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Critical Issues in Combining Disparate Sources of Information to Estimate the Global Burden 

of Disease Attributable to Ambient Fine Particulate Matter Exposure 

Hwashin H. Shin, Aaron Cohen, C Arden Pope III, Majid Ezzati, Stephen S Lim, Bryan Hubbell, 
Richard T. Burnett. 
 
Abstract 
 
We develop a hybrid meta-analytic approach to estimating uncertainty from combining 

information on risk from a small number of studies.    This method is most useful when pooling 

risk estimates among a limited number of studies with little observed variation compared to 

their sampling error.   It is based on integrating features of both Frequentist and Bayesian 

approaches to meta-analysis.  We present an example of mortality risk due to long-term 

exposure to ambient fine particulate matter obtained from cohort studies conducted in the 

United States and Europe.  Study-specific pooled risk estimates are then further combined with 

risk information from other sources of particulate exposure at much higher concentrations, 

such as active and second hand smoking, to extrapolate risk from low concentrations observed 

in the outdoor air pollution cohort studies to the higher levels observed in developing 

countries.  We estimate the relative risk for each study and source of particulate pollution at 

the range in study-specific exposure and treat these estimates as input data in order to 

characterize the shape of the exposure-response function.  In this manner we are able to derive 

the form of the risk function without direct access to primary data.  We thus derive a risk model 

that covers the entire global range in exposure.  Uncertainty in risk predictions are obtained 

using simulation methods that incorporate uncertainty in the input source-specific risk 

estimates.   

 
Key Words:  ambient particulate matter, global burden of disease, uncertainty risk distribution, 
Bayesian analysis. 
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1. Introduction 

 
There is now substantial epidemiological evidence that long-term exposure to ambient fine 

particulate matter (PM2.5) contributes to the development of cardiovascular and respiratory 

disease, increases mortality due to these conditions and reduces life-expectancy (Brook et al., 

2010).  It is important for scientific and public health purposes to estimate the population 

health burden due to exposure to ambient concentrations of PM2.5 in specific locations across 

the globe.  These estimates require that the excess risk of disease or mortality be quantified in 

relation to long-term exposure to ambient PM2.5 and that the uncertainty in the burden 

estimates from key data inputs be estimated and reported.   

 

The most common method of estimating mortality risk from ambient PM2.5 exposure is with a 

cohort study design in which a group of subjects are recruited, information on their exposure to 

PM2.5 and other risk factors is obtained, and their vital status is then ascertained over time.  

Although the number of such studies is increasing, they are still few in number. Even when the 

studies are combined, the common meta-analytic methods have poor statistical properties 

when the number of studies examined is small. Furthermore, because the existing cohort 

studies have been conducted in high-income North America and Europe they provide 

information about risk over a relatively narrow range in ambient PM2.5 concentrations 

compared to the range observed globally.  Identifying the shape of a risk distribution becomes 

difficult under the circumstances of a narrow exposure range and relatively low predictive 

power.   Extrapolating risks to the much higher concentrations typically observed in many 

regions of the world is uncertain.   

 

In this paper we address critical issues in estimation of the shape of the exposure-response 

relation between ambient PM2.5 exposure and mortality over the global range of exposure and 

its uncertainty. In particular, we develop a new method of combining risk estimates from a 

small number of studies using a hybrid Frequentist-Bayesian framework in which the prior 

distribution on the true risk is informed by the observed risk estimates.  We also develop a new 
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method of extrapolating risk from the relatively low concentrations studied in US cohort studies 

to those concentrations observed around the world by introducing information on mortality 

risk from PM2.5 exposure from disparate sources including second hand smoke, burning of 

biomass for heating and cooking, and active smoking.         

 

2. Incorporating Prior Knowledge to Synthesize Information from a Small Number of Large 

Studies 

 

There are many challenges in characterising uncertainty in risk.  Selecting a single study, as has 

recently been done by the US EPA (2010) and using the sampling variations from that study 

likely underestimates the true uncertainty in risk.  

 

Pooling information from different studies can be done in order to evaluate the numerical 

strength of evidence for an association and thus provide evidence to support a causal 

association if appropriate.   Such pooling is also of interest when a causal association has been 

identified using a variety of sources of information to support the biological plausibility of the 

causal effect and a quantitative estimate of risk is the primary goal of the synthesis exercise.   In 

this latter case, one could assume that the true distribution of risk among studies has only 

positive support and it is known or implausible that the risk factor could be negatively related 

to disease or mortality.  Here, we suggest a Bayesian framework to facilitate pooling of 

information assuming that the true distribution of risk is positive although the error distribution 

from any single study could have substantial negative support due to large sampling 

uncertainty.   

 

We consider a distribution for population health risk associated with ambient PM2.5 based on 

risk estimates from a limited number of cohort studies.  We propose a 2-stage Bayesian 

hierarchical model to estimate the distribution of risk among studies.  We use a Gamma 

distribution for the risk to represent prior beliefs that the true but unknown risks are positive 

and exchangeable among the cohort studies (Brook et al., 2010). 
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2.1 Frequentist’s Approach to Pooling 

 

 In the frequentist’s approach one assumes a random effects model of the form 

)ˆ , (~ˆ 22
kk N νσµβ ββ +    ,  

where 𝛽̂𝑘  and 𝑣�𝑘2  are the estimated study-specific risk and sampling variance of study k, 

respectively,  assuming both mean risk ( βµ ) and between-study heterogeneity ( 2
βσ ) are fixed.  

Estimates of ) ,( 2
ββ σµ  have been suggested using a number of approaches.  A common 

approach used in many commercial statistical software programs uses a Q statistic (DerSimonian 

and Laird, 1986) based on the method of moments and large sample size.  It is known that the Q 

statistic rejects the hull hypothesis of no heterogeneity (i.e. 02 =βσ ) too often when only a 

small number of studies are examined, and thus this method tends to underestimate the 

heterogeneity (Huedo-Medina et al., 2006).  Consequently, one is led to conclude that there is 

stronger evidence for statistical associations between air pollution exposure and health 

outcome than is warranted from the observed data.  Thus we are most concerned about cases 

in which the variation in risk estimates among studies is close to or even less than the study-

specific sampling variation.    In these cases the Q statistic method of estimating heterogeneity 

among studies often gives an estimate of zero, unrealistically suggesting no heterogeneity in 

the true estimate of risk. However, heterogeneity may be expected due to differences in 

exposure patterns, population demographics, and other unexplained risk factors.           

 

2.2 A Hybrid Bayesian-Frequentist Approach to Pooling  

 

In the Bayesian approach we introduce our prior beliefs and understanding into the analysis by 

prior distributions on ( 2 , ββ σµ ).  We first note that a set of parameters 𝛽=( 1β ,…, Kβ ) is 

exchangeable if the distribution of 𝛽 is unchanged if the parameters are permuted. This implies 

that our prior belief about iβ  and jβ  are the same. We can construct an exchangeable prior by 

assuming that the components of 𝛽 are a random sample from a distribution. The parameters 
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𝛽=( 1β ,…, Kβ ) in this context represent the population risk over various cohort studies. The 

reported cohort risk estimates ( kβ̂ ) are then assumed to vary about the true unknown risk kβ , 

and the individual kβ  are assumed to be random variables from a distribution conditional on 

additional parameters called hyperparameters. Here we assume the kβ  vary over cohorts 

about the population mean βµ  with between-cohort variance 2
βσ . 

 

We begin by specifying a distribution for the risk estimates ( 1̂β ,…, Kβ̂ ), which are the  

estimated risk coefficients of PM2.5 from K cohort studies. We assume a normal distribution for 

the kth cohort study as follows: 

,,..,1kfor  )ˆ,(~|ˆ 2 KvN kkkk =βββ  

where kβ is the unknown true cohort-specific risk and 2ˆkv  is the known sampling variance of kβ̂  

conditional on kβ , )|ˆ(r̂va kk ββ , of the kth cohort.  We think that this is a reasonable 

assumption since the cohort studies typically have a very large number of subjects. 

 

At the first stage of the prior, the true risks, 1β ,…, Kβ , are assumed to be a random sample 

from a distribution.  Negative risks can be predicted if the uncertainty distribution has both 

positive and negative support, like the Normal distribution. In such cases negative risks can be 

truncated at zero when the distribution is used to quantify uncertainty in health benefits or the 

probability of the negative support is placed at zero.  Selecting an uncertainty distribution with 

only positive support avoids these somewhat ad-hoc procedures.  To illustrate our method we 

select a Gamma distribution with shape and scale parameters, α>0 and θ>0, respectively: 

.any for  ),(~,| kGk θαθαβ  

We select the Gamma distribution since it has only positive support which is consistent with our 

beliefs, based on the extensive body of literature on PM health effects (Brook et al, 2010; U.S. 

EPA, 2009),  that exposure to ambient PM2.5 is causally linked with adverse health outcomes, 

and that increases in PM2.5 cannot be plausibly associated with improved health.  Other 

distributions with positive support could also be considered. 
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 Since the mean risk βµ  and variance 2
βσ  of 𝐺(𝛼, 𝜃) are 𝛼𝜃 and 2αθ , respectively,  we can 

reparameterize by changing the shape and scale parameters to βµ  and 2
βσ  for convenience as 

follows: 

 ), / (~,| 2222
ββββββ µσσµσµβ Gk . 

At the second stage of the prior, the hyperparameters βµ  and 2
βσ  are assumed independent, 

both with Uniform distributions of the form 

),0(~ µβµ IU  and ),0(~ 2
2

σβσ IU . 

For prior sensitivity, we consider a non-informative prior for βµ and thus set µI to an arbitrary 

large number (i.e. 1000).  In practice the posterior distributions for βµ  and 2
βσ  are insensitive to 

the prior specification of µI .  However, they are highly sensitive to the specification of 2σ
I .  We 

borrow a philosophy from the frequentist’s approach by noting that the variation in risk among 

studies should be less than the observed variance between the kβ̂ .  To ensure our method 

adheres to this philosophy we identify a value of 2σ
I such that the 0.975 percentile of the 

posterior distribution of 2
βσ is close to but not greater than the observed variance of the kβ̂ .  

We term this method a Hybrid Bayesian-Frequentist approach.  

 

We compare this approach assuming a Gamma distribution to a typical approach assuming a 

normal distribution for the true risks which is a common assumption in the Bayesian framework 

for meta- analysis.  Here we assume  

) , (~,| 22
ββββ σµσµβ Nk          .                                                         

To complete the model specification we assume prior distributions for the hyperparameters 

),0(~ µβµ IN  and ),(~2 πφσ β IG  

where IG  is an Inverse Gamma distribution with shape and scale parameters φ and π  for 

variance 2
βσ . As with the Gamma distributional assumption on the true risks, the posterior 

distributions for βµ  and 2
βσ   are insensitive to the specification of µI  but highly sensitive to the 
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values of ),( πφ .  As with the Gamma prior specification we could select values of ),( πφ  such 

that the 0.975 percentile of the estimated posterior distribution of 2
βσ  is close to but not 

greater than the observed variance of the kβ̂ .   However, in most applications, the analyst 

selects non-informative priors such that )1000,0(~ Nβµ  and )001.0,001.0(~2 IGβσ . We take 

this approach here in order to compare the estimated risk distribution between the Hybrid 

Bayesian-Frequentist Gamma distribution and a non-informative Normal distribution. 

 

2.3 Illustrative Example:  Fine Particulate Matter association with Cause-Specific Mortality. 

 

As part of the Global Burden of Disease 2010 project, cohort studies of ambient PM2.5 exposure 

and mortality were identified for four leading causes of death:  ischemic heart disease (IHD), 

stroke, chronic obstructive pulmonary disease (COPD), and lung cancer (LC) (Lim et al., 2012).   

Eight cohort studies were included in the assessment:  American Cancer Society Cancer 

Prevention II (ACS), Six City Study (SCS), Adventist Study of Health and Smog (ASHS), Dutch 

Study of Diet and Cancer (DSDC), Women’s Health Initiative (WHI), Male Health Professional’s 

Study (MHP), Nurse’s Health Study (NHS), California Teachers Study (CTS).  Risk estimates were 

not reported for all four causes of death and all eight cohorts (8 for IHD, 5 for stroke, 3 for 

COPD, and 4 for LC).  For details on these estimates see Burnett et al. (2013).  

 

The study and cause-of-death specific hazard ratio estimates evaluated for a difference in PM2.5 

of 10µg/m3 are presented in Figure 1 for each cohort (horizontal dashed lines).  The thickness of 

the lines represents the relative precision of each estimate with the ACS being by far the largest 

study.  The estimated uncertainty distribution based on the Q statistic is represented by a blue 

curve.  The variance of the uncertainty distribution is positive for IHD, but equals zero for 

stroke, COPD, and LC, thus the horizontal blue line representation implies no heterogeneity in 

risk among studies.  The uncertainty distribution characterizes the variation in true risk and the 

probability distribution of a risk estimate from a newly conducted study.  These results would 

suggest for stroke, COPD, and LC that such a new risk estimate would be for certain at the 

pooled estimate of the available studies, a highly unlikely scenario. 
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The non-informative Normal risk distribution is presented as a red curve in Figure 1.  For IHD, 

for which the Q statistic estimated a positive heterogeneity variance, the non- informative 

Normal uncertainty distribution was similar to that of the Q statistic based distribution.  The 

Gamma risk distribution based on the Hybrid Bayesian-Frequentist approach (black curve) 

estimated an uncertainty distribution that is skewed to the left due to the three studies with 

hazard ratio estimates less than or equal to one and a long tail due to the two studies with 

relatively large hazard ratio estimates.  Here, the Gamma uncertainty distribution assigns a 

small probability to risk estimates similar to those from the NHS and WHI, while the Normal 

uncertainty distribution assign essentially no probability.   The Gamma distribution also 

captures the evidence that some cohort studies are not detecting an association between PM2.5 

exposure and IHD mortality (MHP, ASHS, DSDC), yet not assigning a sizable proportion of 

uncertainty to negative risk as does the Normal distribution.  By introducing a non-negative 

prior distribution, we can capture more of the information in the observed studies, rather than 

using apparent information (negative support values) that is highly implausible. 

 

For stroke, COPD, and LC we observed a similar comparison between the uncertainty 

distributions based on the Q statistic, the non-informative Normal, and Gamma distribution. 

The Q statistic distribution is degenerate, the non-informative Normal has a very large amount 

of dispersion, and the Gamma distribution is more dispersed that the degenerate Q statistic 

uncertainty distribution but less dispersed than the non-informative Normal.   

 

We view our Hybrid Bayesian-Frequentist approach as a reasonable compromise in cases for 

which the heterogeneity of risk estimate is zero based on the Q statistic, or any frequentist 

estimation approach, and a purely Bayesian non-formative prior approach.  Assuming a zero 

amount of heterogeneity is unreasonable due to the large uncertainties in estimating air 

pollution related risk from observational epidemiological studies.   Since there is a large body of 

non-epidemiologic evidence, as well as epidemiological evidence from other health outcomes, 

it is appropriate to develop informed priors, which both limit the range of the risk estimates to 
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the positive domain and suggest that the uncertainty in the variance of the distribution of true 

risks should be limited based on the observed variance in the data.  Thus non-informative priors 

that yield much more variation in risk than that is observed among studies likely over-estimates 

the true uncertainty in risk.  

 

 

   
Figure 1: Gamma risk distribution with the Hybrid Bayesian-Frequentist approach (black solid line), Normal risk 
distribution non-informative priors (red solid line), and Normal risk distribution with Q-stat moment estimates 
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(blue solid line). The vertical dashed lines are reported cohort risk estimates with thickness inversely proportional 
to the standard error of cohort risk estimates. 
  

 

3. Identifying the Shape of the PM2.5 Mortality Exposure-Response Function 

 

The shape and magnitude of the exposure-response relation between long-term exposure to 

ambient PM2.5 and mortality has been examined using evidence obtained from cohort studies.  

A singular form of the concentration-response curve has not been clearly identified nor has a 

threshold been clearly observed.  Consequently an exponential model linear in PM2.5 has 

usually been preferred based on statistical inference criteria when such an examination has 

been conducted. However, there is evidence that for cardiovascular mortality the exposure-

response function increases more rapidly at lower concentrations and the marginal increase in 

the excess relative risk decreases at higher exposures (Pope et al., 2009, 2011).  Functional 

forms that have this characteristic may be better suited to predict PM2.5 related morality risk 

than a linear model.   

 

There has been little rigorous examination of the shape of the ambient PM2.5 exposure-

response function at the lowest observed levels of exposure, and it is currently unknown 

whether a level can be identified where there is no evidence of excess risk at the population 

level – a threshold level. Indirect evidence is available from studies with low mean 

concentrations and limited exploration of curve shapes at low levels using natural spline curve 

fitting.  However, the specific concordance between the strength of evidence of a threshold and 

such assessments is not known.   The limited evidence suggests that a threshold, if it exists, is 

well below the mean concentrations observed in the current studies.  In fact, there is some 

evidence that the shape of the relation between cardiovascular mortality and long-term 

exposure to ambient PM2.5 is supra-linear (Krewski et al 2009, Crouse et al 2012, Lepeule et al 

2012) with the risk increasing more rapidly at lower concentrations.   
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Recent studies have estimated the burden of disease attributable to long-term exposure to 

ambient PM2.5 in the United States (EPA 2010) and globally (Cohen et al, 2004, Anenberg et al., 

2010, Evans et al., 2013).  In each of these studies relative risk estimates from a single cohort 

study (American Cancer Society Cancer Prevention II) was used to estimate attributable burden 

and, in some cases, the expected benefits of reductions in exposure.  The most recent studies 

assumed a threshold of risk or counterfactual concentration at the lowest measured 

concentration of PM2.5 in the ACS study of 5.8µg/m3.  They assumed the risk function was of the 

form:    )}8.5(exp{ 5.2 −PMβ throughout the observed or modeled concentration range.  They 

also considered a relative risk model of the logarithm of concentration of the form: 
γ

γγ 





=

8.5
)}8.5log(exp{/)}log(exp{ 5.2

5.2
PMPM which has diminishing incremental increases in 

relative risk as concentration increases when 1<γ .  Estimates of both β and γ were obtained 

from Krewski et al. (2009).  The uncertainty in these parameter estimates was based on a single 

cohort study and determined by sampling uncertainty.  Heterogeneity in risk among other 

cohort studies was not incorporated into their uncertainty characterisation.  

 

The 95th percentile of exposure distribution of most US cohort studies is below 20 μg/m3 and 

therefore reliable estimates of risk from the available studies can only be made using the data 

in the 5th to 95th percentile of exposure, i.e., estimates of the shape in the lower and upper 5th 

percentiles are both imprecise and likely to be inaccurate.  Moreover, there are no cohort 

mortality studies that estimate the shape of the cardiovascular mortality RR function over the 

entire global range.  Limited evidence from a large Chinese cohort (Cao et al., 2011) suggests 

that changes in cardiovascular mortality risk at PM2.5 concentrations ranging from 40μg/m3 to 

160μg/m3 are much lower than would be predicted by the US cohort study results alone 

(Burnett et al., 2013).  This suggests that linear extrapolation of an exponential (e.g., Cox PH 

model) function or even using the logarithm of concentration over the entire global range of 

exposure would be ill-advised (Brauer et al, 2011; Burnett et al. 2013). 

 

 



13 
 

 

To illustrate the uncertainties concerning extrapolating exposure-response functions fit using a 

limited range in exposure to a much larger range, consider the example in Figure2.      

  
Figure 2:  Linear (red solid line) and Integrated Exposuure-Response (blue solid line) fits to hypothetical data (green 
points) for low (left panel) and high (right panel) PM2.5 concentrations. 
 

The red line represents a linear model fit to the hypithetical data (green dots) while the blue 

line displays the fit from the supra-linear model used in the GBD 2010 project (Lim et al., 2012).  

Athough the two functions yield similar predictions for low PM2.5 concentrations (left panel) 

they predicted very different relative risks for concentrations in the global range (right panel).  

Such stark differences in  predcited risks suggest that methods of extrapolation based on fitting 

data at the low concentration range, such as was suggested by Anenberg et al. (2010) and 

Evans et al. (2013), are problematic. 

 

It is a striking, but not commonly appreciated fact, that the cardiovascular mortality risk 

estimates from cohort studies of ambient air pollution rival in magnitude those of active 

cigarette smoking where exposures to combustion derived PM2.5 are many fold higher (Pope et 

al 2009; 2011).  For example, the hazard ratio for Ischemic Heart Disease (IHD) mortality due to 

ambient PM2.5 exposure obtained from the ACS study for a change of 10μg/m3 is 1.29 (Krewski 

et al, 2009).  The relative risk of smoking 1-3 cigarettes per day from the same study is 1.61 

(Pope et al., 2011).  A change in ambient PM2.5 concentration of 18.7μg/m3 is associated with a 
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hazard ratio of 1.61.  The ACS relative risk estimate is moderate compared to other cohort 

studies (Burnett et al., 2013).   

 

To ensure that risk predictions over the ambient air pollution range are not implausibly larger 

than those observed for active smoking, Lim et al. (2012) recommend incorporating risk 

information from other PM2.5 sources, including second hand and active smoking, into an 

integrated model.  This approach provides a means to predict risk at exposure ranges for which 

there are direct observations without having to extrapolate risk solely based on analyses of 

cohort studies within a narrow exposure range as was proposed by several investigators 

estimating burden of disease (Anenberg et al., 2010, Evans et al, 2013).  Specifically, they 

postulate a flexible relative risk function of the form 

 







≥−+

<
=

−−
cf

xx

cf

IER
xxe

xx
xRR

cf ...,),........1(1

.........,....................,.........1
)(

)( ρβα
,                                              (1) 

 

where x is the concentration of PM2.5 in 3/ mgµ and cfx is a counterfactual concentration below 

which we assume no association exists.   

 

This Integrated Exposure-Response (IER) relative risk function is characterized by four unknown 

parameters ),,,( cfxρβα .  Here α+1 is the maximum risk.  We include a power of PM2.5, δ , to 

predict risk over a very large range of concentrations.  We note that αβ++ 1~)1( cfIER zRR .  

Thus, 
1)(

1)1(
−∞
−+

=
IER

cfIER

RR
zRR

β  can be interpreted as the ratio of the RR at low to high exposures.  

Furthermore, ρ  is the relationship between )log( 5.2PM and ))log(log( IERRR− .   
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The parameters ),,( ρβα are estimated using curve fitting methods in which observations are 

drawn from relative risk estimates of outdoor air pollution studies, studies of second hand 

smoke, household burning of biomass for heating and cooking, and active smoking studies 

represented by relative risks associated with specific cigarettes/day categories.   

 

Information on risk for specific sources is often reported based on a change in PM2.5 exposure.  

For example, risk estimates from cohorts studies of ambient air pollution are reported based 

per µg/m3 change.  Studies of active smoking report risks between current and never cigarette 

smokers.   Studies of PM2.5 exposure from the burning of biomass fuels for heating and cooking 

construct exposure contrasts with alternate fuel sources which have non-trivial levels of PM2.5 

exposure (Smith et al., 2011).  To accommodate such information we equate the observed 

relative risk to the ratio of the IER evaluated at the respective PM2.5 exposures.  That is 

 

))(exp(1(1
))(exp(1(1

),(ˆ ρ

ρ

βα
βα

cfL

cfU
LU xx

xx
xxr

−−−+
−−−+

=  

 

where  ),(ˆ LU xxr is the observed relative risk associated with a contrast in PM2.5 exposure from 

Lx to Ux  .  We set Lx and Ux to the 5th and 95th percentiles respectively of the exposure 

distribution of each cohort study of outdoor air pollution.  We thus assume that the 

proportional hazards model holds over this concentration range.  That is, the relative risk 

estimate only applies to the range in exposure observed in each study.    

 

Lim et al. (2012) and Burnett et al. (2013) adapted a slightly different approach in which 

cfL xx = and xxU = , the study mean concentration.  In this latter approach, the study-specific 

relative risk estimate is applied to concentrations down to the counterfactual, which in some 

cases maybe much lower than the cohort study exposure range (Beelen et al., 2008; Cao et al., 

2011), and up to the study mean, which is lower than the upper limits of the exposure 

distribution.   In addition, if the counterfactual is changed the relative risk estimates used to fit 

the curve will also be changed since they will be evaluated at a different contrast.   
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Uncertainty in the relative risk function is characterized by the uncertainty in each study-

specific relative risk estimate using simulation methods.  Weighted non-linear curve fitting 

methods are used in which each relative risk estimate is weighted by the inverse of the variance 

of the estimate, thus giving more importance to studies with more precision.   This approach 

also borrows strength among studies of several sources of PM2.5 exposure in estimating 

uncertainty in the risk function since there are few cohort studies of ambient air pollution.    

 

Lim et al (2012) suggest that a positive counterfactual concentration be used for burden 

analysis when supra-linear relative risk functions are employed.  Their counterfactual 

concentration is bounded by the minimum concentrations observed in the studies used to 

estimate risk and some low percentile of the PM2.5 distribution.  There is clearly no evidence of 

an association below observed levels and it is impractical to estimate the shape of the curve at 

the extremes of the exposure distribution.  Lim et al (2012) suggest that the 5th percentile be 

used and that the lower and upper bounds on the counterfactual concentration be determined 

by the corresponding  minimum and 5th percentiles respectively of the American Cancer Society 

Cancer Prevention cohort (Krewski et al, 2009), the largest cohort study of air pollution. The 

minimum was 5.8 µg/m3and the 5th percentile was 8.8µg/m3.   The midpoint of this range is 

7.3µg/m3.  Uncertainty in the counterfactual concentration was modelled as a uniform 

distribution between the minimum and 5th percentile.   For simplicity to illustrate our new 

methods we set the counterfactual concentration at 7.3µg/m3 in all further analyses.   

 

 

 

4. Comparison of Integrated Exposure-Response (IER) Function and Bayesian Gamma 

Posterior Distribution at Low Ambient PM2.5 Concentrations 

 

We have suggested two very different methods to synthesise information on the risk of 

mortality due to exposure to ambient concentrations of PM2.5.  We compare these two 
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approaches with respect to their estimates of risk in the ambient concentration range typically 

observed in North American and Europe today (i.e. PM2.5<20µg/m3).  We also suggest methods 

to integrate the IER modeling approach with our new meta-analysis approach for small 

numbers of studies.  To illustrate the comparison of approaches we consider the association 

between ambient PM2.5 and mortality from Ischemic Heart Disease (IHD), the world’s leading 

cause of death (Lim et al., 2012).   

 

The active smoking relative risks are taken from the ACS study as reported by Pope et al. 

(2011).  Lim et al. (2012) also used the same relative risks.  However, Lim et al. (2012) included 

relative risks from eight studies of second hand smoke and IHD mortality reported by SGR 

(2006).  In each study a comparison was made between low to medium SHS exposure and 

medium to high exposure.  An equivalent PM2.5 exposure was assigned to all eight relative risk 

estimates in the low-medium group of 20µg/m3 and to the medium-high group of 50µg/m3.   All 

sixteen relative risks were included in the model fitting.  We, however, include two relative risks 

based on a random effects pooling of the eight values for each group as reported by SGR 

(2006).  For the low to medium exposure group the relative risk (95% confidence interval) was 

1.16 (1.03-1.32) and for the medium to high exposure group was 1.44 (1.13-1.82) as this is the 

summary information taken from these studies.  

  

For both active and SHS smoking relative risks we set Ux to the equivalent PM2.5 concentration 

assigned by Pope et al. (2011) plus the counterfactual concentration and cfL xx = such that the 

contrast in exposure employed in our model was in fact that suggested by Pope et al. (2011).  

The addition of the counterfactual concentration to the active smoking PM2.5 equivalent levels 

makes little difference in the resulting model fits due to the very high PM2.5 exposures assigned 

to active smoking, ranging from 1000 to 30000 µg/m3.  However, a counterfactual of 7.3µg/m3 is 

an important contribution to the total PM2.5 exposure for the SHS studies since their exposures 

are much lower than active smoking (20µg/m3 or 50µg/m3).   
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Outdoor air pollution study-specific relative risks were obtained from the Gamma model in 

addition to their uncertainty.  These values are presented in Figure 3 for the eight cohort 

studies.  In addition we present the observed relative risk for each study and that estimated 

from the non-informative Normal model.  We note that the uncertainty distribution for each 

study-specific estimate has positive support for the Gamma model, based on the information 

suggesting a causal relationship between PM2.5 and IHD mortality and the implausibility of a 

negative association between air pollution and IHD mortality.  The estimates and uncertainty 

for the three methods examined are similar for the ACS study since it is by far the largest study.  

The three studies with non-positive observed estimates (ASHS, DSDC, MHP) are moved towards 

the center of the uncertainty distribution for both the Gamma and Normal models, resulting in 

positive central estimates while the observed relative risks for both the WHI and NHS are 

reduced towards to the mean.  We also note that the estimate of the mean risk is larger but 

more uncertain for either the Normal or Gamma models compared to that derived from the Q 

statistic.   
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Figure 3.  Median, 0.975 and 0.025 percentiles of cohort-specific uncertainty distribution for IHD mortality and 
mean risk by estimation method (observed, Normal model, Gamma model).   
 

 

The mean values of the IER function over the simulations (solid line) and their 0.025 and 0.975 

percentiles (dashed lines) are presented in Figure 4 based on our new model formulation (left 

hand panel) and that used by Lim et al. (2012) (right hand panel).  The two curves are similar in 

shape and uncertainty with our new formulation yielding slightly larger values over the global 

PM2.5 concentration range (<100µg/m3) compared to that used by the GBD 2010 project and 

reported by Lim et al. (2012).    

  
 

Figure 4.  The mean values of the IER function over the simulations (solid line) and their 0.025 and 0.975 
percentiles (dashed lines) based on current model formulation (left hand panel) and that used by GBD 2010 project 
(right hand panel).   
 

We now compare the IER curve (blue line) at concentrations typically observed in North 

America and Europe today (<20µg/m3) in Figure 5.  In addition we present the relative risk 

predictions based on the mean value of the mean risk posterior distribution from the Gamma 

prior (exp(0.022*(PM2.5-7.3)) (red line).  Although the average of these two curves is similar 

(1.160 for IER and 1.154 for exponential) over the 7.3 to 20µg/m3 range, risk is distributed 

slightly differently by PM2.5 concentration with larger changes in risk predicted for smaller 
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concentrations for the IER model compare to the exponential risk model, that is typically used 

in burden assessments (USEPA 2010; Anenberg et al. 2010; Evans et al. 2013).   

  
Figure 5.  The mean values of the IER function over the simulations (solid blue line) and their 0.025 and 0.975 
percentiles (dashed blue lines) and predicted risk based on exponential function (exp(0.022*(PM2.5-7.3)) (red line) 
over low PM2.5 concentration range.   
 

5.  Discussion and Extensions 

 

We have introduced a new method to estimate uncertainty in the true distribution of risk from 

a small number of studies when the variation in study-specific estimates is small compared to 

the within-study sampling variation.  This approach borrows modeling philosophies from both 

the Frequentist and Bayesian approaches.  We further incorporate prior knowledge, based on 

the large scientific literature supporting a causal relationship between PM2.5 exposures and 

adverse health outcomes, to specify an uncertainty distribution that has only positive support, 

thus ensuring positive predictions of risk throughout the distribution.  Our methods can be 

extended to incorporate more complex uncertainty distributions including bi-modal 

distributions and distributions with mass at the origin.  This latter distribution is of interest 

when the analyst believes that there exists some non-trivial probability of a zero risk.   Another 

extension focuses on how studies are weighted in the pooling process.  Both Frequentist and 

Bayesian approaches all assume the observed study-specific risk is Normal with variance set to 
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the square of the sampling standard error.  However, additional information on the quality of 

the study or other considerations based on expert judgment can be included in the analysis.  

We will report details of this approach elsewhere. 

 

We have then shown how to incorporate information from different sources of PM2.5 such as 

outdoor air, second hand and active smoking, to identify both the shape and magnitude of the 

relationship between exposure and response.  This approach was developed originally to 

extrapolate risk from low concentrations used in cohort studies of air pollution from North 

America and Western Europe to much higher concentrations in the developing countries.   This 

integration of information on exposure and risk was recently used by the GBD 2012 project to 

estimate the burden of disease from PM2.5 worldwide (Lim et al., 2012).   We have also shown 

that integrating information on risk from outdoor air pollution studies in the same manner as 

would be done in a meta-analysis specifically examining ambient air pollution risks yielded an 

integrated risk predictions similar to that solely based on information from outdoor air 

pollution cohort studies in the low concentration range for the example of ischemic heart 

disease mortality.  Thus our IER model is generally consistent with the evidence from outdoor 

air pollution cohort studies in the low ambient concentration range. It is of interest to examine 

whether such consistency in risk predictions hold for other outcomes examined by the GBD 

2012 project.   

 

Our approach to defining the counterfactual concentration is solely based on the exposure 

distributions from outdoor air pollution cohort studies.  There is no biological reason to believe 

that there exists a range in exposure for which no mortality risk exists (ie. threshold).  However 

we have taken a conservative approach and set a positive counterfactual which may 

underestimate the true risk.   There is some emerging evidence that the association between 

particulate matter exposure and mortality pertains to much lower exposures than the 5.8 to 

8.8µg/m3 range used by Lim et al. (2012).  For example, the cohort study conducted in Canada 

(Crouse et al., 2012) showed associations in mortality risk due down to 2µg/m3.     
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The Integrated-Exposure Response (IER) risk model can be used to inform risk predictions due 

to exposure to PM2.5 for sources of pollution that do not have direct information on all health 

responses that are believed to be causally related to PM2.5.  Lim et al. (2012) report burden 

estimates for PM2.5 associated with the burning of household fuel for heating and cooking for 

both IHD and stroke mortality for which there is no direct evidence.  The IER model could be 

used to estimate burden due to occupational exposure since it extends to very high PM2.5 

concentrations associated with active smoking (~30,000µg/m3) or exposure from specific 

sources of pollution, such as a new power plant, which for a small area surrounding the plant 

may yield higher exposure levels than those observed in cohort studies of ambient air.      

  

We have selected specific studies to inform us on risk from various sources of PM2.5 exposure.  

It is of interest to examine the sensitivity of the risk predictions to including other studies on 

these sources.  We have also assigned equivalent PM2.5 exposures based on total dose of 

inhaled PM2.5 over a 24 hour period.  In this manner, we are able to integrate risk information 

from very different sources of pollution; ambient air and active cigarette smoking for example.  

The sensitivity of our predictions should be examined to the assumptions made to generate 

these equivalent exposures.      

 
Our approach to characterizing the shape of the exposure-response function is based on only 

using summary information available in the open literature:  relative risk estimates and the 

exposure distribution for each study.  We thus do not require direct access to the primary data 

from each study which is a major advantage since combining primary data is often not feasible 

due to confidentiality concerns.  Our approach is only capable of distinguishing among risk 

functions when there is variation in exposures between studies.  For example, outdoor air 

pollution cohort studies conducted in the United States use similar exposure data and thus 

have limited variation among studies.  Incorporating studies of other sources of particulate 

pollution such as active smoking introduce considerably more variation allowing one to 

discriminate among functional forms.     
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