Rethinking Meta-analysis: Applications for Air Pollution Data and Beyond

Julie E. Goodman, Catherine Petito Boyce, Sonja N. Sax, Leslie A. Beyer, and Robyn L. Prueitt

Methods for Research Synthesis: A Cross-Disciplinary Approach, Cambridge, Massachusetts October 3, 2013

Number of Publications in Scopus with Meta-Analysis in Title, Abstract, and/or Keywords

Meta-Analysis

- Systematic review of data from comparable studies leading to a quantitative summary of results
- Data types
 - *e.g.*, binary, ordinal, categorical, continuous, counts, percentages
- Any discipline
- Studies must address the same question
- Policy applications

National Ambient Air Quality Standards (NAAQS)

- Developed by US EPA for PM, SO_x, NO_x, CO, O₃, Pb
- Protect public health, public welfare, and environment
- Based on a weight-of-evidence evaluation of data from a variety of disciplines

Using Meta-analysis for Different Types of Air Pollution Data

Data Category	Controlled Exposure Studies	Epidemiology Studies	Toxicity Studies	Mechanistic/ Mode-of- Action Studies
Potential Sample Size	↓	^	¥	\checkmark
Controlled Exposure/Outcome	↑	Ŷ	↑	↑
Potential for standardized design	٨	≁ ↓	↑	↑
Data complexity	♦	^	¥	Υ Ψ
Potential for bias	♦	۲	¥	¥
Potential for heterogeneity	¥	^	≁≁	≁ ↓
Published meta-analyses	^	^	¥	\checkmark

Meta-analysis Limitations

- Limited to homogeneous studies
- Cannot mitigate limitations in underlying data
 - Incomplete reporting or analysis
 - Bias (*e.g.*, selection, reporting, publication)
- Can get different results depending on question asked
- Can't address adversity

Bell et al. (2005)

Meta-analysis Benefits

- Provide a standardized, transparent approach
- Enhance statistical power to detect an effect
- Evaluate sources/influences of heterogeneity and bias
- Can use different and novel statistical methods
 - Calculate magnitude of outcome
 - Evaluate correlation (*e.g.*, dose-response)
 - Conduct sensitivity analyses
- Identify data gaps
- Identify research strategies for future study design/data analysis/reporting

Research Frontiers

- Enhanced applications of existing approaches (*e.g.*, doseresponse)
- New applications in evolving research areas/study types (*e.g.*, gene expression)
- New statistical approaches (*e.g.*, address big data, study limitations, confounders, heterogeneity)
- Improved, informed consistency of original research
- Guideline development

Goodman et al. (2009)

Policy Applications

- Systematically review studies that bear on policy
- Apply to studies in different disciplines
- Identify data gaps and new studies to conduct
- Base regulations on weight of evidence, not one study

Study	Unit Risk Factor (per ug/m ³)	Weight
Grimsrud et al. (2003)	2.59 x 10 ⁻⁴	59%
Enterline and Marsh (1982)	4.34 x 10 ⁻⁵	41%
Final URF	1.7 x 10 -4	100%

Nickel Unit Risk Factor Derivation Based on Two Studies

TCEQ, 2011

Meta-analysis Opportunities

- Rigorous, adaptable tool for systematic data review
- Both specific results and process yield insights

- Advances from improved use of existing tools and methods
- Many opportunities exist for expanded applications
 - Existing data and research areas
 - New data types
 - Multi-faceted evaluations
 - Policy

Questions?

Julie E. Goodman, PhD DABT Gradient jgoodman@gradientcorp.com

