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Meta-analytic approaches for multi-stressor dose-response function development: strengths, 

limitations, and case studies 

Jonathan I. Levy, M. Patricia Fabian, Junenette L. Peters 

 

Abstract 

For many policy analyses, including but not limited to cumulative risk assessments, it is 

important to characterize the individual and joint health effects of multiple stressors. With an 

increasing focus on psychosocial and other non-chemical stressors, this often involves 

synthesizing epidemiological evidence using meta-analytic techniques. This approach has 

limitations if epidemiological studies do not include all of the stressors of interest, making it 

challenging to pool evidence across studies. In addition, epidemiological studies may include 

multiple stressors in multivariable models, but these models may not provide outputs in a format 

necessary for specific risk assessment applications. Given these limitations, novel analytical 

methods are often needed to synthesize the published literature or to build upon available 

evidence. In this paper, we discuss three recent case studies that highlight the strengths and 

limitations of meta-analytic approaches and other research synthesis techniques for human health 

risk assessment applications. In the first example, a literature-based meta-analysis was used to 

inform the design of a new epidemiological investigation of the differential toxicity of fine 

particulate matter constituents, using a risk assessment context to further guide the 

epidemiological methods. In the second example, a literature synthesis for an effects-based 

cumulative risk assessment of hypertension risk factors led to a decision to apply structural 

equation modeling to develop new epidemiological associations rather than relying on the 

published literature. In the third example, discrete event simulation modeling was used to 

simulate the impact of changes in the built environment on exposure to environmental pollutants 

and associated asthma outcomes, linking literature meta-analyses for key associations with a 

simulation modeling approach to synthesize all of the model components. These case studies 

emphasize the importance of conducting epidemiology with a risk assessment application in 

mind, the need for interdisciplinary collaboration, and the value of advanced analytical methods 

to synthesize epidemiological and other evidence for risk assessment applications. 
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1. Introduction 

Health risk assessment increasingly involves evaluating the combined risks to health 

from multiple stressors, often within the context of cumulative risk assessment (1). Cumulative 

risk assessment has historically relied on toxicological evidence to determine the effects of 

multiple stressors, but given interest in psychosocial stress and various socioeconomic factors 

that cannot be readily evaluated toxicologically (2), there has been an increasing focus on 

methods to incorporate epidemiological evidence into cumulative risk assessment (3). To this 

point, a recent Federal Register information request from the U.S. Environmental Protection 

Agency (EPA) sought guidance on “methods for characterizing integrated risks posed by 

disparate stressors in a [cumulative risk assessment] context. These could include methods 

and/or study data from epidemiology…” (4).  

In most situations, risk assessors must gather evidence from published epidemiological 

studies and synthesize the information. Conventional meta-analytic techniques can be applied 

(e.g., inverse variance weighting of concentration-response functions across selected studies), but 

these approaches have limitations, many of which are heightened with interest in simultaneously 

evaluating multiple stressors. For example, epidemiological studies often focus on individual risk 

factors of primary interest to the investigators. If only a subset of stressors is included in any 

individual epidemiological study, it can be challenging to pool evidence across studies. This is 

both because omitted stressors could be confounders or effect modifiers, and because there may 

be methodological or other intrinsic features of individual studies that lead to higher or lower 

estimates. Even when epidemiological studies have incorporated all risk factors of interest into 

multivariable models, often only selected information is presented or the results omit key 

information necessary for cumulative risk assessment. As a result, risk assessors must often 

choose either to combine evidence across a larger number of studies, finding ways to take 
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account of methodological differences, or to restrict to a smaller number of studies which may 

not represent the literature as a whole. 

In spite of these challenges, the increasingly population-centered framework of 

cumulative risk assessment requires novel approaches to generate, evaluate, and incorporate 

epidemiological evidence. In this paper, we discuss three recent case studies in which 

investigators considered the strengths and limitations of meta-analytic approaches and applied 

other research synthesis techniques for human health risk assessment applications. In the first 

case study (5), the differential toxicity of fine particulate matter (PM2.5) constituents was 

evaluated using both a literature meta-analysis and a new epidemiological investigation designed 

to meet the needs of multi-stressor risk assessments. In the second case study (6), an effects-based 

cumulative risk assessment focusing on hypertension, researchers similarly evaluated the 

published literature to determine the effects of multiple stressors but decided to apply structural 

equation modeling (SEM) to develop new epidemiological associations from a national database 

rather than relying on the published literature. In the third case study (7), researchers integrated 

information from epidemiology and exposure monitoring studies to simulate the impact of 

changes in the built environment on exposure to environmental pollutants, as well as the impact 

of these changes on lung function and asthma exacerbations. This investigation required both 

synthesis of the literature on key associations and implementation of a simulation modeling 

approach to synthesize all of the model components. For each of these case studies, we focus on 

how the investigators used the published literature in conjunction with alternative strategies for 

research synthesis. All three of these studies were conducted by authors of this paper, so we 

focus on research synthesis decisions made by the investigators both within the papers and in the 

process of planning and scoping the analyses. We then consider the degree to which these 

analytical approaches generalize to other research applications and conclude by offering a set of 

criteria that would help in the selection of research synthesis methods.  

 

2. Case Study #1: Differential Toxicity of Particle Constituents 

For regulatory analyses and other risk assessments addressing PM2.5, it is important to 

know whether different particle constituents have different levels of toxicity, as control strategies 
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may target some particle constituents but not others. This question has been looked at 

extensively by the EPA and others (8), with the conclusion that the literature was not yet 

sufficient to develop constituent-specific concentration-response functions. As discussed in our 

recent publication (5), the literature could be insufficient because of a lack of relevant studies, or 

because the studies had methodological limitations or substantial variability in approaches that 

makes it challenging to synthesize the literature.  

Our analysis was conducted in two stages. In the first stage, we formally examined and 

synthesized the published epidemiological literature to determine if it provided the information 

necessary for a risk assessment application. Specifically, we searched for studies that provided 

estimates for four major particle constituents of regulatory interest (sulfate, nitrate, elemental 

carbon, organic carbon), as derived from multi-constituent models. Concentrations of particle 

constituents may be correlated with one another and multiple constituents influence health 

outcomes, so models that only include individual constituents could provide biased 

concentration-response functions. We also considered it important to calculate the probability 

that one constituent was more toxic than another, rather than simply giving central estimates or 

confidence intervals that do not allow for comparisons between constituents. Risk assessments 

require uncertainty characterization, but assumptions that estimates were uncorrelated with one 

another could be unfounded. 

In the second stage, we conducted a new epidemiological investigation, with the primary 

objective depending in part on the results of the first stage of our analysis. If the literature 

synthesis provided robust and interpretable concentration-response functions for all constituents, 

then the epidemiological investigation would examine the difference between estimates from a 

literature meta-analysis and a large multi-city investigation. This would help address questions 

about the importance of methodological choices in the literature or the possibility of publication 

bias. If the literature synthesis found significant methodological concerns with the published 

literature, then we would design and implement a new epidemiological investigation with the 

objective of yielding all of the requisite information for a multi-constituent risk assessment 

application.  

In our literature synthesis, we first reviewed the abstracts of 1,338 articles that addressed 

PM2.5 and health, identifying 65 epidemiological studies evaluating at least one of the four 
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particle constituents of interest (5). Focusing on a subset of 42 published studies that provided 

adequate information to generate concentration-response functions for at least one constituent, 

we determined that the evidence base did not meet the criteria described above. Specifically, 

only eight of the 42 studies provided quantitative effect estimates for all four constituents, and 

most studies reported effect estimates for single-constituent models or implemented multi-

constituent models but did not report quantitative findings for all constituents. No study provided 

information necessary to quantify the probability that a given constituent was more toxic than 

another constituent or to determine correlations among effect estimates. To be clear, this did not 

imply that these were fundamentally flawed epidemiological studies, but rather that they were 

not designed to give inputs to specific types of risk assessment applications. Stated another way, 

most of these epidemiological studies were trying to determine which particle constituents were 

most strongly associated with health outcomes of interest, not what the concentration-response 

functions for all constituents might be.  

Our new epidemiological study was therefore intended to provide all of the information 

that would be needed for risk assessment but was not available from a synthesis of the published 

literature. Specifically, we applied identical methods to hospital admissions data from 119 

counties in the US, yielding county-level estimates that could be readily aggregated at the 

regional or national level. We incorporated all four constituents into multi-constituent models. 

We explicitly reported central estimates and confidence intervals for all four constituents, along 

with the correlations between each pair of beta coefficients, which would allow for uncertainties 

to be appropriately incorporated into multi-constituent risk assessments. We used the joint 

posterior distribution of the health effects of the four constituents, coupled with the posterior 

distribution of their covariance matrix, to estimate the probability that each constituent was more 

toxic than each other constituent. This provides quantitative insight regarding whether the 

evidence was sufficient to infer differential toxicity values or whether identical values could be 

utilized. We were also able to use these outputs to determine probability distributions of ratios of 

toxicity values, given that risk assessment studies have incorporated such ratios into previous 

differential toxicity analyses without consideration of the likely degree of uncertainty.  

The specific findings from our new epidemiological investigation are reported elsewhere 
(5), but in general, our analytical approach provided information that would allow for risk 
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assessments incorporating differential toxicity to be conducted, which would have been 

challenging from the published literature. For example, we found high probabilities (> 0.99) that 

elemental carbon had greater toxicity per unit concentrations than other particle constituents for 

cardiovascular hospital admissions, with weaker evidence of differential toxicity for respiratory 

hospital admissions. We also found that multiple beta coefficients were significantly correlated 

with one another (e.g., correlation coefficient of -0.71 between elemental carbon and organic 

carbon for cardiovascular hospital admissions), information that would not have been available 

from a literature synthesis. We therefore concluded that if epidemiological investigations were 

designed with risk assessment applications in mind, synthesis and application of published 

findings would be less uncertain. The methods we applied would generalize to a variety of multi-

stressor epidemiological studies in which exposures may be correlated due to common sources or 

activity patterns.  

 

3. Case Study #2: Multiple Risk Factors and Hypertension  

In our second case, we considered elevated blood pressure (i.e., hypertension), a major 

contributor to cardiovascular disease. A number of environmental and non-environmental risk 

factors for hypertension have been identified in the published literature (e.g., sodium 

consumption, obesity, lack of exercise), although the primary cause of the common type of 

hypertension is not known. Many of the identified risk factors tend to cluster in a complex 

network of direct and indirect pathways in their effect on blood pressure. For example, fish 

consumption may be beneficial for hypertension, but multiple chemicals that contribute to 

hypertension may be elevated in fish. In this context, standard research synthesis methods may 

pool evidence in an inappropriate manner, as published epidemiological studies often investigate 

one pathway controlling for other covariates without appreciating the role of cumulative 

exposure and the interrelations and influences of mediating factors.  

For this case, a component of an effects-based cumulative risk assessment study, we 

initially conducted a literature review to determine if the epidemiological evidence was sufficient 

to develop concentration-response functions for the various chemical and non-chemical stressors 

hypothesized to influence blood pressure in our study population. Given an initial literature 
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evaluation and the geographic setting for our cumulative risk assessment, we focused on four 

chemical exposures: lead, cadmium, mercury, and polychlorinated biphenyls (PCBs). Our formal 

review of the published literature confirmed that the available evidence did not provide insight 

necessary for cumulative risk assessment. Specifically, the available publications did not 

typically include investigation of simultaneous exposures or direct and indirect relationships with 

predictors. We therefore concluded that new epidemiological evidence needed to be derived to 

inform our cumulative risk assessment.  

For complex outcomes involving multiple potential risk factors and pathways, there has 

been increasing interest in the application of structural equation modeling (SEM) to better 

understand the joint influence of various risk factors. SEM combines linear regression, path 

analysis and factor analysis (9) and thus represents a uniform platform for jointly modeling 

several outcomes simultaneously (10). Thus, SEM is well suited to assess the relative importance 

of multiple stressors and how they interact to affect blood pressure in the context of cumulative 

risk assessment. We applied SEM to data from the National Health and Nutrition Examination 

Survey (NHANES) 1999-2008 to develop applicable models.  

SEM can be thought of as a mathematical representation of the structure of theoretical 

(i.e., a priori-based) relationships among variables rather than a data mining process for model 

development (11, 12). When used in a data mining framework, SEM may produce models with 

good fit but illogical results/pathways (9). Therefore, we specified the structural models based on 

previously defined predictive models and logical linkages for each chemical exposure, explicitly 

considering the influence of factors that could both predict chemical exposures and the blood 

pressure outcomes. Candidate predictors included demographics (e.g., age, sex, race/ethnicity, 

country of birth, education); dietary information (e.g., fish and shellfish consumption); and other 

characteristics (e.g., smoking, access to healthcare, geography). 

Given the candidate set of predictors, we selected an optimum subset to eliminate 

redundancy, reduce noise and address collinearity. This involved manual selection based on 

univariate and multivariable significance and contribution to the percent variance and automated 

selection using a stepwise technique and a shrinkage method (i.e., least absolute shrinkage and 

selection operator (LASSO)).   
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Traditionally, SEM functions best modeling normally distributed continuous data, but 

many predictors of exposures (e.g., smoking status, physical activity) are either categorical in 

nature or only available as categorical variables within surveys. One way categorical variables 

can be addressed is by using latent variable models; however, in the case of risk assessment, we 

are interested in knowing the contribution of the specific covariate. Alternatively, recent 

enhancements that allow a generalized linear model framework have facilitated the modeling of 

categorical data in SEM (9, 11, 12). The assumption of normal distribution must also be considered 

as environmental exposures are often log-normally distributed. Several approaches have been 

proposed for dealing with non-normal data; however, each approach has its drawbacks (9). For 

example, less restrictive estimators require substantial sample size such that the application of 

two of these estimators - weighted least squares for arbitrary distributions and diagonally least 

squares - were unsuccessful with our final sample size of approximately 1,000. Our final 

approach was to log-transform data as traditionally done in the environmental literature, mindful 

that this strategy affects our ability to interpret results.  

Another consideration in determining the appropriateness of SEM as a research synthesis 

tool is that risk assessment applications often rely on large public data resources to generate 

distributions and associations in the absence of site-specific data. Many of these data resources 

involve complex surveys such as the NHANES, where sampling design could violate traditional 

SEM assumptions. The effect of not accounting for sample design can vary from minimal effect 

to substantial bias (13-16). In our application, we found similar results for the SEM predicting 

blood pressure whether or not we used recommended methods that account for cluster, strata and 

weights. It is worth noting that models generated in SEM do not by themselves represent casual 

inference due to issues of potential misspecification. In addition to fitting our models based on 

thoughtfully specified models, we also tested the goodness of fit using several fit indices, which 

vary in sensitivity to model misspecification (17).  

Despite limitations, SEM provided quantitative relationships of the relative importance of 

chemical exposures on blood pressure accounting for their relationship with non-chemical 

predictors, information that was not available from standard literature synthesis methods. The 

ability to use a joint model approach in SEM made it possible to estimate the interrelations 

between both independent and intermediate variables. For example, age was associated with 
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elevated blood pressure, but was also associated with lead and PCB concentrations owing to 

accumulation in body stores. Age was also predictive of level of physical activity, also related to 

blood pressure (Figure 1). Thus, we were able to mutually adjust for the effect of a primary 

variable not mediated by intermediary variables and the effect of intermediates conditioned on 

the primary variable (10). This capability allowed us to not only model cumulative risk factors in a 

way that more realistically represents human exposures but to also gain insight into underlying 

pathways. 

 

Figure 1. Simplified example diagramming direct and indirect relationships of age, chemical and 

nonchemical factors and blood pressure. 

 

 

 

 

 

 

 

 

4. Case Study #3: Asthma Exacerbations and the Indoor Environment  

Asthma exacerbations are complex phenomena associated with exposure to multiple 

environmental stressors, including allergens (e.g., dust mites, cockroach allergens) and air 

pollutants (e.g., ozone (O3), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and 

environmental tobacco smoke (ETS)) (18, 19). Non-pollutant related factors associated with 

exacerbations include exacerbation history, respiratory infections, asthma medication 

compliance, and access to health care (20-22). In this case study, our goal was to build a model of 
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pediatric asthma which would allow us to evaluate the impact of multiple building interventions 

in low-income multi-family housing on asthma exacerbations.  

We used discrete event simulation modeling (DEM) as a tool to synthesize the 

relationships among pollutants, lung function and asthma exacerbations (7). DEM is a systems 

science approach used to model complex systems which evolve over time (23). These models 

have been used in health policy analyses of multiple diseases such as schizophrenia (24), malaria 
(25), diabetes (26), and breast cancer (27, 28). Some of the strengths of DEM are flexibility in 

incorporating multiple types of data (e.g., raw data distributions, equations, regression models, 

data matrices), ability to incorporate multiple exposures and model interactions, flexibility to 

vary factors over time, and the ability to develop programs in multiple computer languages. One 

limitation of DEM is the intensive computational demand, which depends greatly on the number 

of subjects and length of time simulated, as well as the simulated discrete time steps. Figure 2 

presents a schematic of the DEM model. 

 

Figure 2. Schematic of the discrete event simulation model for pediatric asthma in the indoor 

environment (reproduced from Fabian et al. 2012 (7)) 
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Our asthma exacerbation model required: 1) finding or constructing links between 

building characteristics and exposure to multiple pollutants, 2) associating each pollutant 

exposure with an intermediate physiological predictor of asthma outcomes (in this case lung 

function), and 3) associating lung function directly with asthma outcomes of interest. Pollutants 

(NO2, PM2.5, cockroach allergen and mold), lung function (percent predicted forced expiratory 

volume in 1 second (FEV1%)), and outcomes (asthma symptom-days, clinic visits, emergency 

room visits, and hospitalizations) were selected based on their ability to meet all three 

requirements above. This meant that some pollutants that were associated with health outcomes 

in epidemiological studies were not included, as they could not be modeled following the logical 

flow of the simulation model (i.e., they could not be modeled in the indoor environment or could 

not be associated with our intermediate lung function metric).  

We parameterized the model and included pollutants and outcomes using a combination 

of methods, including: synthesizing information from the epidemiological literature, 

incorporating raw data from previous public housing studies, developing new equations to model 

non-linear relationships among the multiple factors, and using multizone airflow and 

contaminant transport software (CONTAM) to predict pollutant concentrations from indoor and 

outdoor combustion sources based on building characteristics (7). Each component was built with 

an eye toward the other components, knowing that an interpretable model would need to be 

internally consistent. For example, we built predictive regression models explaining variability in 

outputs from CONTAM, rather than using CONTAM outputs directly, so that the indoor air 

predictions could be used within the daily flow of the DEM. Similarly, the averaging times for 

pollutant concentration estimates needed to be aligned with epidemiological evidence – for 

example we used the 5-day average outdoor NO2 and PM2.5 concentrations to estimate the effect 

of NO2 and PM2.5 on lung function as indicated in our reference study (29).  More details about 

the model components and how they were synthesized have been published elsewhere (7, 30). The 

resulting DEM was used to evaluate the impact of multiple interventions on asthma 

exacerbations (and costs) in a simulated low-income housing pediatric population (31). The 

interventions included energy saving building changes (e.g., weatherization) and other building 

policies (e.g., non-smoking policy, increased ventilation, pollution source replacement). 
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Ultimately, our model involved research synthesis at multiple levels – many components 

required a systematic literature review, considering both the strength of the epidemiology and 

field study literature and the degree to which outputs could be aligned with other model 

components. Some epidemiological evidence was relevant for understanding the overall strength 

of the literature but could not be directly applied within our model. The DEM was itself a 

research synthesis tool, as it linked evidence across multiple domains to inform policy choices. 

This modeling approach is valuable for complex health outcomes, with the flexibility to 

incorporate other pollutants, outcomes and relationships as more information becomes available.  

 

5. Discussion and Conclusions 

These three case studies help to reinforce a few overarching themes regarding research 

synthesis methods as applied to epidemiological evidence for multi-stressor risk assessment, 

including literature-based meta-analyses and other analytical approaches. For risk assessment 

applications in which the effects of multiple stressors are of interest, it can be challenging to 

extract all necessary information from the published epidemiological literature in an unbiased 

manner. In each case study, the published epidemiological literature was reasonably robust with 

good supporting evidence for causality, but there were few or no publications that could be 

directly applied to the risk assessment or policy analysis applications. This led to either new 

epidemiology being developed (in the first and second cases) or a narrowly focused strategy for 

synthesizing the published literature (in the third case). Ideally, epidemiologists who might be 

aware of the end use of their publications could apply methods that would facilitate that end use, 

but rarely are these applications either known in advance or under consideration by 

epidemiologists. Related to this point, each of the case examples involved an interdisciplinary 

collaboration including epidemiologists working alongside risk assessors, simulation modelers, 

clinicians, or others involved in the end use of the epidemiology. This increased the likelihood 

that epidemiological evidence, either collected from the literature or developed through new 

analyses, would be suitable for the application. 

In addition, each of the case studies illustrated how an advanced analytical method can be 

used to synthesize epidemiological and other evidence for risk assessment applications. Multi-
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site epidemiological analyses, using Bayesian approaches to pool evidence across a large number 

of geographic locations, can synthesize evidence that might have otherwise been reported as 

numerous individual estimates. This addresses concerns regarding methodological variability and 

potential publication bias, while increasing statistical power. It would be relatively rare to have 

risk assessment applications where the opportunity existed to conduct new epidemiology across 

many locations, but the value of this approach reinforces the importance of explicitly examining 

methodological consistency across studies and whether geographic heterogeneity exists prior to 

conducting literature-based meta-analyses. A crucial question in synthesizing epidemiological 

evidence across studies is whether differences in effect estimates reflect uncertainty or 

variability, and the statistical approaches that we used addressed this question. More broadly, 

even in situations where multi-site epidemiology is not viable, Bayesian concepts and calculation 

approaches can be useful ways to formally consider how additional epidemiological evidence 

could modify an existing prior distribution.  

Structural equation models offer an alternative analytical strategy for new 

epidemiological investigations. SEMs are reputed to offer the broadest statistical application 

representing an integration of analytic tools rather than a singular approach (12). They can provide 

a comprehensive evaluation of complex models involving direct and indirect relationships 

expressed in multiple linear equations compared to traditional techniques involving separate 

evaluations of components of complex relationships based on individually-modeled equations (9). 

When multiple stressors potentially operate at multiple levels, standard epidemiological 

approaches can potentially yield misleading or uninterpretable findings, and pooled estimates 

from literature-based synthesis approaches could have significant errors. SEM can help 

determine pathways of influence and can provide appropriate estimates for individual stressors 

given the complexity of the multi-stressor and multi-level environment. Implementing SEM 

involves specific expertise, so this would need to be reserved for applications in which standard 

approaches are clearly not yielding the requisite information. There are also assumptions and 

precautions regarding the use of SEM including distribution structure and sample size.  

However, our case study illustrates that publicly available data can provide the foundation for 

some SEM applications, so that conducting a new epidemiological analysis does not require 

significant data collection. More generally, SEM can be used to strengthen insights about 
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dominant associations and potential causal pathways, which can allow for more targeted 

literature synthesis.  

In contrast, discrete event simulation models do not generate new epidemiological 

evidence, relying on the published literature and available raw data with all of its strengths and 

weaknesses. However, the fact that multiple information sources can be synthesized with DEMs 

allows us to study research questions that may not be possible to answer with individual 

epidemiological or toxicological studies. In the case of our asthma exacerbation study, 

hospitalizations are events which, although influenced by environmental factors, occur rarely (an 

average of 0.03 hospitalizations per year per asthmatic). An epidemiological study of the impact 

of smoking policy changes or structural building changes on environmental pollutants and 

asthma hospitalizations would be logistically challenging, so one might think that risk 

assessments including asthma hospitalizations as an outcome would be impractical. However, 

the linked structure of the DEM coupled with the ability to simulate millions of children allowed 

us to easily study this outcome. Thus, DEMs can be useful tools for policy analysis, and for the 

study of rare events. In addition, the simulation framework and explicit linkage across model 

elements allows for iterative model refinement. Any module can be updated as new information 

becomes available, and the subset of exposures that most influence the choice among risk 

management policies can be investigated in more detail.  

Broadly, the choice among these (or other) methods for research synthesis of 

epidemiological evidence ultimately relates to the specific application. Any research synthesis 

approach should be designed for purpose – a strategy that is successful for one application may 

either be inapplicable or unwieldy for another application. Just as the proper scope of a risk 

assessment can only be determined by knowing the risk management context (32), so should the 

research synthesis approach be driven by the risk assessment content, structure, and timing. The 

key insight that our case examples provide is that multi-stressor risk assessment will often 

require information that goes beyond standard linkage of literature-based epidemiology with 

exposure estimates, either in how the epidemiological evidence is generated or in how it is 

applied. 

As shown in Table 1, each of the four general strategies we discussed for epidemiological 

literature synthesis (literature-based meta-analysis, multi-site epidemiology with Bayesian 
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methods to pool evidence, structural equation modeling, and discrete event simulation modeling) 

has advantages and disadvantages, and investigators should ask a series of diagnostic questions 

to determine which research synthesis method would be most appropriate. For example, if the 

published epidemiological literature adequately provides concentration-response functions for 

multiple individual stressors and the objective is to prioritize among stressors, DEMs or related 

approaches could be used to synthesize the evidence in a manner that informs policy choices and 

research priorities. If the health outcome of interest can be impacted by multiple exposures and 

occurs rarely, then DEMs are a good approach to leverage insight from related associations in the 

literature. If methodological inconsistency or between-site heterogeneity makes a literature-based 

meta-analysis challenging, multi-site epidemiology using Bayesian methods to pool evidence 

may be warranted. If the literature is challenging to synthesize because the stressors of interest 

operate at multiple levels, SEM could be informative. We encourage future researchers to 

explicitly consider these and other research synthesis techniques to provide relevant outputs for 

cumulative risk assessments and other multi-stressor investigations.  
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Table 1: Comparison of alternative research synthesis methods for including epidemiological 

evidence in multi-stressor risk assessments (RA). 

Approach Most likely application Strengths Weaknesses 

Literature 
meta-analysis 

 RAs of limited 
number of related 
chemicals, where 
causality has been 
well established 

 Analytically less 
complex 

 Integrates current state 
of knowledge  

 Non-uniform methods 
 General lack of insight 

regarding multi-stressor 
associations 

Multi-site 
epidemiology 
with Bayesian 

methods to 
pool evidence 

 RA of mixtures of 
correlated pollutants 
(e.g., air pollution)  

 RA of chemical 
exposures monitored 
regularly, where 
associations may vary 
spatially 

 Standardized methods 
across locations 

 Ability to “borrow 
strength” across site-
specific analyses 

 Statistically complex 
 Only applicable to 

limited number of 
exposures that can be 
characterized over 
many locations 

Structural 
equation 
modeling 

 Cumulative RA of 
chemical and non-
chemical stressors 

 RAs in which non-
chemical stressors 
could influence 
exposures and 
outcomes 

 Clarifies pathways 
among multi-level 
stressors 

 Flexible modeling 
approach 

 Statistically complex 
 Works best with 

continuous and 
normally-distributed 
covariates 

Discrete event 
simulation 
modeling 

 RA applications with 
time-varying 
associations and 
feedback loops 

 RAs in which 
multiple policy 
options are under 
consideration 

 RA of rare outcomes 
which would be 
logistically 
challenging to study 
with only 
epidemiology 

 Integrates multiple 
types of data 
(epidemiology studies, 
raw data, equations, 
data matrices) to 
answer complex health 
outcome questions 

 Allows for evaluation 
of intervention 
scenarios modifying 
individual or clusters 
of factors 

 Generates evidence for 
policy analysis 

 Allows for inclusion 
of rare events and 
dynamic systems 

 Statistically complex 
and computationally 
demanding 

 Model parameterization 
limited by published 
literature 
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