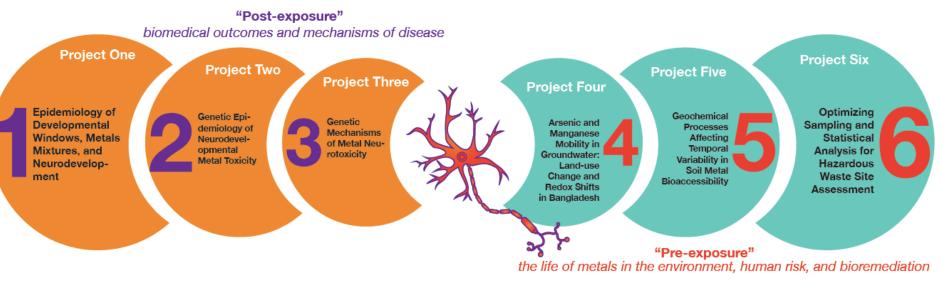


P42ES016454

Mixtures, Metals, Genes and Pathways: A Systematic Review

Katherine von Stackelberg <u>kvon@hsph.harvard.edu</u> Liz Guzy, Tian Chu, Birgit Claus-Henn



HARVARD SCHOOL OF PUBLIC HEALTH

ID RESEARCH PROGRAM

Superfund Research Program at HSPH

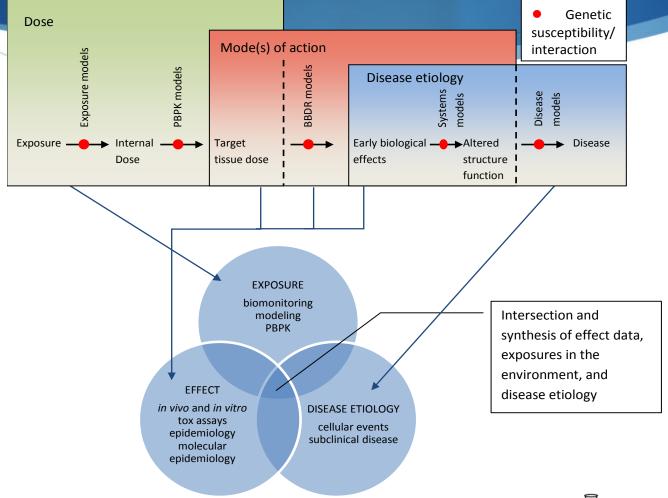
Prenatal and perinatal exposures to mixtures of metals (arsenic, lead, manganese; cadmium) and neurodevelopmental health outcomes in children

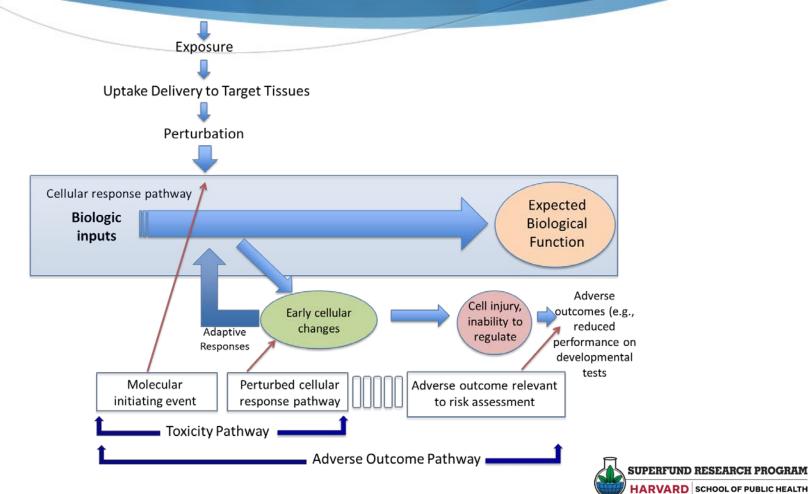
SUPERFUND RESEARCH PROGRAM

Emerging Issues in Risk Assessment

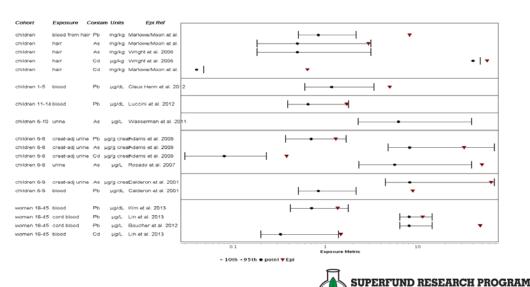
- Cumulative risk
 - Non-chemical stressors
 - Chemical mixtures
- Susceptibility
 - Environmental equity / justice
 - Gene-environment interaction
- **Epigenetics**
- Exposure
 - Bioavailability
 - Exposome
 - Timing of exposure

EMERGING SCIENCE FOR ENVIRONMENTAL HEALTH DECISIONS


Advancing the Next Generation of Risk Assessment

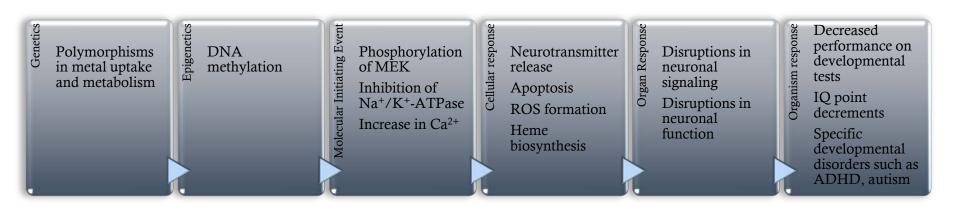

Synthesizing Evidence from Exposure to Health Outcome

Adverse Outcome Pathway



Components of Systematic Review

Ері	Тох	GENE INTERACTION	EXPOSURE	HEALTH OUTCOME
22 studies	11 in vitro; 32 in vivo	Genes within a health outcome; genes across health outcomes within a metal; genes relevant to pathways	Compare exposure levels from epi studies to NHANES; other biomonitoring studies	Autism ADHD Neuronal function in cognition and learning


Outcome	Pb	As	Mn	Cd
ADHD	DRD2, GRM5	LPHN3	DRD2, SLC6A3, TACR1	DRD2, DRD4, TACR1
Anxiety Disorders	маоа	CRHR1, FOS, SLC6A4, TNF	APP, DRD2, FOS, SLC6A3, TNF, UCN	ADORA2A, APP, CRP, DRD2, FOS, MIF, NPY, SERPINA1, SLC6A4, TNF
Asperger Syndrome		SLC6A4		SLC6A4
Autism	GABRA1, GAD1, GRN2A, HLA-, DRB1, HRAS, IFNG, IGF1, ITGB3, JMUD1C, MAOA, MECP2, MET, NOS2, NTRK2, PON1, PRKCB, PTGS2, ROBO1, SLC1A3,	ADM, BCL2, BDNF, CAT, GSTM1, GSTP1, HLA-, DRB1, IGF1, IL10, IL1RN, IL2, IL6, LAMB1, LEP, MEF2C, MTHFR, NOS2, PDE4B, PER1, PLAUR, PON1, PRF1, PTGS2, SCN7A, SERPINE1, SLC6A4, XPC	ADM, AQP4, BDNF, CAT, FOXP2, GRIN2A, IFNG, IL2, IL6, LEP, NOS2, PARK2, PTGS2, SLC1A3, TF	ADM, AR, BCL2, BDNF, CAT, DRD3, EGR2, GHR, GIA1, GPX1, GSTP1, IFNG, IGF1, IGF2, ILIQ, ILIAN, IL4, ILG, MET, MIF, MTF1, NOS2, PER1, PLA2G4A, PLAUR, POMC, PRL, PTG2, SCT, SEMASA, SERPINE1, SIC40A1, SIC5A4, TF
Child development disorders, pervasive	GRIN2B, HFE, ITGB3, LAMC3, MECP2	FOXP1, MEF2C, SOX9	GRIN2B, HFE	DRD4
Cognition disorders		APOE, MT1, MT2, PTGS2, SLC6A4	APP, DRD2, EPO, PTGS2, SLC4A10	APP, DRD2, DRD3, EPO, IGF2, MET, MT1, MT2, PTGS2, SLC6A4
Intellectual disability	BDNF, GAMT, GNAS, GRIN2B, MECP2	BDNF, MEF2C	BDNF, GRIN2B, SLC4A10	BDNF, FGFR2
Iron metabolism disorders	CP, HMOX1	HMOX1, SLC11A2, SOD1, TNF	HMOX1, TFRC	BMP2, FTH1, FTL, HAMP, HMOX1, SLC11A2, SLC40A1, SOD1, TF, TFNC, TNF
Learning Disorder	ACHE, APP, BCL2, CASP3, HMOX1, IL1B, MAPT, MECP2, TH, TRH	ACHE, BCL2, CASP3, HMOX1, HTR1A,IL1B, MAPT, MT1, MT2 , TH, VEGFA	APP, CASP3, HMOX1, HTR1A, IL1B, PARK2, TH, VEGFA	ACHE, APP, BCL2, CASP3, HMOX1, IL1B, MT1, MT2, TH, VEGFA
Memory disorders	ACHE, APP, BCL2, HTR6, IL1B, MAPT			
Notes:				
Red - gene in commo	on across all four metals; blue	- gene in common across the	ee metals; green - gene in co	mmon across two metals

HARVARD SCHOOL OF PUBLIC HEALTH

Evidence Along the AOP Continuum

- What criteria should be used to evaluate the applicability of different research synthesis methods to particular types of problems and data?
 - Criteria will vary given decision context
 - Resource availability
 - Time constraints
 - External review
 - Qualitative vs. quantitative
 - Within our review, used different criteria across domains
 - Decision tree or flow chart

- What particular characteristics of the problem and data make the research synthesis method(s) you address particularly well (or poorly) suited for that context?
 - Context: risk, public health, exposure, regulatory toxicology
 - Synthesizing evidence across domains
 - Moving toward mechanistic understanding of complex interactions leading to health outcomes

- What are the strengths and limitations of the outputs provided, and the implications for their use in policy analysis?
 - Establish a baseline
 - Integrative
 - Qualitative
 - Policy context (risk assessment)

- What are the most important research needs, in terms of methodological development, given your findings?
 - Quantitative methods for translating AOP into regulatory values (e.g., IRIS)
 - Implications for risk assessment more broadly
 - Standardized approach(es) within a domain?
 - "universal" standards for judging acceptability/suitability of specific studies

Concluding Ideas

- Evidence that prenatal or perinatal exposures to mixtures of metals are associated with greater than additive neurodevelopmental health outcomes in children
 - Several modes of action by which this could occur
 - Support for proposed adverse outcome pathway
- Complexity across the continuum from exposure to health outcome requires synthesis and integration in an evidence-based analysis
 - Greater reliance on high-throughput methods
 - Tiered modeling approaches
 - Method development within a domain
 - Kernel machine regression
 - Variety of methods discussed here
 - Meta analysis
 - Weight of evidence
 - Systems based approaches
 - Bayesian structural equation models

