limited by the methodological designs of the studies that were analyzed" (including the 

lack of information regarding parental ADHD status) and "these studies and the meta-analysis of 

these studies describe the association between lead burden and ADHD symptoms and cannot be 

used to draw strong causal conclusions."  Clearly, an essential component of any meta-analysis is 

a sound understanding of any limitations or other notable features of the included studies that are 

not directly reflected in the meta-analysis approach. 

 

3.2.2 Heterogeneity 

Heterogeneity is a pervasive challenge in synthesizing results from observational epidemiology 

studies.  As a result, air pollutant research reflects a number of efforts to enhance the consistency 

of certain categories of available studies and improve the ability to more effectively combine and 

compare study results.  As described above, as one mechanism to develop more readily 

integrated data representing a range of locations, some researchers have conducted multi-city 

studies applying a common research approach at numerous sites.  

 

Despite efforts to reduce the effects of heterogeneity on systematic evaluations of air pollution 

research, differences remain among studies with respect to such factors as outcome definitions, 

study populations (e.g., age), study periods (e.g., seasonal versus year-round analyses), and 
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statistical methods (including approaches to assessing confounding by co-pollutants and other 

factors).  For example, in time-series studies of air pollution and mortality, a principal issue is 

how confounding by temporal cycles and weather is addressed.  In particular, issues related to 

the use of the GAM model were identified that suggested this model overestimated effects for 

some air pollutants (Stieb et al., 2003).  For O3, additional issues arise because air monitoring 

data are limited to the summer season for many areas of the US.  In addition, researchers have 

employed different exposure averaging times to evaluate O3 effects (e.g., 24-hr average, 8-hr 

average, and 1-hr maximum), the mortality estimates for which are not equivalent.  If these 

differences are not addressed appropriately in data analyses (including meta-analyses), 

conclusions drawn may be unreliable. 

 

The lead literature also reflects examples of efforts undertaken to reduce the heterogeneity 

inherent in observational epidemiology studies, as well as the impacts of such efforts on lead 

health effects research and regulatory applications.  As noted above, one such effort began in the 

early 1980s, when researchers in the US and several other countries undertook a coordinated set 

of prospective cohort studies using similar research protocols (hereafter, "the longitudinal lead 

studies").  Focusing primarily on the neurocognitive development of participants (e.g., as 

reflected in IQ measures), evaluation of study subjects began prior to birth and has extended, in 

some cases, to young adulthood (e.g., Mazumdar et al., 2011).  The comparability of the 

longitudinal lead studies' designs has fostered numerous publications over the past three decades, 

including comparative discussions within specific study reports and comparative evaluations of 

such issues as the age range thought to represent the most susceptible period to lead effects 

(Braun et al., 2012).  As discussed below, efforts toward enhancing consistency among the 

longitudinal lead studies have not removed all barriers to effective data synthesis. 

 

While the researchers involved in the longitudinal lead studies worked to enhance the 

consistency of certain elements of study design and implementation, an early effort to conduct a 

meta-analysis based on 35 reports from five of these studies observed that less consistency was 

apparent in the approaches used to analyze and report the study results.  In particular, Thacker et 

al. (1992) found that it was not possible to compile the data from these studies because they 

differed regarding the statistical approaches that were used to summarize the study observations 
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(e.g., data transformations, such as treatment of blood lead data as a categorical or continuous 

variable, and statistical summary parameters, such as regression coefficients, correlations, and 

changes in standardized scores) and insufficient information was provided to allow development 

of a consistent set of statistical measures.  More fundamentally, few overlaps were observed in 

the times at which blood lead concentrations and IQ were measured in the studies.  Other factors 

identified by Thacker et al. (1992) that hampered conducting a meta-analysis of the longitudinal 

lead studies included conflicting results and inconsistent patterns of regression and correlation 

coefficients (i.e., heterogeneity).  As a result, despite efforts to enhance the comparability of the 

studies, they were insufficient to support the more detailed comparisons and analyses of a formal 

meta-analysis.  To support greater consistency in study reporting and collection of data in a 

centralized location, Thacker et al. (1992) urged development of a registry for the longitudinal 

lead studies. 

 

Subsequent efforts using pooled data (not summary estimates) from a subset of these studies 

have played a central role in US EPA's quantification of air standards for lead as well as other 

regulatory and risk assessment settings (e.g., Lanphear et al., 2005).  However, this pooled 

analysis reflects only a small portion of the health effects literature available for lead, and 

researchers have noted that studies of neurodevelopmental impacts (of lead and other 

substances), as well as other areas of epidemiological research would benefit from use of more 

consistent analytical and reporting approaches that would ease study comparisons and synthesis 

(e.g., Bellinger, 2000, 2007, 2009).  In particular, focusing on neurotoxicity data, Bellinger 

(2009) advocated for the development of "consensus standards for the conduct, analysis, and 

reporting of epidemiologic research…[to] enhance the credibility of the data generated (and of 

the field as a whole), as well as the ease with which the results of different studies can be 

compared and combined in meta-analyses."   

 

3.3 Future Directions 

The types of challenges for synthesizing data from observational epidemiology studies discussed 

above are not limited to air pollutant studies, and other attempts at meta-analysis have led to 

similar conclusions regarding the need to improve data collection to better support data 

synthesis.   For example, despite identifying approximately 40 publications addressing studies of 
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11 cohorts, researchers exploring the possibility of conducting a meta-analysis of the scientific 

literature regarding associations between neurotoxicity and polychlorinated biphenyl (PCB) 

compounds concluded that the "studies were too dissimilar to allow a meaningful quantitative 

examination of outcomes across cohorts" (Goodman, M et al., 2010).  They note that studies of 

neurodevelopmental toxicity might be particularly vulnerable to heterogeneity due to the large 

number of test batteries available (often with numerous combinations of subtests) and varying 

options for scales and cutoff points for categorizing results.  To better support meta-analysis 

efforts, these researchers recommend that future research efforts continue to use assessment 

measures and exposure assessment methods that are comparable to previous methods, even as 

new methods are developed, to assist comparisons with previous studies.  They also recommend 

development of specific assessment and statistical methods to be used in studies, as well as 

approaches for greater data sharing (e.g., as a component of research funding requirements) and 

data/analysis archiving (e.g., by journals).  The general observations reflected in their 

recommendations are clearly transferable to other research areas.  Moreover, as recognized by 

Meyer-Baron et al. (2011), enhancing the ability of researchers to systematically synthesize and 

summarize available research findings is not only important for developing sound interpretations 

of available study results, but it is also increasingly important for more effectively identifying 

research gaps that most warrant use of decreasing research funding resources.   

 

Another challenge in air pollution research is how to correctly assess the effects of individual air 

pollutants and evaluate confounding effects and other interactions of co-pollutants and other 

factors, such as non-chemical stressors (e.g., socioeconomic variables) (Levy et al., 2013).  

Although some efforts have been made to meta-analyze multi-pollutant data, the lack of 

consistently reported results from multi-pollutant analyses has hindered proper data synthesis 

(Stieb et al., 2002).  Opportunities remain for better data evaluation and reporting to enhance 

synthesis across studies of the findings from analyses with multiple pollutants or other factors.  

 

New developments in statistical techniques are advancing and improving the use of observational 

epidemiology data in meta-analyses.  For example, Bayesian hierarchical statistical techniques, 

which are being implemented in multi-city study analysis, provide opportunities for evaluating 

factors that contribute to heterogeneity in the context of evaluating single-city studies.  Hybrid 
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meta-analytic approaches are also being developed to incorporate uncertainty associated with 

combining information from a limited number of studies (e.g., Shin et al., 2013, Levy et al., 

2013).  

 

Overall, the diverse air pollutant observational epidemiology literature presents many 

opportunities for applying meta-analysis approaches and learning how to refine and improve 

such approaches.  As illustrated in the examples discussed above, approaches used to report 

study data can influence the ability of researchers to synthesize study findings, as well as the 

potential for bias to be introduced into analyses (e.g., where researchers selectively report only a 

subset of study findings).  Most notably, the extensive inherent heterogeneity has spurred 

researchers to develop approaches for encouraging greater study consistency in certain research 

areas (e.g., implementing multi-city studies of air pollution exposures or encouraging 

development of guidelines for neurotoxicity studies).  As revealed by previous efforts to 

implement more consistent research approaches, such efforts must take a broad perspective on 

the concept of study consistency.  In particular, to enhance the ability of researchers to 

synthesize results from multiple individual studies, consistency guidelines should consider issues 

associated with data analysis and reporting, as well as study design and implementation. 

 

4 Toxicity Studies 

To date, NAAQS levels and averaging time have been based primarily on human data, but the 

causation evaluations that underlie them also consider toxicology data.  Results are often 

available from studies examining endpoints in animals relevant to the causal questions posed by 

the NAAQS process and, although meta-analyses have traditionally been used mostly for human 

data (Glass, 1976), they can be a helpful method for synthesizing animal data for specific 

endpoints and determining whether those data are robust.   

 

Animal toxicity studies can be heterogeneous as a result of the use of different species, study 

designs, and protocols.  However, they may be more homogeneous than observational 

epidemiology studies owing to better control of exposures, test conditions, and outcome 

assessments.  Thus, evaluations of data from studies of laboratory animals may help elucidate 

issues raised in epidemiology studies or in meta-analyses of those studies.  Using meta-analysis 
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to evaluate animal study results could also encourage researchers to use more consistent study 

designs that would strengthen the meta-analyses of the resulting data.  In addition, the increased 

precision of meta-analyses as compared to analyses of individual studies can aid in reducing the 

number of laboratory animals used in research; a meta-analysis of existing data may prove to be 

a more effective and informative use of research resources than a new primary experiment in 

animals when none of the previous experiments asking the same biological question have had 

sufficient statistical power (Peters et al., 2006). 

 

Many types of data from experimental studies using laboratory animals can be summarized and 

quantified using meta-analysis approaches.  Data from laboratory animal studies may be binary 

(e.g., pregnancy, mortality), categorical (e.g., low, medium, or high amount of cellular damage in 

a particular organ), or continuous (e.g., blood pressure, lung function decrements).  The data may 

also be presented as counts or percentages, such as the total number or percentage of treated 

animals with a specific tumor type.  The methods for analyzing these data can also vary.  In a 

review of 46 published meta-analyses of laboratory animal studies, Peters et al. (2006) 

determined that researchers most commonly used simple methods for performing a quantitative 

synthesis of results across studies, such as the calculation of mean or median values of outcome 

measures.  Other methods have also been applied, such as fixed and random effects precision-

weighted models and exposure-response models. 

 

For example, Valberg and Crouch (1999) conducted a meta-analysis of data regarding lung 

tumors in rats following lifetime inhalation of diesel exhaust particulates (DEPs).  The authors 

directly evaluated the raw data from eight individual studies for statistical evidence of a 

threshold in lung tumor response between high and low exposure concentrations.  They used a 

multi-stage model to determine maximum likelihood estimates and upper confidence limit 

estimates of the exposure-response slope, concluding that the tumor responses observed at high 

levels of DEP exposure do not occur at low exposures.  By contrast, in a meta-analysis of organ 

toxicity in laboratory animals exposed to nano-titanium dioxide, Chang et al. (2013) used a 

simpler approach based on determining the number of studies with positive findings at each dose 

for each specific endpoint.  The authors stated that, because of the variety of animal species and 

endpoints measured across the different studies included in the meta-analysis, calculation of a 
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summary estimate of effect size was not possible.  They determined that the pattern of positive 

results for the in vivo toxicity of nano-titanium dioxide was dependent upon the dose, exposure 

route, and organ examined, and they also observed that the highest percentage of positive studies 

reported effects in the liver and kidney.  These findings were not evident from a review of the 

individual studies. 

 

Meta-analyses of animal toxicity studies can help determine the consistency and generalizability 

of effects of chemical exposures, but several factors must be considered.  As with meta-analyses 

of human data, publication bias can significantly affect the interpretation of a meta-analysis of 

laboratory animal data, leading to overestimation of treatment-related effects.  In addition, as 

noted above, between-study heterogeneity is a common feature of meta-analyses that must be 

addressed.  Some of this heterogeneity comes from differences in animal species used across 

studies.  However, studies using different species can be included together in a meta-analysis if 

there is evidence that the outcome of interest works by the same mechanism across species or if 

species differences are taken into account in the statistical models (Peters et al., 2006).   

 

A major problem associated with meta-analyses of animal toxicity data is the large number of 

published studies with incomplete reporting of study design and methods.  There are no widely 

used guidelines for reporting results from individual animal experiments, so the quality of 

primary studies varies.  High quality studies with detailed experimental information will 

facilitate high quality meta-analyses.  A lack of information on a given parameter can introduce 

bias into the study, as well as any meta-analysis that incorporates the study.  Failure to consider 

differences across studies in the statistical models due to this lack of information can also result 

in reduced statistical power and false positive results (Tseng et al., 2012).  If possible, all 

experimental variables should be considered and incorporated into the analysis.  Adhering to 

high quality standards for conducting and reporting experiments can reduce the confounding 

effects of bias and enhance the validity and precision of the results. 

 

In recent years, several investigators have proposed guidelines for reporting laboratory animal 

data in primary studies to improve the quality of scientific publications and facilitate meta-

analyses and systematic reviews (Peters et al., 2006; Macleod et al., 2009; Hooijmans et al., 
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2010; Kilkenny et al., 2010; van der Worp et al., 2010).  For example, Hooijmans et al. (2010) 

developed a "gold standard publication checklist" of items that should be included in every 

published animal study and Kilkenny et al. (2010) recommend the use of ARRIVE (Animals in 

Research: Reporting In Vivo Experiments) guidelines, a 20-item checklist describing the 

minimum information that all scientific publications reporting animal research should include.  

In addition to general information on the study design and methods, each set of guidelines 

includes the use of a sample size calculation prior to the start of the study.  In a related effort to 

strengthen animal studies and the usefulness of their results, a recent review focused on methods 

for assessing the risk of bias, identifying 30 approaches that have been used (including 

approaches applied in some of the guideline documents discussed above) (Krauth et al., 2013).    

 

Although they are not currently used in causation evaluations supporting NAAQS 

determinations, meta-analyses of animal toxicity studies can lead to a better interpretation of 

existing results from primary studies, which can inform causality determinations by providing 

plausibility for associations observed in human studies. A meta-analysis offers a framework for 

investigating potential publication bias, which can lead to overestimation of treatment effects and 

make the evidence unreliable for regulatory decision making.  Through an understanding of the 

sources of bias that may be apparent in laboratory animal studies, the quality of conducting and 

reporting these studies may be improved.  Such improvements in the underlying scientific studies 

would contribute to regulatory decision making that is based on high quality, unbiased data.  

 

5 Mechanistic Studies 

As with studies of animal toxicity data, studies reporting mechanistic data that are considered in 

the causality evaluations for the NAAQS (including those that generate a large amount of data) 

can also be amenable for use in meta-analyses.  Combining data from multiple mechanistic 

studies in a meta-analysis can lead to a better understanding of the mode of action (MoA) of a 

particular chemical and the biological plausibility of health effects reported in studies of humans 

or animals.   

 

There are many types of in vitro mechanistic data that can be used to understand the toxicity of 

chemicals at the cellular or molecular level.  These include data regarding cytotoxicity, enzyme 
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activities, apoptosis, inflammation, cell proliferation, genotoxicity, cell transformation, genetic 

polymorphisms, and expression of genes, proteins, or metabolites.  Similar to animal data, 

mechanistic data can be binary, categorical, continuous, or reported as counts or percentages, and 

these data can be combined across studies using multiple statistical methods.  Between-study 

heterogeneity is also an issue with mechanistic studies, as cell types and tissues from different 

species – maintained under different in vitro conditions and subjected to different protocols – can 

be used to explore the same biological question. 

 

One category of mechanistic study that provides a good opportunity for meta-analysis is global 

gene expression studies using microarray technology.  This technology has been evolving over 

the past two decades and is being used in a wide array of contexts, providing an opportunity for 

innovative applications of meta-analysis.  Although these studies can generate a large amount of 

data that require reliable interpretation, they often have a relatively small sample size, as the 

simultaneous expression of tens of thousands of gene probes is typically examined in only tens 

or hundreds of biological samples.  Combining gene expression studies through meta-analysis 

results in a larger data set, which increases the statistical power to obtain a more precise estimate 

of treatment- or exposure-related differences in gene expression.  The increasing public 

availability of raw data from microarrays in various repositories greatly enhances the feasibility 

of conducting a meta-analysis of gene expression studies (Pennings et al., 2008).  There are 

many gene expression meta-analyses in the published literature, and Ramasamy et al. (2008) 

outlined practical guidelines for conducting a meta-analysis of microarray data sets in seven 

distinct steps. 

 

There are several challenges for conducting meta-analyses of gene expression data.  One is the 

quality of the data in terms of reporting of phenotypic information about the biological samples 

examined.  A set of criteria called MIAME (Minimum Information About a Microarray 

Experiment) was developed for researchers to provide information on the necessary experimental 

conditions for verifying and reproducing results of microarray studies (Brazma et al., 2001).  

Microarray data submitted to public repositories, as well as to many scientific journals for 

publication, must be MIAME-compliant, but often there is incomplete information on the 

biological properties of samples and the phenotypes that were assayed, including the sex and age 
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of the organism or tumor information (e.g., stage, grade, metastasis) for cancer studies 

(Schmidberger et al., 2011). The inclusion of as much biological information as possible in the 

reporting of individual gene expression studies is necessary for the reliability and overall quality 

of meta-analyses that include these studies. 

 

Another challenge is that the results of a meta-analysis of gene expression studies can often be 

dominated by an outlying study, which can be a significant problem when analyzing thousands 

of genes simultaneously within the "noisy" environment of a microarray experiment.  Outlying 

data can reduce the statistical power of the study, but methods that combine robust rank statistics 

can be used to alleviate this issue (Tseng et al., 2012).  

 

A further challenge for combining gene expression data from multiple studies is the technical 

complexity of integrating data across multiple microarray platforms.  There are many microarray 

platforms available, with overlapping sets of gene probes across platforms.  While some 

normalization procedures require all studies in a meta-analysis of microarray data to use the 

same platform for merging data sets, some investigators have developed advanced normalization 

techniques to eliminate between-study heterogeneity due to varying platforms and allow a direct 

merge of data sets (Tseng et al., 2012).   

 

The examination of gene expression changes in cells or tissues from different species can also be 

a source of between-study heterogeneity, as there is often large variability between gene 

expression patterns from different organisms.  On the other hand, combining data sets from 

multiple species can increase the potential to detect gene expression changes related to biological 

processes that are evolutionarily conserved across species, which can support a hypothesized 

MoA.  Statistical methods for reliable cross-species analyses of gene expression data have been 

proposed by several investigators (as reviewed by Kristiansson et al., 2013). 

 

In addition to gene expression and other types of in vitro studies, in vivo mechanistic data from 

studies in experimental animals (such as those discussed in the previous section) and humans can 

also be combined using meta-analysis methods.  For example, Nakao et al. (2011) investigated 

whether the behavioral and cognitive deficits of attention-deficit hyperactivity disorder (ADHD) 
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are associated with underlying structural and functional brain abnormalities in humans.  

Specifically, they combined data from 14 structural neuroimaging studies of gray matter 

abnormalities in the brains of ADHD patients and healthy control subjects and used meta-

regression methods to examine the effects of age and use of stimulant medication on gray matter 

volume in specific brain areas.  Similar investigations of brain structure and function have also 

been undertaken in lead-exposed individuals as one component of recent interest in ADHD by 

lead health effects researchers (Brubaker et al., 2009, 2010; Cecil et al., 2008, 2011)  Like gene 

expression studies, structural neuroimaging studies are an example of a relatively new research 

tool that is applied in an increasing range of contexts and generates large amounts of data; thus, 

such studies are well suited to be combined using meta-analysis techniques. 

 

It is important to use all of the available information on a chemical at relevant doses or exposure 

levels when evaluating the likelihood that exposure can cause adverse health effects, including 

data from mechanistic studies.  Although not yet commonly used for mechanistic data, meta-

analysis can be an objective method for combining the results of these studies in causality 

determinations for the NAAQS as more mechanistic studies are conducted.  By providing a more 

synthesized interpretation of results regarding a chemical's MoA, meta-analyses of mechanistic 

studies can inform the understanding of whether associations from epidemiology and animal 

toxicity studies are biologically plausible.  Such analyses can provide a more objective basis for 

regulatory decisions. 

 

6 Discussion 

Meta-analysis provides a useful framework that offers many benefits for systematically 

organizing, synthesizing, and interpreting data for a wide range of research areas and study 

types.  As illustrated in the criteria air pollutant research examples discussed in this paper, meta-

analysis is adaptable to many types of outcomes, study designs, and categories of outcome 

measures.  Meta-analysis can be particularly useful for identifying and exploring the impacts and 

sources of heterogeneity in study results, a factor that is particularly prevalent in observational 

epidemiology studies.  Such tools can also be useful for identifying limitations common to many 

studies and examining factors that may influence perspectives on overall study findings.  Where 

suitable data are available, meta-analysis or meta-regression can be used to determine the overall 
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magnitude of outcomes reflected in study findings.  For research areas where individual study 

sizes are often relatively small (e.g., human controlled exposure and animal toxicology studies), 

data aggregation via meta-analysis can strengthen the ability of researchers to draw well-

supported conclusions from studies.   

 

Meta-analysis techniques can also allow researchers to draw upon a broader database for 

conducting analyses to support policy determinations.  For example, when establishing an 

Effects Screening Level for long-term exposures to nickel in air, the Texas Commission on 

Environmental Quality (TCEQ) derived a unit risk factor (URF) for potential carcinogenic 

effects using a meta-analysis approach (TCEQ, 2011).  Specifically, instead of deriving a toxicity 

value based on a dose or exposure level drawn from a single study, TCEQ integrated three values 

from two studies of lung cancer in workers with nickel exposures to derive a final URF that 

reflected the relative value and significance of the data derived from each of the selected studies. 

Moreover, where research or policy questions draw upon findings from a variety of areas and 

disciplines (e.g., as is required in causality determinations or WoE evaluations based on 

epidemiology, toxicology, and mechanistic studies), the results from sound meta-analyses of 

multiple individual components can be integrated to yield a stronger foundation for the ultimate 

question of interest. 

 

Both the outcome of specific meta-analysis efforts and the meta-analysis process itself can yield 

insights to support scientific understanding and policy decision-making.  Most notably, 

conducting the systematic study review required for a meta-analysis can help researchers resolve 

and understand the basis for apparent inconsistencies among the results of individual studies.  

Study comparisons in a meta-analysis framework can also help identify false positives in 

individual studies, insights regarding specific factors influencing study results, and whether 

study findings can be generalized to other populations.  Furthermore, sensitivity analysis within a 

meta-analysis framework can indicate the robustness of the available data and the degree to 

which the overall study findings are influenced by the results of specific studies.  Even where 

data are insufficient or unsuitable for conducting a meta-analysis, the process of reviewing the 

available data within a meta-analysis framework can help researchers identify important factors 

influencing the study outcomes or critical data gaps that need to be explored in future research.    
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Despite its many strengths, meta-analysis cannot resolve all data interpretation issues.  In 

particular, meta-analyses cannot yield insights regarding missing data elements or resolve 

limitations in the underlying data (e.g., inadequately addressed potential confounding or 

influencing factors).  Meta-analysis tools cannot be applied in all circumstances – and cannot 

directly encompass all available data regarding a specific research question; the studies included 

in a specific meta-analysis must all address the same research question in the same way (e.g., 

using the same endpoint measures).  As noted in one of the earliest sets of guidelines for 

conducting meta-analyses of environmental epidemiology studies (Blair et al., 1995), meta-

analysis may not be useful when the relationship between the exposure and outcome is obvious, 

only a few studies are available for a particular exposure/outcome relationship, there is limited 

access to data of sufficient quality, or there is substantial variation in study design or population.  

In addition, important differences in effect estimates, exposure metrics, or other factors may limit 

or even preclude quantitative statistical combination of multiple studies [such as where different 

measures or test systems are used to assess the magnitude of a given health effect, or different 

approaches are used to define exposures, e.g., using different exposure categories 

(quartiles/quintiles) or linear vs. log-transformed data].  Conversely, studies excluded from a 

meta-analysis may form a critical part of the context for interpreting the meta-analysis results, 

e.g., by providing useful information to be included in the qualitative discussion of the results 

(Blair et al., 1995).   

 

Moreover, meta-analyses alone cannot address the adversity of the outcome being studied.  Such 

determinations require consideration of the degree to which the outcome measure is related to the 

actual adverse effect of concern or reflects functional impairment.  For example, Goodman, JE et 

al. (2010) reported statistically significant effects associated with short-term exposures to SO2 

concentrations in controlled exposures studies that were transient, reversible, and of low severity, 

and concluded that the effects were not likely to be adverse.  Because meta-analyses have more 

statistical power to detect associations than individual studies, statistically significant 

associations that do not necessarily reflect an adverse effect are more likely to be reported.  This 

example also demonstrates that other information must be brought to bear to determine the 

toxicological or clinical significance of statistically significant study results.   
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The examples discussed in this paper illustrate other key issues for meta-analysis related to 

specific types of data and opportunities for using meta-analysis to strengthen scientific 

understanding and policy evaluations for air pollutants.  In one specific example discussed in this 

paper, the analyses of the available controlled exposure data for NO2 demonstrate the impacts 

that design choices can have on the results of meta-analyses, how those results are interpreted, 

and policy decisions that rely on those analyses.  Specifically, use of a more refined approach 

(e.g., incorporating more use of stratified evaluations and meta-regressions) offers a better 

understanding of the data and can help regulators avoid making policy decisions based on 

erroneous data interpretations.  Meta-analyses that evaluated associations between short-term 

exposures to O3 and mortality highlighted the need to consider publication bias, stratified 

analyses of seasonal effects, the choice of study estimates, and multi-pollutant evaluations.  As 

also reflected in the examples from the air pollutant literature, advances in analyzing and 

interpreting the available data using meta-analysis approaches can result from more effective 

applications of existing tools as well as development of more sophisticated methodologies.  As a 

general observation, numerous opportunities exist for expanding the use of meta-analysis 

approaches to more systematically synthesize the diverse, multi-faceted scientific literature 

underlying NAAQS evaluations, even in areas where a number of meta-analyses have been 

undertaken. 

 

In addition to providing a tool for examining specific studies, meta-analysis can provide a useful 

framework and impetus for identifying and refining research strategies and for designing more 

effective and targeted studies.  Clearly, use of more consistent and comprehensive research 

designs and reporting approaches can help mitigate key factors, particularly heterogeneity in 

study design, influencing the ability of researchers to conduct meta-analyses.  Use of more 

consistent and comprehensive study designs can also enhance the usefulness of small studies by 

providing a way to aggregate such data.  Care may be needed to avoid excessive consistency, 

i.e., the extensive use of common designs would make it difficult to determine whether or how 

study results might differ if certain study elements were changed. 

 

As illustrated by the longitudinal studies of children's exposures to lead, in which efforts were 

made to coordinate study design and implementation with the goal of facilitating data synthesis 
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(e.g., Bornschein and Rabinowitz, 1985), the lack of attention to consistency in data analysis and 

reporting of results hampered efforts to synthesize the study results (Thacker et al., 1992).  

Similar observations regarding the need for greater consistency in study design and data analysis 

to better support data synthesis have continued to be made in the more recent scientific literature 

regarding this research area, e.g., regarding the neurotoxicity literature for lead (e.g., Bellinger, 

2009), and other compounds, such as PCBs (Goodman, M et al., 2010).  Goodman, M et al. 

(2010) also note that, even as research techniques and test methods evolve (e.g., for exposure 

and/or outcome assessment, or statistical analyses), studies should continue to include research 

measures that are comparable to those used in previous studies to provide greater opportunities 

for comparisons and syntheses among studies conducted at different points in time. 

 

The benefits of greater consistency among studies for efforts to synthesize study findings have 

been acknowledged and reflected in a number of systematic review guidelines for conducting 

studies or reporting results.  One of the seminal efforts to promote more systematic evaluations 

of scientific data regarding human health issues, the Cochrane Collaboration, was initiated in the 

early 1990s.  This international network of individuals and institutions promotes methods and 

resources for conducting, documenting, and enhancing the accessibility of systematic reviews of 

randomized control trials of health care interventions.  The Cochrane Handbook (Higgins and 

Green, 2011), which was developed to help scientists conduct credible and comparable clinical 

trials with humans, provides a consistent approach for conducting clinical studies.  Since 

exposure studies of humans in chambers are similar to clinical studies, use of this handbook 

could greatly improve consistency of these studies, which in turn would form a basis for 

comparing results.  A key component of the handbook is adherence to consistent protocols to 

reduce the impact of author bias, promote method and process transparency, reduce the potential 

for duplication, and allow peer review of the planned methods.  Another key component is 

conducting statistical analysis and assessing the quality of the body of evidence.  Adoption of 

such methods would greatly improve analyses and allow more robust interpretations of data 

generated in chamber studies with air pollutants. 

 

In another effort to promote sound data syntheses, a review by Blair et al. (1995) discussed uses 

of meta-analysis techniques for environmental epidemiology data, providing guidelines for when 
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meta-analyses should or should not be used.  Two other examples of guideline efforts relevant 

for evaluations of air pollutants and other contaminants have focused on issues specific for 

reporting of meta-analysis results.  Stroup et al. (2000) focused on issues for reporting results 

from Meta-analysis Of Observational Studies in Epidemiology (MOOSE), while Liberati et al. 

(2009) built on a previous effort [the QUality Of Reporting Of Meta-analysis (QUOROM) 

Statement] to develop guidelines and checklists for reporting systematic reviews and meta-

analyses of studies of health care interventions, as well as in other contexts [the Preferred 

Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) Statement].  Guidelines 

have also been developed for the reporting of laboratory animal meta-analyses (Peters et al., 

2006), as well as for reporting laboratory animal study data to better support meta-analyses and 

other systematic data reviews (e.g., Macleod et al., 2009; Hooijmans et al., 2010; Kilkenny et al., 

2010; van der Worp et al., 2010).  These types of approaches list specific elements to be included 

in meta-analysis documentation, such as study selection criteria, approaches for assessing study 

bias, and discussion of any sensitivity analyses that were performed.  Application of these 

approaches would enhance interpretation, synthesis, and understanding of meta-analysis results.   

 

The air pollutant research reviewed in this paper also suggests new areas where meta-analysis 

techniques could be applied.  In particular, studies evaluating potential toxicity mechanisms 

present new opportunities for synthesizing data using meta-analysis.  Because some of these 

research techniques are evolving (e.g., gene expression studies or imaging studies of structural 

changes in brain morphology), these research areas are just beginning to be considered in the 

evaluation of causation for environmental contaminants.  As such, opportunities exist to help 

proactively shape this research to more effectively support data syntheses using meta-analysis 

techniques.  In other areas of research, such as animal toxicity studies, opportunities exist for 

better coordination of study methodologies and reporting approaches to enhance data syntheses.   

 

Opportunities also exist for extending lessons learned from studies of air pollutants to other 

research settings, e.g., to identify specific approaches or data elements that should be included in 

such studies.  For example, identifying potential causes of ADHD has been an active research 

area in recent years, with studies issued assessing potential roles in ADHD for such substances as 

NO2 (Morales et al., 2009), 2,4,6-trichorophenol (Xu et al., 2011), organophosphate pesticides 
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(Bouchard et al., 2010), perfluorinated compounds (Gump et al., 2011), phthalate metabolites 

(Engel et al., 2010), and a variety of compounds characterized as endocrine disruptors (de Cock 

et al., 2012).  As research regarding many of these substances is in an early stage, consideration 

of more consistent research and reporting approaches (e.g., based on experience gained from 

studies of lead) could yield data sets for specific compounds that would be more amenable to 

synthesis and interpretation, and these data could also be useful for assessing the relative 

magnitude of the associations of these substances with ADHD. 

 

Studies of ecological impacts of environmental contaminants represent another area where meta-

analysis could be more extensively applied.  While meta-analysis has been increasingly used to 

evaluate ecological studies, such applications have been most prevalent in such fields as 

evolutionary ecology, community ecology, and conservation ecology (Gurevitch et al, 2001; 

Gates, 2002; Nakagawa and Poulin, 2012).  Innovations in meta-analysis that have been explored 

in this research area include meta-analyses of meta-analyses (e.g., in the area of plant 

evolutionary ecology) (Castellanos and Verdu, 2012) and within-study meta-analyses as a way to 

more deeply examine findings from studies that have tested hypotheses using several approaches 

(e.g., observational and experimental) and measurements (e.g., molecular, behavioral, and 

physiological) (Nakagawa and Santos, 2012). 

 

While meta-analysis is not the only way to systematically review research study data (e.g., see 

Rhomberg et al., 2013), the rigor, specificity, and transparency of conducting and documenting 

this type of evaluation present particular benefits for conducting systematic data reviews and 

syntheses, even for situations where it may not be possible to complete a meta-analysis owing to 

data limitations.  In particular, it encompasses a more specific, in-depth consideration of study 

elements that would need to be combined to conduct a meta-analysis and how those elements 

would need to be comparable across studies than does a more qualitative systematic review.  For 

evaluations of specific endpoints using existing data, this detailed perspective helps in selecting 

studies to be included in the systematic analyses, e.g., by helping to identify factors influencing 

study outcomes, limitations in specific studies, and appropriate study groupings to include in the 

meta-analyses (e.g., within stratified analyses).  Meta-analysis also offers options for weighting 

the results from studies of varying quality and strength and deriving synthesized, well-
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documented effect estimates reflecting those considerations.  Where multi-faceted data sets need 

to be addressed (e.g., in considering data relevant for a specific outcome across disciplines), 

meta-analyses can help make such data more manageable and understandable, e.g., by providing 

a systematic approach for assessing the findings for each relevant area and combining them to 

reach soundly supported and transparent, well-documented conclusions.  In particular, meta-

analyses in such contexts can help focus researcher attention on key aspects of the literature 

warranting additional research or evaluation in a policy-making setting.  With its emphasis on 

quantitative syntheses, meta-analysis is particularly well suited for assessing the relative 

importance of endpoints and for identifying data gaps in existing knowledge (e.g., for evaluating 

which endpoint reflects the most sensitive endpoint for policy evaluations and the degree to 

which such determinations are well supported).  Because meta-analysis techniques have been 

applied in diverse settings, efforts to draw upon ideas and methods developed in other contexts 

can foster cross-disciplinary perspectives (e.g., Nakagawa and Santos, 2012; Gates, 2002).  In 

addition, ongoing refinements in the use of certain statistical techniques (e.g., meta-regression, 

hierarchical models, and hybrid approaches) may provide opportunities for conducting meta-

analyses of data that may not, at first, appear amenable to the technique. 

 

The outlook offered by meta-analysis also offers benefits for enhancing the quality of the 

published literature, as well as designing and implementing new research efforts.  For example, 

greater consideration of potential applications in meta-analyses during journal publication 

reviews could help mitigate publication bias (for example, if the information reflected in studies 

with results that are negative or not statistically significant were more widely recognized as 

having value in data syntheses).  Moreover, increased pervasiveness of a meta-analysis-oriented 

mindset – focusing on how the pieces of the research puzzle could fit together – would be 

beneficial to data syntheses regardless of whether the data were applied in a quantitative meta-

analysis or not.   

 

Overall, as illustrated using examples from the criteria air pollutant literature, meta-analysis is a 

versatile tool that can help researchers more effectively synthesize existing study data of all types 

and design data collection efforts in a variety of research contexts.  Its adaptability to many types 

of data and its ability to aid understanding of complex data sets is particularly attractive in light 
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of the ever-increasing amount of scientific data that is being generated and must be interpreted.  

To date, the use of meta-analysis to support policy determinations has yet to reach its full 

potential.  Opportunities exist for conducting more informative analyses using existing data, for 

designing studies to better support future data syntheses, and for basing regulatory limits and 

other science-based policy decisions on more representative analyses.  In particular, thoughtful 

use of meta-analysis shows much promise to support determinations that must integrate 

information from many disciplines.  The case studies we have drawn from scientific and 

regulatory evaluations of criteria air pollutants yield observations broadly applicable to a wide 

range of research and policy areas.  In particular, the observations presented in this paper can 

help to inform use of meta-analysis within focused research contexts or where one or more meta-

analyses can be combined to support evaluations of a more multi-faceted issue.    
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