Attributing Illness to Disaggregated Food Categories Using Expert Opinion and Consumption Data

Methods for Research Synthesis: A Cross-Disciplinary Approach October 3-4, 2013

Motivation

- Regulators make decisions about how to target scarce inspection resources
- Need to understand prior to consumer or food service handling the likelihood that a food
 - Is contaminated and
 - Will cause illness
- Available data is very limited
 - Most data are from outbreak investigations
 - Non-representative
 - Biased toward large outbreaks, short incubation periods, and more serious illnesses

Task Objectives

- Utilize expert elicitation to:
 - Develop disaggregated food categories into smaller homogeneous groups with respect to microbiological contamination likelihood
 - Generate estimates of % of FBI attributable to contamination that occurs before the product reaches the store shelf (excluding contamination resulting from inappropriate handling at retail and/or the home

- Calculate attribution rates for each disaggregated food category and pathogen pair using
 - Expert opinion data collected, AND
 - Consumption data

Why Expert Elicitation?

- Lack of studies with directly relevant data
- Other methods of research synthesis not feasible
- Considerable amount of related data and knowledge
 - Overall prevalence of foodborne illness in the United States
 - Understanding of microbial growth under different conditions and in different food types
 - Effectiveness of "kill steps" between manufacturer and the consumer
- Synthesis of inputs from multiple types of experts

Methods

- Modified Delphi technique
 - Panel of 16 experts
 - Experts interact through a moderator
 - Iterative approach to eliciting opinion
 - Mathematical aggregation of opinions
 - Accounts for uncertainty through self-assessed confidence ratings
- Combine expert elicitation data with consumption data
- Avoids "anchoring" on outbreak-based studies

More on Attribution Method

- Even very high-risk foods may account for very few FBI if rarely eaten
- Percentage of FBI attributable to a specific food-pathogen pair is a function of relative likelihood of contamination AND share of consumption

Questionnaire Design

- Supermarket concept
 - Offers natural groupings of products
 - Reduce cognitive burden on experts
- MS Excel-based selfadministered questionnaire

Round 1

- **Objective:** Identify food-pathogen combinations of *most* concern for further evaluation in the next round
- Questions:
 - Pathogens that are of most concern for a given food product category
 - Product subcategories for which the likelihood of contamination is higher than average

Relevant Food Categories by Pathogen from Round 1

Pathogen	Number of Relevant Food Categories
Astrovirus	14
Bacillus cereus	121
Brucella	3
C. botulinum	110
Campylobacter	45
Clostridium perfringens	67
Cryptosporidium parvum	102
Cyclospora cayetanensis	71
Escherichia coli spp.	231
Giardia lamblia	31
Hepatitis A	138
Listeria monocytogenes	172
Norwalk-like viruses	135
Rotavirus	26
Salmonella spp.	353
Shigella	116
Staphylococcus	96
Streptococcus	14
Toxoplasma gondii	14
Trichinella spiralis	4
Vibrio spp.	35
Yersinia enterocolitica	32

Round 2

• **Objective:** Compare the relative likelihood of contamination for all food categories associated with each pathogen

• Question:

- Group food categories provided according to relative likelihood of contamination into following bins
 - Negligible

Medium:High

Low

- High:Low
- Medium:Low High:Medium
- Medium: Medium High: High

Round 3

• **Objective:** Estimate FBI due to contamination that happens during harvest, processing, and/or distribution stages of the farm-to-fork continuum, i.e., relevant at time of importation

• Question:

• Estimate % of FBI that might occur due to events after the product is sold, e.g., due to improper handling at retail and/or home

% FBI due to Contamination that Occurs
Before the Product Reaches the Store
Shelf

= 1 - % FBI due to Contamination that Occurs

After the Product Leaves the Store Shelf

Attribution Rate Methodology

- **Step 1:** Map expert defined food categories to Nielsen scanner food categories
- Step 2: Normalize weighted mean contamination likelihood scores such that the sum of the scores across food categories for a food pathogen equals 100%
- **Step 3:** Use Nielsen sales equivalent units as proxy for consumption volume

• **Step 4:** Calculate raw attribution rate as:

Weighted
Normalized Mean
Relative
Contamination
Likelihood Score

Consumption Share
in %

• **Step 5:** Normalize raw attribution rate such that the sum of the attribution rates for each food for a given pathogen equals 100%

Considerations

- Other research methods are not feasible due to lack of studies
- Government analysts are time and budget constrained
- Expert elicitation is challenging and requires innovative approaches
- Integration of expert elicitation with other data sources
- Continued development of better methods to meet these challenges is needed