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ATTRIBUTING FOODBORNE ILLNESS USING CONSUMPTION DATA AND EXPERT 

ELICITATION 

 

Amber Jessup (U.S. Department of Health and Human Services)*, Aylin Sertkaya (Eastern Research 

Group, Inc), Kara Morgan (U.S. Food and Drug Administration) 

 

ABSTRACT 

 

For regulators, understanding what foods are likely to be contaminated with pathogens, the likelihood that 

these foods will cause illness, and where in the supply chain that the contamination is likely to be 

introduced are critical to implementing effective risk control and making efficient use of scarce food 

safety resources. To understand the likelihood of illness associated with microbiological contamination of 

foods close to the manufacturing stage, before consumer or food service handling, this study focuses on 

the likelihood of illness associated with foods as they sit on the store shelf. To address the challenges of 

lack of reliable data at sufficient degree of granularity and difficulties in eliciting expert opinion on 

attribution rates for a large number of food products, we develop and apply an innovative expert 

elicitation protocol to generate risk rankings for highly disaggregated food categories. Using these risk 

rankings, we will be able to combine the output of the expert elicitation with data on consumption shares 

to estimate the number of foodborne illness cases by food category. The method we employ better 

incorporates the knowledge and experience of the experts, and reduces the judgment biases. In addition to 

the data generated from the expert elicitation, this study relies on sales data on foods consumed in the 

United States available from The Nielsen Company and select food trade associations, such as the 

International Dairy Deli Bakery Association (IDDBA). This study addresses the challenges in 

understanding the relative contribution of different types of food to foodborne illness. Expert elicitation 

provides a method to provide estimates, and for this situation, expert elicitation provides an approach for 

estimating model parameters and factors that are of interest. In cases, such as those for this study, expert 

elicitation may be the best, or only, way to obtain such estimates.  
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1 INTRODUCTION 

 

Regulatory tools are sometimes most efficiently applied at intermediate steps, before food reaches the 

consumer. For example, food safety regulatory agencies can intervene at the point of manufacturing, 

packaging or labeling, when food is entering the United States, or while it is being held at a warehouse or 

in a retail outlet. For this study, we were interested in estimating the likelihood of contamination close to 

the manufacturing stage. In other attribution studies, because of the epidemiological data that these studies 

relied on, the likelihood of causing illness was assessed at the point of consumption. The most effective 

targeting of intervention can only be identified if the point in the supply chain at which the foods are 

contaminated is known. To understand the likelihood of illness associated with contamination of foods 

close to the manufacturing stage, that is, before consumer or food service handling, this study focuses on 

the likelihood of illness associated with foods as they sit on the store shelf. 

 

To address the challenges of the lack of reliable data and difficulties in applying expert elicitation, we 

develop and apply an innovative expert elicitation protocol to generate risk rankings for highly 

disaggregated food categories. Using these risk rankings, we will be able to combine the output of the 

expert elicitation with data on consumption shares to estimate the number of foodborne illness cases by 

food category. Our premise is that the method employed better incorporates the knowledge and 

experience of the experts, and reduces the judgment biases. 

 

Policy analysts are often asked to answer questions for which there are (1) no peer-reviewed studies, (2) 

several apparently conflicting peer-reviewed studies, or (3) peer-reviewed studies that are only 

peripherally related to the policy question. Meta-analyses, systematic reviews and expert elicitation are all 

possible approaches to synthesizing information under these circumstances. Meta-analysis and systematic 

reviews synthesize the existing literature and, thus require a relatively sizable body of published studies. 

Expert elicitation, on the other hand, synthesizes expert opinions when data of sufficient quality are 

lacking, and can also be used to characterize uncertainty. Therefore, for situations in which existing data 

and studies are insufficient, expert elicitation is the most viable of these three options. 

 

Analyzing the relative likelihood of foods causing foodborne illness is an area well suited to expert 

elicitation. Although there are well-established surveillance systems and analytical methods that provide 

estimates of the total number of illness in the United States each year from pathogens that have been 

associated with food (Scallan, et al., 2011; Scallan, Griffin, Angulo, Tauxe, & Hoekstra, 2011), estimates 
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linking these illnesses to specific foods, as opposed to aggregate food groups (e.g., produce, dairy, meat 

and poultry, etc.) are lacking. Existing studies estimate number of foodborne illnesses for food groupings 

that are highly aggregated and heterogeneous with respect to microbiological contamination risks. These 

studies are also largely dependent on outbreak data, which only represent about 5 percent of foodborne 

illnesses and may not be representative of all foodborne illnesses. 

 

However, expert judgments are known to be influenced by heuristics (Tversky & Kahneman, 1974) that 

can lead to biases in results, and even the most structured expert elicitation process is not always 

sufficient to overcome those biases. For example, expert opinions on previous expert elicitation studies 

could be affected by the availability bias and the anchoring bias if opinions are heavily influenced with 

recent known foodborne illness outbreaks. 

 

Deriving estimates of the likelihood of specific foods causing foodborne illness is an important area of 

study because the burden from foodborne illness in the United States is significant. Each year 14 major 

foodborne pathogens are estimated to cause approximately 9 million illnesses, resulting in the loss of over 

61,000 QALYs and 14.1 billion dollars in cost of illness (Batz, Hoffman, & Morris, 2011). In spite of the 

public health significance of foodborne illness, information needed for regulatory agencies to target food 

safety policy is lacking. 

 

Understanding what foods are likely to be contaminated, the likelihood these foods will cause illness, and 

where in the supply chain that the contamination was introduced is critical to implementing effective risk 

control and making efficient use of scarce food safety regulatory resources. However, linking illnesses to 

specific foods is very challenging. Foodborne illnesses may occur within hours or as long as weeks after 

eating the contaminated food.  Linking foodborne illness to the causal food vehicle typically only occurs 

in outbreaks, when epidemiologists use case-control studies to establish common foods consumed by 

affected consumers and trace back to the food vehicle. For almost all sporadic cases and even for almost 

half of known outbreaks, the food vehicle is never determined. 

 

Painter et al. (2013) use outbreak data to attribute foodborne illnesses to 17 food commodities. They find 

that 46 percent of illnesses are linked to produce and the most deaths are linked to poultry. Although data 

from foodborne disease outbreaks provides a readily available source of information, the reliability and 

availability of this data in estimating the number of foodborne illnesses in the population attributable to 

each food source is limited. Outbreak-associated illnesses represent a small subset of all foodborne 
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illnesses, and illnesses reported in outbreak data may not be representative of all illnesses because of 

factors related to the characteristics of food contamination, food preparation and service, pathogen 

transmission, and the ease of outbreak detection and investigation for certain foods and pathogens. 

Outbreak data are also limited by missing and incomplete data fields, resulting in a high level of 

uncertainty and potential errors in foodborne illness attribution estimates. Likewise, data may be biased 

toward large outbreaks, outbreaks associated with point sources, outbreaks that have short incubation 

periods, and outbreaks that cause serious illness. For example, the Painter et al (2013) study was not able 

to estimate attribution for Toxoplasma spp. or Vibrio Vulnificus, because no outbreaks were identified 

linked to them, even though these are known foodborne pathogens. These limitations make estimates of 

the number of illnesses associated with food-pathogen pairs based on only outbreak data highly uncertain.  

 

Other foodborne illness attribution studies (Batz, Hoffman, & Morris, 2011; Painter, et al., 2013; Pires, et 

al., 2009; Karns, Muth, & Cogliaiti, 2005) use expert elicitation to estimate the number of illnesses by 

food categories. They are limited, however, by estimating attribution for only for a small number of 

highly aggregated food categories.  

 

These studies, although helpful in identifying areas of potential concern, do not provide sufficiently 

detailed groupings of foods to meet the food safety regulatory agency needs. Placing all foods into 10 to 

20 categories does not allow for sufficient homogeneity with regard to microbiological contamination risk 

within the categories. For example, frozen or canned produce would have a very different risk profile than 

raw produce. Putting all of these heterogeneous categories of risk into one overarching category (i.e., 

produce) limits regulatory agencies’ ability to identify the foods of highest risk, and complicates risk 

ranking activities. Attribution of foodborne illness to groupings of foods that are homogeneous with 

respect to microbiological contamination risk would lead to a better understanding of the best 

opportunities for regulatory agencies to target their food safety resources.  

 

2 DATA 

 

In addition to the data generated from the expert elicitation, this study relies on sales data on foods 

consumed in the United States available from The Nielsen Company and select food trade associations, 

such as the International Dairy Deli Bakery Association (IDDBA). The Nielsen Company data included 

information on total dollar sales, total sales units, and total equivalent unit sales (which are total sales 
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reported on an equivalized basis, such as pounds, cases, servings, etc.) for U.S. food, drug, and mass 

merchandisers for 52 weeks ending September 5, 2009 at the Universal Product Code (UPC) level. 

Detailed Nielsen scanner data was not available for eight of the food categories that were a part of the 

elicitation, namely: fresh meat, fresh poultry, fresh seafood, deli meat and deli cheese, other deli prepared 

foods, random-weight fresh produce, and prepared-in-store bakery items. Thus, supplementary total sales 

data for these categories was obtained from the IDDBA International Dairy Deli Bakery Association 

(IDDBA) 2011 annual trends report (“What’s in Store”). The IDDBA report provided comparable Nielsen 

scanner data total dollar sales for 52 weeks ending March 28, 2010.  

 

As described in Section 3.3, the Nielsen Company data along with data on random weight products 

published by select trade associations were used to compute relative consumption shares. For the 

calculations, serving size for each food commodity group was needed. Assumptions about average 

serving sizes were combined with reported total equivalent unit sales information to estimate the relative 

total consumption in terms of total servings.  

 

3 STUDY METHODOLOGY 

 

This study uses an innovative approach for eliciting expert input to estimate foodborne illness attribution. 

Rather than a direct elicitation of attribution fractions, an input to a calculation was estimated by the 

experts, and will be combined with data on food consumption to develop attribution estimates. Expert 

elicitation was also used to identify subcategories of food that are homogenous in terms of 

microbiological contamination risk, and to estimate the proportion of illnesses from each pathogen that 

were due to contamination that occurs before the product reaches the end consumer, hereinafter referred 

to as source contamination. 

 

3.1  Expert Selection 

 

In the identification of experts, we sought a balance in the experts’ breadth of experience (by food 

industry) and professional affiliation. Given our specific interest in the likelihood of source 

contamination, we chose to emphasize expertise in microbiology and food safety over epidemiology. We 

recruited 16 experts to provide sufficient expertise across the range desired disciplines. Experts were 

ultimately selected based on both their professional experience related to the public health risks posed by 

different foods, as well as their willingness to participate in the process.  
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The final set of experts included participants from academia, government and industry. About 30 percent 

of the panel members were from academia and 25 percent were federal and state employees. Nearly two-

thirds of the panel had microbiology as their primary field of expertise. Characteristics of the panel are 

shown in Table 1. 

 

The experts worked independently over the course of 5 months, and were only aware of each other’s work 

when they saw the disaggregated categories to be ranked.  This will be explained in further detail later in 

this section. 

 

3.2 Designing the Expert Elicitation 

 

Addressing Known Judgment Heuristics 

 

As mentioned earlier, expert judgments are known to be affected by heuristics or mental shortcuts.   The 

two human judgment heuristics that were of most concern in this research were the availability bias and 

the anchoring bias. The availability bias is a mental shortcut people use to make probability judgments 

based on how readily examples come to mind rather than the true frequency. This would have an impact 

in this case by experts overweighting foods that have been recently associated with foodborne illness. The 

anchoring bias is the tendency for human judgment to overweight available information even when it is 

known to be uncertain. Existing studies on attribution that have used outbreak data have led to shared 

knowledge among relevant experts about which foods are more “risky,” even though outbreak data is 

known to be very uncertain. It was expected that if experts were asked for attribution fractions, they 

would anchor on those estimates and were likely to make insufficient adjustments to account for the 

known uncertainty. 

 

Focusing the Elicitation on Fewer and More Relevant Categories 

 

Because of the long list of pathogens of interest in Scallan et al. (2011), and the potentially long list of 

food commodities, a priority early on in the elicitation was to have the experts help to decrease the scope 

of the task. This was accomplished in multiple steps. In the first round of the elicitation, we asked the 

experts to indicate pathogens of most concern for a total of 96 subcategories of foods (e.g., cheese, milk, 

yogurt, etc.) which  were organized into 24 groups conceptualized as how they might be found grouped in 
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conventional supermarket aisles (e.g., dairy, frozen foods, etc.). More specifically, for each of the 96 food 

subcategories, experts assessed the relative likelihood that the given food product type – while still on the 

supermarket shelf – could be contaminated by different types of pathogens (22 pathogens in total) at a 

level that could cause foodborne illness even if the product was properly handled by the consumer. Those 

food-pathogen pairs deemed irrelevant in terms of source contamination risk were eliminated from 

subsequent rounds of the elicitation based on the assumption that the fraction of illnesses that would be 

attributed to these food- pathogen pairs would have a negligible impact in the final calculations. A further 

culling of the food categories was accomplished in the second round of the elicitation, which asked 

experts to place each food-pathogen pair into bins separated by risk of microbiological contamination. 

Those food-pathogen pairs that experts rated as having a negligible risk of microbiological contamination 

were subsequently eliminated from consideration. As discussed in Section 3.3 below, the list of food-

pathogen pairs deemed relevant for estimating number of foodborne illnesses associated with each 

pathogen was finalized after reviewing the risk rankings of experts in the second round and eliminating 

those pairs that had relatively low microbiological contamination risk.  

 

In addition to eliminating very low-risk food categories, allowing the experts to guide the construction of 

the food categories also allowed us to capture the experts’ input into what the right level of aggregation 

should be for this elicitation. If the categories cover a very heterogeneous set of items in terms of 

likelihood of contamination (like “dairy”), then ranking that category relative to others might vary 

depending on which item the expert is focusing on during the ranking. For example, if experts think of 

hard cheese, they might consider that category of food to have a relatively low likelihood of Listeria 

contamination, for example, but if they were thinking of “dairy” in terms of “soft unpasteurized cheese” 

would lead to a different ranking. Rather than allow for that variation, the expert elicitation was designed 

to re-define the scope of the ranking to create subcategories of food that were homogeneous with respect 

to likelihood of contamination. These experts, with training as food technologists and microbiologists, 

would know that soft unpasteurized cheese would have a higher likelihood of supporting the growth of 

bacteria than some other types of dairy products. 

 

Therefore, initially, the experts were asked to identify a subset of the food category that had a different 

(either higher or lower) likelihood of contamination than the others in the category. So, when presented 

with the category of “produce,” for example, the experts had the option of specifying that canned produce 

had a different likelihood profile than fresh produce. All of these sub-categories were then ranked 

separately by all the experts in a later round.  
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With these concurrent tasks for reducing the list and expanding the list, the final list of food/pathogen 

pairs to be ranked remained rather large. To ease the cognitive burden, the elicitation tool used the 

conceptual model of “walking around a grocery store” to help the experts with the task. The elicitation 

tool allowed for food product categories to vary, sometimes significantly, by pathogen, as not all foods 

are equally likely to be contaminated by all pathogens of interest. We also incorporated skip logics and 

response-dependent question prompts to the tool to ease the burden on the experts (see discussion below 

for details on the types of questions posed).  

 

Defining the Quantity Being Elicited 

 

Although it may be difficult for an expert to assign an exact percentage of the total illnesses to the 

category of “soft pasteurized cheese,” it would not be conceptually difficult for an expert to express the 

relative likelihood of contamination of the soft pasteurized cheese as compared to other dairy products. 

As mentioned earlier, these were experts in food technology, microbiology and epidemiology, so they 

would have a basic understanding of the characteristics of the food that would be linked to likelihood of 

contamination and likelihood of growth. Again, asking for an exact number might be problematic, but the 

relative ranking of the categories would seem to be a rather straight-forward judgment for the experts to 

make, and would likely be somewhat consistent across experts, leading to a reliable result. 

 

In the second round of the elicitation, the experts were asked to indicate the relative likelihood of 

contamination as the product is sitting on a store shelf on a scale of “negligible,” “low,” “medium,” or 

“high.”  For those that were assigned a “medium” or “high” ranking, the experts were asked to divide 

those again into low/medium/high, leading to an 8-point scale. Therefore, the first round of the expert 

elicitation created (1) subcategories that were internally homogeneous with respect to risk and (2) a 

relative ranking of all the categories in terms of likelihood of contamination as they are sitting on the store 

shelf. This approach provided the greater level of detail that was needed and also helped to mediate the 

anchoring bias, by making the influence of other attribution studies based primarily on outbreak data less 

likely to bias the results. 

 

As mentioned, expert elicitation has been used in foodborne attribution studies in the past. Expert 

elicitation was used in the Hoffmann et al. (2007) study to directly elicit the experts’ judgments on the 

fraction of illnesses caused by each type of food. Because the results for the project being described in 
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this paper was meant to inform regulatory activities closer to the manufacturing level, there was a need to 

separately attribute illnesses that were caused later in the supply chain, for example, due to mis-handling 

in storage or at retail. Batz et al. (2011) did provide an estimate for the source of the contamination, but 

they did so using a very different approach. Their “handling” estimate came from the illnesses that were 

attributed to “multi-ingredient foods,” which included foods like sandwiches and salads. The assumption 

in their paper was that these types of foods are very often assembled later in the supply chain, and 

therefore the illnesses attributed to them could be characterized as being due to “handling” rather than to 

source contamination. As explained later, we took a different approach but ended up with somewhat 

similar results. 

 

To answer the need of this project, the study was designed to elicit the information on relative likelihood 

of different foods being contaminated with microbial pathogens as they sit on the store shelf, and 

separately elicit the proportion of illnesses from each pathogen that can be attributed to something that 

happens after the product leaves the store shelf. This question was answered by asking the experts what 

portion of the illnesses by pathogen were due to source contamination (that is, contamination of the 

product before it gets to the store shelf) as opposed to other types of contamination. Once this assessment 

was made, then, the foodborne illness attribution rates were to be estimated by combining these expert 

judgments about relative likelihood of contamination on the store shelf with data on consumption 

patterns, and setting aside those illnesses that were attributed to something besides source contamination. 

 

Reducing the Cognitive Burden 

 

Given the large number of food-pathogen pairs that were being assessed, we were very concerned about 

the cognitive burden being placed on the experts. We attempted to reduce the cognitive burden in a 

number of ways. First, we did extensive pre-testing of the expert elicitation and made changes to the 

protocol based on feedback from that pre-test. Second, we used the experts’ own judgments to reduce the 

size of the problem by eliminating food-pathogen pairs with negligible risk. Third, we used an innovative 

method for structuring the questions around the layout of a grocery store to ease the cognitive burden of 

thinking of all these different types of foods. Fourth, we accepted tradeoffs to simplify the questions, for 

example, using a simple scale (negligible/low/medium/high) to assess the relative likelihood of 

contamination rather than asking for specific numbers or relationships (e.g., A is 2x more likely to be 

contaminated than B.). Finally, we used multiple rounds in the elicitation over several months, so the 
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experts would not have to complete all the assessments into one short time period. We discuss the 

possible implications of these tradeoffs on the results in Section 5.3. 

Aggregating the Expert Judgments 

 

In addition to ranking each subcategory of food on a relative scale to indicate likelihood of contamination 

as it sits on a shelf, the experts were asked to rate themselves on their level of expertise in each food-

pathogen combination. This self-rating was used to weight the ranking that was provided; a higher self-

assessed expertise leads to a higher weight. This approach was included because we knew that some 

experts were more familiar with some pathogens and/or food products than others, so equal weighting 

seemed inappropriate. 

 

We used a weighted average in aggregating the relative likelihood of contamination across all experts. 

More specifically, we computed a weighted average relative likelihood score, �̅�𝑤, (see Equation 1) for 

each food-pathogen pair where the weights are each individual’s self-assessed confidence level as 

follows:  

 

Equation (1) 

�̅�𝑤 =
∑ 𝑤𝑖
𝑁
𝑖=1 𝑥𝑖
∑ 𝑤𝑖
𝑁
𝑖=1

 

 

where  𝑤𝑖 is the expert’s self-assessed confidence level (0 through 4), 𝑥𝑖 is the relative likelihood score 

for expert i, and 𝑁 is the number of experts that provided a relative likelihood of contamination score for 

the food-pathogen pair in question.  

 

3.3 Calculating Foodborne Illness Attribution from Relative Contamination Data 

 

The relative rankings generated with the expert elicitation indicate which food category- pathogen 

combinations are more or less likely to result in foodborne illness due to contamination before the product 

reaches the store shelf. An additional step will be needed to generate the estimated number of foodborne 

illnesses associated with those combinations. Illnesses result from the contamination of a food with a 

given pathogen and the consumption of that food; for example, even those foods with a very high 

likelihood of contamination may account for very few foodborne illnesses if they are rarely eaten. Thus, 

to attribute foodborne illnesses to food-pathogen combinations, we will combine the contamination-based 
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relative rankings from experts with data on the relative share of consumption of these food categories. 

Our foodborne illness attribution methodology consists of five distinct steps, each of which is discussed in 

further detail below and illustrated through an example in Table 2 and Table 3. 

 

Step 1 – Map Expert-defined Food Categories to Nielsen Scanner Data. With the elicitation, we identified 

a total of 463 food categories (each of which comprised multiple food items that are similar with respect 

to microbiological contamination likelihood) that had to be mapped onto over 65,000 food items reported 

by Nielsen. Because Nielsen did not provide the level of detail required to accommodate the food 

category breakdowns suggested by the experts we combined those subcategories that had a relatively low 

(<= 2) weighted mean relative contamination likelihood score across all pathogens. As a result of this 

process, the total number of food categories reduced from 463 to 358.  

 

Step 2 – Normalize weighted mean relative contamination likelihood scores such that the sum of the 

scores across food categories for a food pathogen equals 100 percent. The categories by which the 

experts indicated the likelihood of contamination associated with each food-pathogen combination in 

Round 2 will be converted to numerical values, ranging from 1 = Negligible to 8 = High:High (limitations 

of the assumption of ordinal ranking is discussed in Section 6). Next, we will aggregate the expert scores 

for each food-pathogen combination by calculating the numerical average over all experts and weighted 

each expert’s score by his or her self-assessed confidence rating. This represents the weighted mean 

relative contamination likelihood score for that food product-pathogen combination. Then, for each 

pathogen, we will sum the weighted mean relative contamination likelihood score for each food category 

over all food categories linked to that pathogen. We will then normalized the weighted mean relative 

contamination likelihood score by calculating a weight for each food category as its weighted mean 

contamination likelihood score divided by the sum of all contamination likelihood scores for foods linked 

to that pathogen.  

 

Step 3 – Use Nielsen sales equivalent units as proxy for consumption volume. As noted, another weighting 

factor must be introduced to account for each food category’s share of consumption of the food categories 

relevant to each pathogen. Thus, this step accounted for relative consumption patterns. For each pathogen, 

we estimated the relative share of each food category in total consumption of all foods linked to that 

pathogen. As described earlier, we used secondary data rather than expert opinion to calculate relative 

consumption shares.  
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We mapped the Nielsen scanner data at the UPC level to the expert elicitation food category breakdowns 

using the available subcategory, product module, product, type, and container information. Best 

professional judgment was used to distribute total sales where available data lacked sufficient detail to 

match the expert elicitation food category breakdowns. In addition, some food category breakdowns 

originally requested by the experts, particularly those where relative contamination likelihood scores were 

not significantly different, were collapsed to a more aggregate category. This step facilitated a complex 

mapping without losing a great deal of granularity. Finally, serving size adjustments were made using best 

professional judgments of the analysts about the likely number of servings per sales equivalent unit for 

each food category. 

 

Step 4 – Calculate raw attribution rate as the product of normalized weighted mean relative 

contamination likelihood score and consumption share in percentage terms. The percent of illnesses 

attributable to a specific food-pathogen combination will be calculated by multiplying the normalized 

weighted mean relative contamination likelihood score and the relative share of each food category in 

total consumption of all foods linked to that pathogen to get the raw attribution rate. 

 

Step 5 – Normalize raw attribution rate such that the sum of the attribution rates for each food for a given 

pathogen equals 100 percent. The raw attribution rates will be re-normalized for each pathogen to ensure 

the model accounts for 100 percent of pathogen-specific illness; this will be the FBI attribution rate for 

each food category linked to that pathogen.  

 

As an example, assume that only two food product categories were associated with source contamination 

from Brucella by the experts (see Table 2).  Let us assume that the weighted mean relative contamination 

likelihood score for “Meat, Raw (not frozen)” is 2.29 and the ranking for “Milk and Cream – 

Unpasteurized” is 4.12, so the relative scores are 0.36 (= 2.29 ÷ [2.29 + 4.12]) and 0.64 (= 4.12 ÷ [2.29 + 

4.12]), respectively. This leads to the relative likelihood rankings for all food product categories 

associated with Brucella to sum to 1.0, so they can be used to represent attribution fractions. 

 

To extend the simple example in the case of Brucella (see Table 3), “Meat, Raw (not frozen)” accounts 

for 98 percent of consumption and “Milk and Cream – Unpasteurized” accounts for 2 percent of 

consumption. Therefore, among the food product categories that account for foodborne illnesses due to 

Brucella, 97 percent of illnesses are attributable to “Meat, Raw (not frozen),” and 3 percent to “Milk and 

Cream – Unpasteurized.” In other words, despite the higher relative risk of consuming unpasteurized 
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milk, in this illustrative example, fewer illnesses are attributed to it because only a small amount of 

unpasteurized milk is consumed by US consumers. 

 

4 RESULTS 

 

The expert elicitation process eliminated 9 percent (i.e., 182 out of 2,112) of original food-pathogen 

combinations judged to be very low risk for foodborne illness and identified new food sub-categories of 

concern for contamination. For some pathogens the experts considered a very small number of food-

pathogen pairs to be of concern (see Table 4). For example, of the 96 original food subcategories, only 

two food categories, raw meat, unpasteurized milk and cream were considered to be relevant for Brucella  

and experts did not need to subdivide these categories to account for differences in the relative likelihoods 

of being contaminated as the product sits on the shelf. Conversely, experts subdivided the original 96 food 

subcategories into 353 relevant food subcategories to express differing levels of likelihood of 

contamination for Salmonella. Table 4 shows the number of relevant food subcategories experts identified 

for each pathogen. 

 

The experts identified several food categories as commonly associated with high levels of contamination 

with more than one pathogen. For example, raw seafood was rated to have a higher likelihood of 

contamination with Vibrio spp., Toxoplasma gondii, Norwalk-like viruses, Rotavirus, Hepatitis A, 

Listeria monocytogenes, and Astrovirus. In contrast, condiments and sauces (except gravy) category was 

only rated at a higher likelihood of contamination with Streptococcus. The experts also indicated that 

Salmonella, E. Coli, Campylobacter, and Listeria monocytogenes pose a greater likelihood of 

contamination for foods (as indicated by their high relative likelihood of contamination scores) in 

comparison to other pathogens, such as Astrovirus, Cyclospora cayetanensis, Giardia lamblia, Rotavirus, 

Toxoplasma gondii, and Trichinella spiralis (as indicated by their low relative likelihood of 

contamination scores).  The work to develop these inputs into attribution fractions will be the next step of 

this research. 

 

From the second part of the elicitation, the results suggest that, according to these experts, the majority of 

foodborne illness cases for most pathogens are introduced to the product after the product leaves the store 

shelf. As mentioned earlier, this finding is similar to a finding in a recent 2011 study conducted by Batz et 

al. (2011) which finds that food handling and preparation problems in retail and food service settings 

account for a considerable burden of foodborne illnesses, even though their methodology was quite 
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different. However, for some pathogens, such as Brucella, Vibrio spp., Cryptosporidium parvum, 

Cyclospora cayetanensis, and Giardia lamblia, our expert elicitation findings suggest that the majority of 

foodborne illness cases are due to contamination that happens before the product reaches the store shelf.  

 

5 DISCUSSION 

 

5.1 Advantages of the Expert Elicitation Method 

 

Expert elicitation provides a useful method when data are insufficient for meta-analysis or other types of 

systematic review to yield needed answers. For attributing foodborne illnesses to foods, experts in 

microbiology, food safety, food technology, and epidemiology have considerable relevant knowledge may 

not be available in an easily usable way in published literature. Expert elicitation also allows for synthesis 

of input from multiple types of experts, each of which may contribute unique insights into the problem. 

 

The combination of expert elicitation with food consumption data allowed experts to focus on source 

contamination risk from highly disaggregated food categories. Combining the expert elicitation results 

with the food consumption data showed the food-pathogen combinations with high relative likelihoods of 

contamination may, nonetheless, result in lower numbers of foodborne illnesses than food-pathogen 

combinations with lower relative likelihoods of contamination, if the food with a high relative likelihood 

of contamination is eaten at low levels. For example, unpasteurized milk has a much higher relative 

likelihood of contamination with Brucella then raw meat, but because very little unpasteurized milk is 

consumed, few foodborne illnesses are associated with it in this study. 

 

As a result of this approach, we were also able to address two significant concerns in designing an expert 

elicitation: the well-established “anchoring” and “availability” cognitive biases. Because most of the data 

available on attribution is based on outbreaks, it is likely that outbreak-based attribution will be the anchor 

from which experts adjust. They may try to adjust for the known limitations of outbreak data, but research 

shows that their adjustments are likely to be underestimates. The “availability” bias would lead experts to 

inadvertently overweight food categories for which outbreaks happened more recently. The approach we 

took of having the experts rank the relative likelihood of contamination as the product sits on the store 

shelf is less likely to be influenced by these biases. The experts were asked to calibrate their awareness of 

illnesses caused by each food commodity (from outbreak data) with their knowledge on the likelihood of 
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this food type being contaminated and the growth potential for this food type. By asking for a slightly 

different type of estimate, we may have been able to better overcome the impact of these cognitive biases. 

 

There is a wide range of opinions in the literature about the validity of using self-assessed expertise scores 

to weight elicited responses.  Because we knew there was heterogeneity in the levels of expertise by 

pathogen, we incorporated the self-rating.  This was a short-cut to assessing expertise using other methods 

(Cooke, Soll, etc.), and may have impacted the results. 

 

In assessing relative likelihood of contamination instead of directly assessing attribution fractions, we 

aimed to accomplish several things. First, because there were more different types of experts that had 

information about likelihood of contamination than those who had information about attribution fractions, 

we were able to develop a more robust estimate since it included expertise from a wider range of experts. 

Second, we diminished the influence of outbreak-based attribution fractions because of the known 

uncertainties around outbreak data. Finally, we added an element related to consumption to account for 

the fact that foods consumed at higher rates are more likely to cause illness, if the likelihood of 

contamination is the same.  

 

5.2  Additional Considerations 

 

Another consideration is the use of ordinal scales (high/medium/low/negligible) and the way that we 

interpreted that scale in the model. The experts were not given a numerical scale along with the verbal 

scale, so it is possible that they had different interpretation for this scale than was used in the model. For 

example, they may have been thinking that “high” was 3x as likely as low, and “medium” was 2x as 

likely as low. However, as described earlier, we used a linear scale. It would be valuable as part of a 

sensitivity analysis to see how much that scaling assumption impacts the results. Because the question 

focused on likelihood of contamination as the product sits on the shelf rather than likelihood of illness 

once the product is consumed, many of the confounding factors like storage, transport, personal and retail 

handling, cooking, and cross-contamination were eliminated. The experts did not have to make judgments 

that synthesized all those factors – they only had to focus on the product on the shelf and what happened 

to it before it got there. A simpler elicitation should lead to more robust results. 

 

Validation of the model results are another significant challenge for EE. By the nature of the problem, 

there is little in the published literature to assess the validity of the results. To ensure the quality of our 
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results, we performed internal quality control reviews of the expert elicitation results to ensure that 

experts answered all questions as intended. We monitored inconsistencies and patterns of persistent bias 

by reviewing and comparing responses. Additionally, the elicitation protocol enabled participants to 

submit comments for each question, which we reviewed along with the question response to ensure that 

each question was interpreted as intended. We also plan to compare our final results with other studies. 

 

6 CONCLUSIONS 

 

This study addresses the challenges in finding the needed data for policy, in this case, understanding the 

relative contribution of different types of food to foodborne illness. Targeting resources most effectively 

to food safety activities depends on understanding the relative contribution of different foods to foodborne 

illnesses, but needed data is scarce and difficult to elicit. Expert elicitation provides a method to provide 

estimates, and for this situation, expert elicitation provides an approach for estimating model parameters 

and factors that are of interest.  In cases such as those for this study, it may be the best, or only, way to 

obtain such estimates. Innovative approaches were developed to reduce the impact of cognitive biases and 

to reduce the cognitive burden on the experts.  
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Table 1: Composition of the Expert Panel 
Current Professional Affiliation Count Percent of Total 
Academia 5 31% 
Government 4 25% 
Industry/Private consultants 7 44% 
Total 16 100% 
   
Field of Expertise Count Percent of Total [a] 
Microbiology 10 63% 
Food Safety  6 38% 
Epidemiology 3 19% 
Food Technology 2 13% 
   
Area of Expertise (Food Industry) Count Percent of Total [a] 
Seafood 11 69% 
Dairy 11 69% 
Produce 10 63% 
Meat & Poultry 10 63% 
Shelf-stable Foods 10 63% 
Canned Foods 13 81% 
Refrigerated Foods 14 88% 
Other 7 44% 
[a] Percentages do not sum to 100% due to panel members with multiple areas of expertise 
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Table 2: Brucella – Example Attribution Rates Calculation – Steps 1 and 2 

Food Product Category 

Weighted 
Mean Relative 
Contamination 

Likelihood 
Score [a] 

Normalized Weighted 
Mean Relative 
Contamination 

Likelihood Score 

Comment 

Meat, Raw (not frozen) 2.29 2.29 ÷ 6.41 0.36  

Milk and Cream – 
Unpasteurized 4.12 4.12 ÷ 6.41 0.64 

1.8 times likely to be 
contaminated than meat, 
raw (not frozen) 

Total 6.41  1.00  
[a] Weighted by expert’s self-assigned confidence rating 
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Table 3: Brucella – Example Attribution Rates Calculation – Steps 3, 4, and 5 

Food Product 
Category 

Normalized Weighted 
Mean Relative 
Contamination 

Likelihood Score 

Consumption 
Share 

Raw Attribution 
Rate 

Normalized 
Attribution 

Rate 

Meat, Raw (not 
frozen) 0.30 98.31% 0.35 0.35 ÷ 0.36 = 

97% 
Milk and Cream – 
Unpasteurized 0.54 1.69% 0.01 0.01 ÷ 0.36 = 3% 

Total 1.00 100% 0.36 100.00% 
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Table 4: Pathogens of Interest and Relevant Food Subcategories as Determined in Round 1 

 

Pathogen Number of Relevant Food Subcategories 
Bacillus cereus 121 
C. botulinum 110 
Brucella 3 
Campylobacter 45 
Clostridium perfringens 67 
Escherichia coli spp. 231 
Listeria monocytogenes 172 
Salmonella spp. 353 
Shigella 116 
Staphylococcus 96 
Streptococcus 14 
Vibrio spp. 35 
Yersinia enterocolitica 32 
Cryptosporidium parvum 102 
Cyclospora cayetanensis 71 
Giardia lamblia 31 
Toxoplasma gondii 14 
Trichinella spiralis 4 
Norwalk-like viruses 135 
Rotavirus 26 
Astrovirus 14 
Hepatitis A 138 
Total 1,930 


