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The Thin Reed: Accommodating Weak Evidence for Critical Parameters in Cost-Benefit 
Analysis 

David L. Weimer 

Abstract 

Policy analysis often demands quantitative prediction.  This is especially the case in of cost-

benefit analysis, which requires the comprehensive quantification and monetization of all valued 

policy impacts.  For all but the simplest of policies, achieving comprehensiveness requires 

analysts to take parameter values and shadow prices from statistical analyses done by others.  

These parameter estimates are uncertain and usually come with estimates of their precisions.  

Using this information to assume distributions for all parameters and shadow prices, Monte 

Carlo simulation provides an appropriate way to create a distribution of net benefits that conveys 

the level of certainty about the fundamental question of interest: Are net benefits positive?  

However, there is considerable controversy about how to move from empirical estimates to the 

distributions of parameters needed for the cost-benefit analysis.  Unfortunately, most social 

science researchers frame their work in terms of hypotheses about the particular parameters, 

uncritically privileging Type I over Type II error.  The inappropriate focus on hypothesis testing 

rather than prediction sometimes leads analysts to treat statistically insignificant coefficients as if 

they, and their standard errors, are zero.  One alternative method is to use all estimates and their 

standard errors whether or not the estimates are statistically significant. Another alternative 

method is to use all estimates but to shrink them and standard errors toward zero in an effort to 

guard against regression to the mean.  Comparing the three methods (only use statistically 

significant estimates and their standard errors, use all estimates and their standard errors, use 

shrunk estimates and shrunk standard errors) in Monte Carlo simulation suggests that treating 

statistically insignificant coefficients as zero rarely minimizes the mean squared error of 

prediction.  Using shrunk estimates appears to provide a more robust minimization of the mean 

squared error of prediction.  These results suggest the heuristic that, when confronted with a 

necessary but statistically insignificant estimate of a necessary parameter, shrink it and use it!  

Indeed, the simulations presented here suggest that routinely shrinking estimates is a robust 

approach in the face of relatively uninformed priors about the true values.  

Key words: Shrinkage estimators, Monte Carlo simulation, cost-benefit analysis
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1.0 Introduction 

Demand for cost-benefit analysis (CBA) to assess the efficiency of public policies has 

grown in recent years.  Whereas it was once employed almost exclusively to assess infrastructure 

projects, it now sees routine use in environmental policy, and increasingly in health and social 

policy (Weimer and Vining, 2009).  President Reagan’s Executive Order 12291 and President 

Clinton’s Executive Order 12866 expanded the use of CBA by federal agencies. Although not 

yet widely used by state governments, the value of its sophisticated application to social policy 

has been demonstrated by the Washington State Institute for Public Policy, which routinely 

conducts CBAs at the request of the state legislature. As the validity of CBA as an assessment of 

efficiency depends on its comprehensive accounting of valued impacts, analysts seeking to apply 

it to any but the simplest policies must usually glean effect sizes and shadow prices from 

empirical work done by others or expediently by themselves.  These empirical estimates are 

never certain.  How should analysts make use of these estimates to predict costs and benefits?  

How should analysts appropriately convey the uncertainty that the use of these estimates as a 

basis for prediction creates in net benefits? 

The answer to the second question is obvious, but not uniformly followed: every CBA 

should employ Monte Carlo simulation to produce distributions of net benefits that take account 

of uncertainty in effect sizes and shadow prices.  (For illustrations, see Nicol, 2001; Weimer and 

Sager, 2009).  The distribution of net benefits is the basis for “testing” hypotheses about net 

benefits.  It provides a correct estimate of expected net benefits, which may differ from that 

resulting from calculations based on point-estimate values of parameters when uncertain effects 

are multiplied by uncertain shadow prices.  Most importantly, it conveys useful information not 

only about expected net benefits, but also about how likely it is that positive net benefits will be 

realized. 

   The focus of this essay is on answering the first question, which has received virtually no 

attention by policy analysts.  Moving from empirical estimates to appropriate predictions would 

seem to be one of the fundamental tasks for not just CBA but for any policy analysis with 

quantitative components such as risk analysis or cost-effectiveness analysis.  Yet, common 

practice tends to make two types of errors.  The first is to apply naively concepts of hypothesis 

testing in drawing on empirical evidence.  As social scientists, our norms require us to give great 

deference to the convention of assuming parameters are zero unless we can claim that the 
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probabilities of their Type I errors are no more 5 percent (or 10 percent for the more accepting).  

As policy analysts, however, we want the best prediction, which is often closer to the estimated 

but not-statistically-significant parameter than it is to zero.  The second error is to confuse 

efficient estimation with accurate prediction.  An unbiased and efficient estimator does not 

necessarily give the most appropriate prediction.  Indeed, in circumstances in which the null 

hypothesis reflects beliefs that the true parameter may actually be zero, parameter estimates from 

ordinary least squares or logistic regressions tend to make predictions that are too large from the 

perspective of minimizing mean squared error and therefore may appropriately be “shrunk” 

toward zero. 

 Recent years have witnessed increased attention to the synthesis of data relevant to 

particular predictions through systematic techniques such as meta-analysis.  Here I am 

addressing a different sort of synthesis: drawing together estimates of sets of parameters 

necessary to complete an informative policy analysis.  Especially for policies with multiple 

effects, such analysis often requires synthesizing across many sources, including sometimes 

individual studies with imprecise results.  My focus is on this latter sort of synthesis, specifically 

when a parameter is based on the thin reed of a single study.   

 

2.0 Problems with Current Evidence-Based Approaches  

Imagine that an analyst wanted to do a CBA to answer the question of whether the 

replication of an experimentally evaluated program would produce positive net benefits.  Also 

assume that the experiment was perfectly implemented and produced estimates of a dozen 

impacts relevant to the CBA.  For example, the impacts might include changes in school 

achievement, participation in juvenile delinquency, and high school completion.  Now suppose 

that eight of the estimated impacts would be starred to show statistical significance at the 5 

percent level based on their individual t-tests.  However, following the What Works 

Clearinghouse Procedures and Standards Handbook (Institute of Education Sciences, 2008), the 

researchers employ the Benjamini and Hochberg (1995) method for adjusting critical values to 

ensure that the Type I error for the collection of estimated impacts remains at 5 percent (actually, 

the probability of rejecting any one hypothesis when all the nulls are true), finding that only six 

of the impacts remain statistically significant.  (They are nonetheless delighted with this method 
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because using the less powerful but commonly employed Bonferroni correction would have only 

resulted in four statistically significant impacts!) 

The researchers might follow one of the following three approaches to moving from their 

experimental results to a prediction of net benefits.   

First, they could embrace what Stephen Ziliak and Deirdre McCloskey (2008) refer to as 

the cult of statistical significance and only use the estimates and standard errors for the eight 

estimates of impacts that were individually statistically significant in their CBA.  As a 

consequence, they would be assuming that the other four impacts were exactly zero.  That is, 

because there was more than a 5 percent chance that the true value of these statistically 

insignificant impacts is zero, they ignore their estimated magnitudes and standard errors.   These 

assumptions of zero impact very likely bias their estimate of net benefits toward zero.  Further, 

by assuming their standard errors are also zero, their Monte Carlo analysis will produce a 

distribution of predicted net benefits that does not convey the true level of uncertainty. 

Second, they could be even more diligent followers of the cult and base their CBA only 

on the six statistically significant impacts after taking account of multiple comparisons.  The 

result would be even more bias and a greater underestimation of uncertainty in their prediction of 

net benefits for the replication.   

Third, realizing that the hypothesis of interest is whether replicating the program would 

produce positive net benefits, they decide to use their estimates of all twelve impacts, both those 

that are statistically significant and those that are not.  To predict the distribution of net benefits, 

they use all the estimates and their standard errors in their Monte Carlo analysis.  They have 

escaped the cult of statistical significance!  However, by treating estimates as predictions, their 

approach tends to bias their predictions of net benefits away from zero, especially when the true 

effects are small.   

 

3.0 Inference and Prediction 

Under the canonical assumptions (non-random regressors and identically and 

independently distributed errors with zero mean and constant variance), ordinary least squares 

(OLS) produces the unbiased estimates with the smallest possible standard errors.  The 

correction we will consider introduces a useful form of bias.  Published estimates are generally 

unbiased in finite samples (least squares) or asymptotically (maximum likelihood methods, i.e. 
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logit or probit).  Unbiasedness is desirable in questions of inference, especially where the focus 

is on whether or not to reject a null of no effect.  The issues in proper inference are daunting (see, 

e.g., Anderson, 2008; Perneger, 1998), and are central to retrospective program evaluation.  CBA 

asks a different question.  Rather than assessing a past policy, asking what costs and benefits 

appear to have been actually realized, CBA attempts to predict the costs and benefits that a 

policy would produce if it were to be adopted. 

  This changes the problem from one of inference to one of prediction.  If the goal is 

optimal prediction, then some level of bias may be desirable.  We are not concerned with an 

unbiased estimate of what happened in the data set analyzed by a study, but instead we wish to 

estimate the benefits in some future replication of the policy.  The basic theoretical insight arises 

from the use of “shrinkage” in reducing the mean squared error of prediction.  Shrinkage 

methods introduce some bias towards zero in coefficient effect sizes, which, through the bias-

variance trade off, results in better predictions.  Basically, we adjust effect size in order to 

account for regression to the mean. 

 

4.0 Using Shrinkage to Reduce Predictive Error 

The basic insight for reducing predictive error dates back to Francis Galton, who plotted 

the mid-heights of fathers and mothers versus offspring (Galton 1886).  He observed that 

particularly tall parents, on average, had children who were taller than average but not as 

extremely so as the parents, while particularly short parents had children who were still short, but 

less extremely so than the parents.  Galton termed this phenomenon of heights “Regression 

toward Mediocrity in Hereditary Stature.”  

Translated into modern parlance, a given observation or effect size has two components: 

a systematic and a random component.  When predicting the value of the effect size for a new 

draw of data, the best unbiased predictor (BUP), in the sense of minimizing mean squared 

predictive loss, will shrink the unbiased estimate towards the overall mean of all observations.  

In statistics, this is referred to as Stein’s Paradox, which states that the unbiased estimate (i.e., a 

sample mean or regression coefficient) can always be transformed into a better predictor by 

accounting for the random component that generated the data.  In Galton’s example, the grand 

mean of all parental midpoints carried information about the height of any given child, because 
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these heights shrink towards the mean, even though the parents are independent observations.  

Combining means across parents can lead to a better estimator than any given parents’ mean. 

Shrinkage estimates work by balancing some data-specific value and some grand mean, 

with weights determined by the sample variances of each.   A large literature discusses the 

properties of this approach (Thompson 1968; Efron and Morris 1971, 1975; Stein 1981; Copas 

1983, 1987). This essay briefly assesses the literature on shrinkage estimates and how they 

should be used in bringing thin evidence into CBA and other types of quantitative analyses.  It 

employs simulations to illustrate the implications of the following approaches to dealing with 

tenuous links, especially statistically insignificant effects:  

1. Treating statistically significant effects and their standard errors as zero. 

2. Using all estimates and their standard errors. 

3. Using shrunk estimates that would be available in secondary analysis. 

   

5.0 Simple Introduction to the Theory of Shrinkage 

 The basic idea behind shrinkage is that by accepting some bias, the mean squared error of 

prediction can be reduced. Consider an unbiased and efficient estimator, such as an OLS 

coefficient, θ , under the canonical assumptions.  Although θ has zero bias and the smallest 

possible variance among the class of linear unbiased estimators, it may not have the smallest 

mean square error, MSE≡ E[(  ) ]θ θ− 2 , where θ  is the true value of the parameter.  Following 

Thompson (1968), consider a “natural origin” for θ  ofθ0 . One can think of this as a Bayesian 

prior––in our applications we assume that it is zero.  The shrinkage estimator is derived by 

finding the value of c that minimizes the following expression: 

E[( (  ) ( )) ]c θ θ θ θ− − −0 0
2  

Applying c to the estimator will yield a smaller MSE around the natural origin, but a larger MSE 

far away from it.   

 Taking the derivative with respect to c and solving yields the following equation for c: 

c
Var

=
−

− +

( )
( ) ( )

θ θ
θ θ θ

0
2

0
2

 

We can estimate c as  
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
(  )

( )  ( )
c

Var
=

−
− +

θ θ
θ θ θ

0
2

0
2

 

Letting θ0 =0, Thompson gives the shrinkage formula for estimating the mean,µ , from a random 

sample as: 

µ =
+
x

x s n
x

2

2 2  

where x is the sample mean, n is the number of observations, and S2 is the estimate of the 

population variance.  A similar formula was derived by Copas (1997) for OLS regression and 

MLE logistic regressions.  We take a similar approach to derive a shrinkage formula for a 

parameter estimate from an ordinary least squares regression. 

 For our purposes, we consider shrinkage of the OLS estimator based on its Student’s t 

statistic, which can be calculated from the estimate and its standard error, which are routinely 

reported by researchers.  Seeking to minimize error when the true parameter is zero, we want to 

choose k to minimize: 

MSE E kk OLS= −[(  ) ]β β 2  

Taking the partial derivative with respect to k and solving the first order condition for an extreme 

value yields: 

k
Var OLS

=
+

β
β β

2

2(  )
 

Substituting BOLS for β and rearranging gives:  




( ) k
Var

OLS

OLS

=
+

β
β β

2

2
 

Dividing through by Var( )β yields: 

k
t

t
=

+

2

2 1
 

Therefore, the shrunken value is given by: 

 β β=
+











t
t OLS

2

2 1
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where t is the Student’s t statistic for the test of the hypothesis that the coefficient of the 

independent variable is zero.  Note that the shrinkage declines as t increases.  Using the Delta 

method,1 we can approximate the variance of β  as: 

Var
t t t

t
Var OLS( )

(
( )

(  )β β=
+ +

+










8 6 4

2 4

6 9
1

 

 The simulations that follow assume that coefficients from OLS regressions are needed to 

complete a comprehensive CBA.   

 

6.0 Structure of the Simulations 

 Figure 1 provides an overview of the simulation process.  A simulation trial begins by 

drawing “true values” of three parameters that sum to total net benefits (Step 1).  These true 

values and random errors are used to create a data set relating the true parameters to observed 

outcomes (Step 2).  OLS regressions are then used to estimate the three parameters and their 

standard errors (Step 3).  Next, the three decision rules are applied: (1) assume statistically 

insignificant coefficients and their standard errors are zero; (2) use all coefficients and their 

standard errors; and (3) use shrunken coefficients and their shrunken standard errors (Step 4).  

Finally, the coefficients and standard errors resulting from each rule are applied in a Monte Carlo 

simulation of the sort that would be done by analysts to estimate a distribution of predicted net 

benefits (Step 5).  Two summary statistics for each Monte Carlo simulation are recorded: first, 

the squared deviation of the true value of net benefits and the mean predicted value; and second, 

whether or not the true value of net benefits is smaller than the 5 percent point of the cumulative 

distribution of predicted net benefits or is larger than the 95 percent point; in other words, 

whether the true value falls outside the derived 90 percent confidence interval. 

 These five steps constitute one “trial.”  The investigation involves executing a large 

number of trials. 

In the trials reported on here, the true but unobserved parameters are represented as three 

impacts measured in standardized units that correspond, say, to millions of dollars.  Impact 1 is 

assumed to have a 20 percent chance of taking the value 0 and an 80 percent chance of a value 

                                                 

1 g Var
Var

OLS OLS

OLS OLS

( )
 / (  )

 / (  )
β

β β
β β

=
+













3

2 1
and [ ]Var dg d Var OLS( ) ( ) /  (  )β β β β=

2
. 
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drawn from a uniform distribution from 0 to 1.  Impact 2 is assumed to have a similar 

distribution, but with a 40 percent chance of taking a value of 0 and a 60 percent chance of a  

 

Step1 

Specify true values of parameters 

Step 2 

Draw data set using true values and random disturbances 

 

Step 3 

 Estimate parameters from data set          

Step 4 

Apply each of three rules on use of estimated parameters 

Step 5 
 
Conduct a Monte Carlo simulation for each rule: 
 1. Record squared deviations of predicted 
     from true net benefits; 
2. Record percent of time true net benefits fall 
    outside 90 percent confidence interval. 
 

Figure 1: Overview of Simulation Procedure 
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value drawn from a uniform distribution from 0 to 1.  Impact 3 is assumed to be uniformly 

distributed over the range -0.4 to 1.  The true net benefit is assumed to be the sum of these three 

impacts, so that it ranges from -0.4 to 3, with an expected value of 1.  

 We generate three data sets each with 100 observations split equally between the 

treatment and control cases.2  Each dependent variable equals the error drawn from a normal 

distribution for control cases and a draw from a normal distribution plus the impact for treatment 

cases.  One can think of the dependent variables as the impact measured with error so that each 

regression provides an estimate of one of the impacts and a constant, where the true value of the 

constant is zero. 

 The regression analysis applies a two-sided t-test to the estimated coefficients.  Those 

that are statistically insignificant at the 5 percent level are set equal to zero (and their standard 

errors are set equal to zero) under rule 1.  Rule 2 simply uses the full set of estimated coefficients 

and their standard errors.  Rule 3 also uses all coefficients and their standard errors, but shrinks 

each of them using its t-statistic in the shrinkage equations previously displayed.   

 The Monte Carlo simulation creates a distribution of predicted net benefits for each 

decision rule by drawing values from Student’s t distributions with means equal to the values of 

the coefficients and standard errors equal to the values of the standard errors employed under 

that rule.  Each Monte Carlo simulation is based on 1,000 draws.   

 The overall simulation has sets of 10,000 trials for each of five different assumed 

standard deviations of the normally distributed disturbance in the regressions: 0.6, 0.8, 1.0, 1.2, 

1.4.  The middle value of these standard deviations corresponds to the mean value of true net 

benefits across the trials.  To estimate the mean squared error of prediction, the average of the 

squared deviations of the difference between the true value of net benefits and the mean of the 

distribution of predicted net benefits is taken across trials.  Also, the fraction of trials for which 

the true value of net benefits falls outside of the 90 percent confidence interval implied by the 

Monte Carlo distribution are calculated. 

  

                                                 
2 One could also structure the estimation as a single regression with a set of indicators for the three impacts.  If one 
does this with, say, 30 mutually exclusive indicators for the three impacts and 10 observations with all indicators set 
to zero, then not taking account of covariances among the estimators leads to a predicted variance of the sum of 
impacts approximately half of the actual value.  Thus, treating statistically insignificant coefficients as zero would 
further underestimate the true variance if the covariances involving the insignificant coefficients were also set equal 
to zero.   
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7.0 Illustrative Results 

 Imagine that one held prior beliefs about the distributions of the true values of the 

impacts that correspond to those used in the first step of these simulations.  That is, one thought 

the true values had the specified distributions.  It then makes sense to ask: Which method of 

using coefficients would on average yield the greatest accuracy in the sense of minimizing the 

average of the squared deviations of the mean values of the Monte Carlo simulations, the value 

usually reported by analysts as the point estimate of net benefits, and the true value of net 

benefits?  Table 1 shows these averages by the assumed values of the standard deviations of the 

errors in the regressions.  

Table 1 

Average Squared Deviations of True and Mean Predicted Net Benefits by Method 
 

 Standard Deviation of Regression Error 

0.6 0.8 1.0 1.2 1.4 

Method 1: 
Significant Coefficients Only .094 .090 .148 .218 .310 

Method 2: 
All Coefficients .077 .078 .121 .168 .239 

Method 3: 
Shrunk Coefficients .075 .074 .115 .157 .216 

 

 Note that either using all coefficients or using shrunk coefficients gives on average more 

accurate predictions than using only significant coefficients across the range of standard 

deviations.  Further, using shrunk coefficients consistently gives the most accurate predictions, 

though using all coefficients does almost as well.   

 It is also interesting to ask which method does better over particular ranges of true net 

benefits.  Table 2 displays the simulation results for average squared deviations between the true 

value of net benefits and the mean of the Monte Carlo distribution conditional on the range of 

true values of net benefits.  First, note that using only statistically significant coefficients 

(method 1) gives a better prediction than the other approaches only when the true value of net 

benefits is non-positive and the standard deviation of the regression error is relatively large.  In 

these cases, it gives a much more accurate prediction on average than using all the coefficients 

(method 2) and it does moderately better than using shrunk coefficients (method 3).  For true 
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values of net benefits between 0 and 1, the shrunk coefficients give more accurate predictions 

than using only statistically significant coefficients for all the standard deviations, and they give 

more accurate predictions than using all the coefficients except in the case of the smallest 

standard deviation, where the two methods do equally well.  For larger values of true net 

benefits, those between 1 and 2, using shrunk coefficients and all the coefficients provide 

comparable accuracy for smaller standard deviations, while using all the coefficients does better  

 

Table 2 

MSE for Each Method by True Net Benefit Intervals 

 
Significant Coefficients Only

All Coefficients
Shrunk Coefficients
(Number of Trials)



















 
 

 Interval of True Net Benefits 
 
 
 
 
 
 
 
 

Standard 
Deviation of 
Regression 

Error 

 -0.4 to 0 0 to 1 1 to 2 2 to 3 
0.6 .07 

.04 

.03 
(496) 

.06 

.04 

.04 
(4,624) 

.05 

.04 

.04 
(4,309) 

.05 

.04 

.05 
(571) 

0.8 .07 
.08 
.05 

(524) 

.09 

.08 

.06 
(4,604) 

.10 

.08 

.08 
(4,291) 

.11 

.09 

.11 
(581) 

1.0 .07 
.12 
.07 

(497) 

.13 

.12 

.10 
(4,622) 

.17 

.12 

.13 
(4,309) 

.18 

.13 

.16 
(572) 

1.2 .09 
.18 
.11 

(508) 

.17 

.17 

.13 
(4,646) 

.27 

.16 

.18 
(4,273) 

.29 

.16 

.22 
(573) 

1.4 .09 
.23 
.13 

(509) 

.22 

.24 

.18 
(4,654) 

.41 

.24 

.25 
(4,279) 

.53 

.23 

.34 
(558) 

Minimum values in red. 
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for the larger variances.  When the true value of net benefits takes its largest values, between 2 

and 3, using all the coefficients gives the most accurate predictions.  Its advantage over the other 

two methods is small for the smallest standard deviations but grows large for the larger ones.  

For the larger standard deviations, shrunk coefficients also yield more accurate predictions than 

using only statistically significant coefficients.3   

 Figures 2, 3, and 4 show results for standard deviations of 0.6, 1.0, and 1.4, respectively.    

Each figure plots smoothed values of mean squared error for each of the three methods: dots for 

treating insignificant coefficients as zero; solid lines for using all coefficients; and dashes for 

shrunk estimates.  Figure 2, the simulation with the least noise, shows shrunk estimates giving 

the smallest mean squared errors until true net benefits reach about 1, and using all coefficients 

doing so for larger values.  Figure 3, the simulation with moderate noise, shows treating 

insignificant coefficients as zero does best until true net benefits reach about zero.  Shrunk 

estimates do best until true net benefits go slightly beyond 1, and then using all coefficients does 

best.  Finally, Figure 4, the simulation with the greatest noise, shows a similar pattern, but one 

showing treating statistically insignificant coefficients as zero more favorably for small values of 

true net benefits.  However, it does much worse than either of the other methods beyond 1, the 

mean value of true net benefits. 

 

                                                 
3 Just shrinking statistically insignificant coefficients does not outperform shrinking all in terms of mean squared 
error. 
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Which of these methods would yield distributions of predicted net benefits that best 

conveyed the true level of uncertainty in the prediction of net benefits?  In other words, for 

which method would the confidence interval reported from the Monte Carlo simulation be most 

valid?   
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Table 3 

Fraction of Times True Value Falls Outside of Monte Carlo 90 Percent Confidence Interval 

 
Significant Coefficients Only

All Coefficients
Shrunk Coefficients
(Number of Trials)



















 

 Interval of True Net Benefits 
  -0.4 to 0 0 to 1 1 to 2 2 to 3 
 
 
 
 
 
 
 
Standard 
Deviation of 
Regression 
Error 

0.6 1.0 
.10 
.08 

(496) 

.42 

.10 

.11 
(4,624) 

.21 

.10 

.11 
(4,309) 

.14 

.12 

.11 
(571) 

0.8 1.0 
.08 
.09 

(524) 

.44 

.10 

.11 
(4,604) 

.26 

.10 

.12 
(4,291) 

.17 

.11 

.14 
(581) 

1.0 1.0 
.10 
.08 

(497) 

.47 

.10 

.12 
(4,622) 

.30 

.10 

.12 
(4,309) 

.22 

.12 

.13 
(572) 

1.2 1.0 
.12 
.11 

(508) 

.51 

.09 

.11 
(4,646) 

.35 

.09 

.13 
(4,273) 

.24 

.11 

.13 
(573) 

1.4 1.0 
.09 
.08 

(509) 

.56 

.10 

.11 
(4,654) 

.39 

.11 

.14 
(4,279) 

.31 

.10 

.13 
(558) 

 
 

Table 3 shows how often the true value falls outside the derived 90 percent confidence 

interval for predicted net benefits.  First, note that in most of the cells, the 90 percent confidence 

intervals do cover the true value about 90 percent of the time when using all the coefficients or 

shrunk coefficients.  However, the confidence intervals that result from using only statistically 

significant coefficients and their standard errors are much too short.  Indeed, for the smallest 

values of true net benefits, they never were wide enough to cover the true value.  More generally, 

looking across cells in Table 3, the most valid confidence intervals using only significant 

coefficients have error rates of 40 percent (14 percent versus the expected 10 percent), which is 
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as large as the least valid confidence intervals using shrunk coefficients.  The confidence 

intervals based on only significant coefficients do so poorly because they ignore the standard 

errors of the excluded coefficients in generating the distribution of predicted net benefits.  This 

could be corrected by including the standard errors of statistically insignificant coefficients, but 

that would beg the question of why they are set to zero rather than to their estimated values. 

 The shrunk coefficients result in confidence intervals that are two wide when the true 

value of net benefits in this simulation are negative but too narrow for values greater than zero.  

One possible reason for this is that the variance estimate for the shrunk coefficients is based only 

on the first term of the Delta method expansion.  Another reason is that in the derivation of the 

weights, the regression estimates of the impacts are substituted for their true values.   

 

8.0 Shrinkage in Perspective 

 The purpose of this analysis is to assess the use of shrunk estimates to improve the 

predictive value of ordinary least squares estimators taken from single studies when the true 

parameters are near zero.  Therefore, it uses only information that would be routinely available to 

analysts in reported results–––coefficients and their standard errors.  The approach considered 

minimized mean squared error and therefore falls squarely within classical statistics.  

Nonetheless, it can be interpreted in Bayesian terms and it is embedded in hierarchical linear 

modeling.  

 If analysts have available the original data upon which a regression of interest has been 

estimated, then they could consider adopting an informative Bayesian prior distribution centered 

at zero.  For commonly used convenient conjugate priors, the resulting parameter estimate would 

be a weighted average of the prior value and the ordinary least squares estimate, with the weights 

depending on the prior and ordinary least squares variances.  This would shrink the ordinary least 

squares estimate toward zero, but less so the more precise the ordinary least squares estimates.  

Thus, it would operate in a similar way to the shrinkage factor we employed. 

 Shrinkage also occurs in hierarchical linear models that include random effects for 

groups.  Taking account of differences in sample sizes, and hence standard errors, the random 

effect models employing empirical Bayesian estimation shrink group means toward the overall 

average across groups to improve predictive accuracy.  (As the shrinkage is larger for larger 

numbers of groups, it also obviates the need for multiple comparison adjustments if one is 
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interested in the hypothesis that all the nulls are true.)  Thus, if one uses hierarchical linear 

models, one has already embraced a form of shrinkage.4 

 

9.0 Discussion and Conclusion 

 The simulations suggest two observations in using empirical evidence in CBA or other 

predictive analysis.  First, treating statistically insignificant coefficients as if they and their 

standard errors are exactly zero will only provide the most accurate predictions if the true values 

are actually very close to zero.  On the surface, this seems like a conservative approach.  

However, CBA often requires estimating parameters related to costs, or negative benefits–––

consider the negative region for the third impact in the simulation.  Treating these parameters as 

zero when their estimates are statistically insignificant would bias CBA toward project 

acceptance.  Even if one accepts these risks, also ignoring the standard errors of the insignificant 

coefficients results in Monte Carlo distributions of predicted net benefits that are much too tight.  

 Obviously, the problems that arise in treating statistically insignificant coefficients as if 

they are zero are exacerbated by multiple comparison corrections to ensure that the overall 

frequency of false positives within an analysis satisfy some critical level overall.  The correction 

for multiple comparisons initially arose out of situations where repeated samples are taken from, 

say, a production line to try to determine if a product is defective (Perneger 1998).  In such cases, 

the overall null hypothesis that none of the samples exceed specifications is appropriate and 

adjustment for multiple comparisons is indeed appropriate.  However, in situations where we are 

interested in impacts on subgroups within an experimental sample, it is unlikely the case that we 

care about the overall null hypothesis.  Indeed, it is unlikely that we care at all about any 

hypotheses relevant to the particular sample; rather, we want to use the estimates to test a policy-

relevant hypothesis such as net benefits are positive.  If so, then in the blind pursuit of a “correct” 

Type I error not only ignores the reality of Type II error, statistical insignificance when the null 

is false, because of an underpowered test, but also the more fundamental error of asking the 

wrong question.  Consequently, when we conduct a field experiment to assess some policy 

intervention, we should report all the plausibly relevant subgroup effects, with their standard 

                                                 
4 On the advantages and disadvantages of the use of shrunk estimators in report cards on health care providers see 
Mukamel et al. (2010). 
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errors, and not hide or throw away policy relevant information in the inappropriate devotion to a 

correct Type I error for an irrelevant hypothesis. 

 A possible caveat to this harsh assessment of treating statistically insignificant 

coefficients as zero is the problem of publication bias.  In industries like pharmacology there is a 

strong financial incentive not to publish the results of studies with insignificant findings of 

positive effects.  In the social sciences, our reluctance as referees to recommend publication of 

even well-designed studies that fail to find statistically significant results creates an incentive for 

researchers to abuse their data in ways that make the reported coefficients, standard errors, and 

significance levels suspect (Weimer, 1986; Humphreys et al., 2013).  In fields where this sort of 

selection bias is operating, the sorts of simulations used in this analysis would not necessarily be 

valid because some of the draws yielding statistically insignificant coefficients would be 

disregarded.  One shocking non-intuitive (and, yes, perhaps bogus) implication is that if one can 

only find one relevant empirical study when the nature of the question and the likely availability 

of data suggest multiple studies should be available, one might put more confidence if the one 

found is a working paper posted on the internet than if it is published in a peer reviewed journal!  

Of course the former does not have the benefit of peer review of the methods and data, so one 

would bear greater burden of assessment.  In effect, one would be taking on this burden in an 

effort to avoid the selection bias.   

 Second, shrinking estimates and their standard errors provides better predictions than 

either treating statistically significant coefficients as zero or using the raw estimates for relatively 

small values of true parameters.   However, if the true parameter values are very large and noisy, 

then the raw estimates will provide substantially more accurate predictions than the shrunk 

estimates.   

 These observations together I think lead to the following heuristic: Rather than assuming 

statistically insignificant coefficients and their standard errors are zero, use shrunk coefficients 

and shrunk standard errors! 

      



18 
 

References   

Anderson, Michael L. (2008) Multiple Inference and Gender Differences in the Effects of 

EarlyIntervention: A Reevaluation of the Abecedarian, Perry Preschool, and Early 

Training Projects. Journal of the American Statistical Association 103(484), 1481–1495. 

Benjamini, Yoav and Yosef Hochberg (1995) Controlling the False Discovery Rate: A Practical 

and Powerful Approach to Multiple Testing.  Journal of the Royal Statistical Society: 

Series A 57(1), 289–300. 

Copas, J.B. (1997) Using Multiple Regression Models for Prediction: Shrinkage and Regression 

to the Mean.  Statistical Methods in Medical Research 6(2), 167–183. 

Copas, J. B . (1983) Regression, Prediction and Shrinkage. Journal of the Royal Statistical 

Society (Series B) 45(3), 311–254.  

Efron, Bradley and Carl Morris (1977) Stein=s Paradox in Statistics. Scientific American 236, 

119–127. 

Galton, Francis (1886) Regression Towards Mediocrity in Hereditary Stature. Journal of the 

Anthropological Institute of Great Britain and Ireland, 15, 246–263. 

Humphreys, Macartan, Raul Sanchez de la Sierra, and Peter van der Windt (2013) Fishing, 

Commitment, and Communication: A Proposal for Comprehensive Nonbinding Research 

Regulation. Political Analysis 21(1), 1–20. 

Institute of Education Sciences (2008) What Works Clearinghouse Procedures and Standards 

Handbook Version 2.0.  ed.gov/ncee/wwc/. 

Mukamel, Dana B., Laurent G. Glance, Andrew W. Dick, and Turner M. Osler (2010) 

Measuring Quality for Public Reporting of Health Provider Quality: Making It 

Meaningful to Patients.  American Journal of Public Health 100(2), 264–269. 

Nicol, Kristen L. (2001) Cost-Benefit Analysis of a Strategy to Vaccinate Healthy Working 

Adults against Influenza.  Archives of Internal Medicine 163(5), 749–759. 

Perneger, Thomas V. (1998) What=s Wrong with Bonferroni Adjustments. British Medical 

Journal 316(7139), 1236–1238. 

Stein, Charles M. (1981) Estimation of the Mean of a Multivariate Normal Distribution. Annals 

of Statistics 9(6), 1135–1151. 

Thompson, James (1968) Shrinkage Techniques for Estimating the Mean. Journal of the 

American Statistical Association 63(321), 113–122. 



19 
 

Weimer, David L. (1986) Collective Delusion in the Social Sciences. Review of Policy Research 

5(4), 705–708. 

Weimer, David L. and Mark A. Sager (2009) Early Identification and Treatment of Alzheimer’s 

Disease: Social and Fiscal Outcomes. Alzheimer’s & Dementia 5(3), 215–226. 

Weimer, David L. and Aidan R. Vining (2009) Investing in the Disadvantaged: Assessing the 

Benefits and Costs of Social Policies (Washington, DC: Georgetown University Press). 

Ziliak, Stephen T. and Deirdre N. McCloskey (2008) The Cult of Statistical Significance: How 

the Standard Error Costs Us Jobs, Justice, and Lives (Ann Arbor: University of 

Michigan Press). 

 


