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Abstract  

We present latest results in validating Structured Expert Judgment. The post-2006 expert judgment 

data base is extended to 49 studies. In-sample and out-of-sample results are updated with the latest 

studies. The assumption underlying all performance-blind combination schemes is the Random 

Expert Hypothesis: putative differences in expert performance are due to random stressors and are 

not persistent properties of the experts themselves. Using methods of randomly scrambling expert 

panels developed in previous work, we generate distributions for a full set of performance metrics. 

The hypotheses that the original panels’ performance values are drawn from distributions produced 

by random scrambling are rejected at the significance level of E-12. Random stressors cannot 

produce the variation in performance seen in the original panels. Rejecting the random expert 

hypothesis for all 49 studies would lead to 10 expected false rejections. Aggregating over all 

variables and all studies we compare prediction errors relative to the prediction error of an equal 

weighted combination of experts’ medians. Using the medians of performance weighted 

combinations yields a 58% improvement. Using a performance weighted combination of experts’ 

medians yields a 43% improvement. Using the medians of equally weighted combinations of experts 

distributions yields a 29% improvement. The prediction error caused by combining quantiles instead 

of combining distributions (as has been incautiously proposed), is greater for equal weighting than 

for performance weighting. 

 

Introduction: 

Using expert uncertainty quantification (UQ) as scientific data with traceability and validation dates 

from (Cooke et al., 1988; Cooke, 1987; Cooke, 1991) under the name “Classical Model” or 

“Structured Expert Judgment”. Distinguishing features are treating experts as statistical hypotheses 

and evaluating performance with respect to statistical accuracy and informativeness based on 

calibration variables (a.k.a. seed variables) from their field to which true values are / become known. 

Combinations of experts’ distributions (termed decision makers or DMs) using performance-based 

(PW) and equal weighting (EW) are compared based on performance on calibration variables.  

 

The expert data up to 2006 was made publically available in 2008 (Cooke & Goossens, 2008) and is 

currently available at http://rogermcooke.net/. The best current summary of the Classical Model, 

applications and validation research are published by Colson and Cooke (2017 and 2018; also see 

online supplements).The reader is referred to these sources for older publications.   

 

Application highlights involved nuclear safety in the 1990s with the European Union and the United 

States Nuclear Regulatory Commission, fine particulates with Harvard University and the 

government of Kuwait in 2004-2005, food-borne diseases for the World Health Organization 

(WHO) in 2011-2013, ice sheet dynamics for Princeton University and Rutgers University and 

Resources for the Future (Bamber et al., 2019), and volcanic hazard levels in different parts of the 

world. The Classical Model was a key decision-support procedure during the prolonged eruption on 

the island of Montserrat, West Indies in 1995-2018.  Over the same period, expert elicitations using 

the Classical Model have informed many issues of public health policy, civil aviation safety, fire 

impacts on engineered structures, and earthquake resistance of critical utility facilities. 

http://rogermcooke.net/
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Validation is the cornerstone of science. A special issue on expert judgment (Cooke & Goossens, 

2008) focused on this issue. Colson and Cooke (2017) gave an extensive review of validation 

research and applied the cross validation code of Eggstaff et al. (2014) to the 33 professional studies 

conducted post-2006. These studies are more uniform in design and better resourced than the earlier 

studies.  320 experts produced in total 3,777 expert assessments of calibration variables. Those 

numbers have since grown to 49 studies involving 516 experts and 6,508 expert assessments of 

calibration variables.  

 

The driver behind virtually all these applications is the validational aspect of the Classical Model.  

Although the psychological community has long drawn attention to cognitive biases inherent in 

expert UQ, and despite a robust interest in validation research, there are barriers to the use of 

performance measures. The conclusion speculates on possible explanations for this.  Section 2 

updates the data on expert performance and in-sample validation, Section 3 updates results on cross 

validation and Section 4 focuses on a new direction termed the Random Expert Hypothesis (REH).  

Section 5 explores co-benefits of performance weighting in terms of point predictions.  Section 6 

gathers conclusions.  

 

2. Post-2006 Expert Data and In-sample Validation 

 

In addition to the 33 post-2006 studies studied in Colson and Cooke (2017; 2018), 16 more studies 

have been completed as post-2016, as summarized in Table 1 (see Appendix A for data references). 

 
Table 1 Expert judgment studies are illustrated with the number of calibration variables and experts, post-2006 (post-2016 

bolded) 

Study  # of 

Experts 

# of 

Calibration 

Variables 

Subject 

UMD 9 11 Nitrogen removal in Chesapeake  Bay 

arsenic 9 10 Air quality levels for arsenic 

Biol Agents 9 10 Human dose-response curves for bioterror agents 

ATCEP 5 10 Air traffic Controllers Human Error 

Daniela 4 10 Fire prevention and control 

eBBP 14 15 XMRV  blood/tissue infection transmission risks 

create 7 10 Terrorism 

effErupt 14 8 Icelandic fissure eruptions: source characterization 

erie 10 15 Establishment of Asian Carp in Lake Erie 

FCEP 5 8 Flight Crew Human Error 

Sheep 14 15 Risk management policy for sheep scab control 

hemophilia 18 8 Hemophilia 
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Liander 11 10 Underground cast iron gas-lines 

PHAC 10 12 Additional CWD factors 

TOPAZ 21 16 Tectonic hazards for radwaste siting in Japan 

SPEED 14 16 Volcano hazards (Vesuvius & Campi Flegrei, Italy) 

TDC 18 17 Volcano hazards (Tristan da Cunha) 

GL 9 13 Costs of invasive species in Great Lakes 

Goodheart 5 10 Airport safety 

Ice 10 11 Sea level rise from Ice Sheets melting due to global warming 

YTBID (CDC) 14 48 Return on investment for CDC warnings 

Gerestenberger 12 13 Probabilistic Seismic‐Hazard Model for Canterbury 

CWD 14 10 Infection transmission risks: Chronic Wasting Disease from deer to humans 

Nebraska 4 10 Grant effectiveness, child health insurance enrollment 

SanDiego 7 10 Effectiveness of surgical procedures 

Arkansas 4 10 Grant effectiveness, child health insurance enrollment 

Covering Kids 5 10 Grant effectiveness, child health insurance enrollment 

dcpn_Fistula 8 10 Effectiveness of obstetric fistula repair 

Florida 7 10 Grant effectiveness, child health insurance enrollment 

Illinois 5 10 Grant effectiveness, child health insurance enrollment 

Obesity 4 10 Grant effectiveness, childhood obesity 

Tobacco 7 10 Grant effectiveness, childhood obesity 

Washington 5 10 Grant effectiveness, child health insurance enrollment 

 cdc-roi 20 10 Return on investment for CDC warnings 

IQ-earn 8 11 Effects of Increases in IQ in India on the Present Value of 

Lifetime Earnings 

Brexit_food 10 10 Food price change after Brexit 

 

TadiniQuito 8 13 Somma‐Vesuvio volcanic complex geodatabase 

Tadini_Clermont 12 13 Somma‐Vesuvio volcanic complex geodatabase 

PoliticalViolence 16 21 Political Violence 

ICE_2018 20 16 Future see level rise 

Geopolit 9 16 Geopolitics 

puig-gdp 9 13 Emission forecasts from Mexico 
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puig-oil 6 19 Oil emissions and prices 

France 5 10 Future Antimicrobial Resistance in France 

Italy 4 8 Future Antimicrobial Resistance in Italy 

Spain 5 10 Future Antimicrobial Resistance in Spain 

UK 6 10 Future Antimicrobial Resistance in UK 

USGS 18 32 Volcanos 

BFIQ 7 11 Breastfeeding and IQ 

Note. Post-2016 studies are bolded in text. 

The histogram of calibration variables and the graph of  p value scores are given in Figure 1. 
 

Figure 1: Calibration frequencies (left) for all 516 post-2006 experts and p value scores (right) not accounting for differences in 

statistical power. The traditional 5% threshold for simple hypothesis testing is given as a red line. 

   
 

Figure 2 shows the best and worst p values (statistical accuracy scores) per study for all post-2006 

studies and the two best performing experts. There are generally 4 or more orders of magnitude in 

statistical accuracy scores between the best and worst expert per study.  Despite the fact that only 

133 of the 516 experts would not be rejected as statistical hypothesis at the 5% level on simple 

hypothesis tests, most studies have one or even two statistically acceptable experts.  
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Figure 2: Best and worst expert (BEP and WEP, respectively) p values or Statistical Accuracy (left) and p values of best two 

experts in terms unnormalized weight (combined score of statistical accuracy  informativeness) (right), per study, 2006-2019 

data.   

 
 

Note. Studies are ordered with respect to best experts' statistical accuracy scores in both plots. 

 

Comparing PW and EW decision makers on the data used to initialize the performance weighting is 

“in-sample validation”.  Figure 3 shows the in-sample results for the 2006-2019 data. The combined 

score is the product of the statistical accuracy and the informativeness score. The left graph shows 

that PW and EW have roughly the same number of studies below the conventional 5% rejection 

threshold, though PW tends to be higher. The right graph adds the informativeness factor and boosts 

the in-sample superiority of PW over EW. 

 
Figure 3: In-sample comparison of performance weighted (PW) and equal weighted (EW) decision makers with respect to p 

values (left) and combined scores (right), ordered by PW values. 

  
 

3. Out-of-sample; Cross Validation 

Unless the variables of interest can be observed shortly after completion of a study, out-of- sample 

validation comes down to cross validation. The calibration variables are split into a training set for 

initializing the PW and a test set for comparing PW and EW . The sets on which the performance 

weights are derived and evaluated are thus disjoint.  
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Many issues involved in choosing the training and test set sizes are discussed in Colson and Cooke 

(2017), to which we refer the interested reader. The upshot is that using 80% of the calibration 

variables as a training set best balances the competing goals of resolving expert performance on the 

training set and resolving the performance of combinations on the test set. The training set then has 

enough statistical power to reduce the variance in the expert weights thereby rendering the 

performance weights similar to the weights based on all calibration variables. The test set loses 

statistical power in resolving the PW and EW DMs, but with 10 calibration variables statistical 

accuracy scores for assessments of 5
th

 , 50
th

  ,and 95
th

 percentiles still vary by a factor 31. Moreover, 

higher resolution is of no value if the PW DM is very volatile and unlike the PW DM of the full 

study. Of course the actual sizes of the training and test sets vary with the total number of calibration 

variables. The 80% split makes it easier to pool the results from all studies. With 10 calibration 

variables, there are 45 distinct 8-tuples of calibration variables to be used as training sets. 

Performance is scored on the 2 remaining variables. The statistical accuracy, the informativeness and 

the combined score (the product of the former two) are averaged over the 45 different test sets. In 

Colson and Cooke (2017), it is shown that the average ratio of combined scores for PW and EW is 

indistinguishable from, the ratio of average combined scores for fixed training set size. The ratio of 

combined scores based on 80% of the calibration variables is called the “Out of Sample Validity 

Index (OoSVI).”  

 
Figure 4: Ratios of combined scores  PW / EW averaged over all training sets sized at 80% of the calibration variables for 49 

post-2006 studies (left). Combined scores factored into ratios of statistical accuracy (SA) and informativeness (Inf) (Right). 

  
 

For 42 of the 49 studies the ratio PWcomb / EWcomb is greater than 1.  Under the null hypothesis 

that there is no difference between PW and EW, the probability of seeing 42 or more ratios greater 

than 1 is 1.2E8.  The right panel of Figure 4 shows that PW suffers a modest out-of-sample penalty 

in statistical accuracy, which is more than compensated by a boost of informativeness. The  mean 

statistical accuracy score (i.e., p value) for EW is 0.54, while that of PW is 0.43. 
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Figure 5: Breakdown of OoSVI scores in Figure 4 according to whether PW was identical with the best expert (PW=BE; left) 

and whether BE's statistical accuracy was greater than 50% (BESA>50%; right). 

   
 

As in Colson and Cooke (2017), the features which best explained the differences in OoSVI were 

studied. The results echo those earlier findings; if PW concentrates all weight in the best expert (BE) 

the overall geomean of  OoSVI for all studies (1.63) splits into 2.0 (PW=BE) and 1.4 (PW ≠ BE).  

Similar results are obtained by splitting into studies in which BE’s statistical accuracy is above (2.1) 

resp. below (1.2) 50%.  Other features such as number experts, number of calibration variables and 

plenary versus individual elicitation had less effect.  The quality of the best expert is the main 

determinant for OoSVI.  The rank correlation between OoSVI and the in sample ratio of combined 

scores is 0.5; these measures are related but not identical for reasons addressed in the following 

paragraph. 

 

Cross validation is essential for demonstrating the value of PW relative to EW for out-of-sample 

prediction.  The necessity of splitting the calibration set into training and test sets exacts a toll, which 

is illustrated with the “Ice Sheet 2018” study (‘ICE_2018;’ see Table 1) including 20 experts and 16 

calibration variables. With a training set of 13 (80% of 16), there are 560 distinct training sets. 8 of 

the 20 experts were weighted on at least one of these sets. For 7 of these 8, the difference between 

their maximal and minimal weight was 1; that is their weights vacillated between 0 and 1.  The PW 

combinations evaluated on the 3 test variables still exhibit volatility and deviate from the PW of the 

entire study.  The most we can say is that the OoSVI compares the score of EW with the scores of a 

swarm of PW, which loosely resemble the PW of the full study. The cross validation data validates 

the performance weighting method, but not a specific PW combination.   

 

4. The Random Expert Hypothesis 

Recently a new approach to validation has emerged (Marti et al., 2019). Whereas cross validation is 

hampered by the two-sided loss of statistical power caused by splitting calibration variables into 

training and test sets, the new approach does not focus on the performance of a combination of 

experts. Instead, it focuses on the performance of the experts themselves and investigates the 

assumption underlying all performance-blind approaches; namely that performance measures are 

unable to make meaningful distinctions in experts’ performances. This may be because the experts 

are all equally good or equally bad.  It may also be that any putative differences are swamped by the 

noise inherent in expert judgment: experts are influenced by random stressors, they have good or bad 

days, their performance is affected by the particular choice of calibration variables, etc. The claim 

that putative differences in expert performance cannot be statistically distinguished from random 
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fluctuations is called the Random Expert Hypothesis (REH). It is not defended with empirical 

arguments but is invoked (albeit implicitly) by any performance-blind approach.  Without 

performance data, the REH can never be dislodged and the advocates of performance-blindness 

seemingly carry no proof burden other than raising doubts about claims of PW superiority (Winkler 

et al., 2018). 

 

The cross validation work sketched above does constitute a rebuttal of the REH, but the rebuttal is 

based on the claim that PW outperforms EW out-of-sample.  This does not test the REH directly. 

The low power of the test set means that the DM’s statistical accuracy scores are poorly resolved. 

The new approach to validation focuses directly on REH without the intermediary of performance 

based combinations.  Indeed, the REH itself carries a heavy proof burden and can be tested using 

expert performance provided by our 49 post-2006 studies. Intuitively, if performance differences are 

the result of noise, then randomly re-allocating the experts’ assessments among the panel members 

will randomly re-distribute the random stressors. The fluctuations in performance produced in this 

way should envelope those in the original panel. For example, the maximum scores in the original 

panels should resemble the maxima in a large set of randomly generated panels. If not, then having 

the best score must be a persistent property of the expert in question and not the result of random 

fluctuations.  It emerges that tests of REH are much more powerful than the cross validation tests. 

 

To make this idea precise, consider a random scramble of an expert panel composed of 15 experts 

and 10 calibration variables. We create ‘scrambled expert 1’ by randomly choosing an assessment 

without replacement from one of the 15 experts for the first variable, a second random draw without 

replacement gives the second assessment for ‘scrambled expert 1’ and so on. ‘Scrambled expert 2’ 

chooses his assessments in a similar way from the assessments not chosen by ‘scrambled expert 1’. 

The final scrambled expert, ‘scrambled expert 15’ gets the leftovers.  In this scrambled panel, we can 

measure the statistical accuracy (SA) and informativeness (Inf) of each expert, we can measure the 

combined scores (SA  Inf), we can compute the average scores, the maximum and minimum and 

the standard deviation of the scores.  

 

For each study, we repeat the scrambling 1000 times and build up a distribution for each 

performance metric. This distribution reflects the variation we should see in that performance metric 

if experts’ performance differences really were due only to random stressors.   Suppose we compute 

the average SA for experts in each of the 1000 scrambled panels for a given study.  The REH now 

asserts that the average SA in the original panel looks like it is drawn from this distribution. There 

should be a 50% chance that the original SA is above the median of the REH distribution, a 5% 

chance that it is above the 95
th

 percentile of the REH, etc. Thus, REH expects that in 2.45 of the 49 

studies, the original average SA should fall above the 95
th

 percentile of the REH distribution.  

Actually, this happens in 20 of the 49 studies. The probability of 20 or more studies falling above the 

95
th

 percentile if REH were true is 6.5E14.  REH fails if the differences in the experts themselves in 

the original panel are greater than what can be produced by scrambling the experts.  

 

Note that random scrambling will have no effect on the EW combination. This underscores the fact 

that EW implies REH.  In consequence (modus tollens), if REH is (statistically) rejected, then so is 

EW. In this sense, REH provides a more powerful test of the assumption underlying the use of EW. 

The same holds for the “averaging quantile” approaches (Lichtendahl et al., 2013) or indeed any 

approach which is performance-blind.  If all experts in a panel are “equally good” or “equally bad,” 
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then REH may actually be true for that panel, which indeed could sometimes happen. The use of PW 

depends on the fact that such panels are in the minority. Testing REH on a set of cases allows us to 

gauge the size of that minority. 

 

The data has been standardized in ways that do not affect the REH; experts who did not assess all 

calibration variables were dropped, all background measures are converted to uniform and only the 

5
th

 , 50
th

  and 95
th

 percentile elicitations were used (Marti et al., 2019). 

 

For each of the 49 studies, the following seven performance metrics shown in Figure 6 are computed 

for the original panel and for each of the 1000 scrambled panels: 

 

1. Panel Average Statistical Accuracy  

2. Panel Max Statistical Accuracy  

3. Panel Standard Deviation of Statistical Accuracy  

4. Panel Average Combined Score  

5. Panel Max Combined Score  

6. Panel Standard Deviation of Combined Score  

7. Panel Min Combined Score 

 

For the first six metrics, we are interested in the quantile of the REH distribution realized by the 

metric in the original panel. For the last metric we are interested in the complimentary quantile, that 

is, we are interested in the percentage of the 1000 scrambled panels in which the original minimum 

is lower than the scrambled minimum.  This is done so that all metrics have the same sense: higher is 

better for PW, and worse for EW. 

 

If REH were true, that is, if the original panel’s metrics were really drawn from the REH 

distribution, then the quantiles in Figure 6 should be uniformly distributed on the interval [0, 1]. The 

number of bars above the value 0.5 should be statistically equal to the number below 0.5. The 

“amount of color” above 0.5 should statistically equal the amount below 0.5. 

 

There are two simple tests for the REH hypothesis. The binomial test simply counts the number of 

values greater than 0.5 for each metric and reports the p value for the corresponding null hypothesis: 

the probability that 50% of the random panels outperform the original panel metric is 0.5. The 

binomial test does not consider how far above or below 0.5 the metrics are. The sum test simply adds 

the 49 quantiles for each metric. Under REH this sum should be (very, very nearly) normally 

distributed with mean 49/2 = 24.5 and standard deviation (49/12)
½

  = 2.02.  For example, ‘Average 

Statistical Accuracy’ in the original panel exceeds the median of the REH distribution for ‘Average 

Statistical Accuracy’ on 42 of the 49 studies. If the probability of exceeding the median were really 

0.5, the probability of seeing 42 or more “successes” would be 1.81 E-7. Summing the original 

panels’ 49 realized quantiles in the REH distribution for ‘Average Statistical Accuracy’ yields 38.36. 

The probability that a normal variable with mean 24.5 and standard deviation 2.02 exceeds 38.36 is 

3.48 E-12. The sum test is much more powerful than the binomial test. Table 2 collects the results 

for the binomial and sum tests. Suppose we reject REH for each of the 49 studies.  The sum of the p 

values gives the expected number of false rejections. This number is 49  38.36 = 10.64. The 

expected percentage of studies in which REH would be falsely rejected is thus 22%. 
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Figure 6: Quantiles of the REH distributions realized by the performance metrics for Statistical Accuracy (top) and Combined 

Score (bottom) by the original expert panels, for 49 studies. 
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Table 1:  p values at which REH is rejected for the seven performance metrics 

 p values for tests of REH 

  Binomial test Sum test 

Average Statistical Accuracy 1.81E-07 3.49E-12 

Standard Deviation of Statistical Accuracy 4.63E-06 6.76E-10 

Maximum Statistical Accuracy 2.35E-04 2.85E-06 

Average Combined score 9.82E-07 3.21E-09 

Standard Deviation of Combined Score 9.82E-07 3.96E-08 

Maximum Combined Score 1.92E-05 5.85E-07 

Minimum Combined Score 4.63E-06 6.67E-12 

 

Whichever test we use, the notion that putative differences in expert performance are due to random 

stressors is overwhelmingly rejected.  Table 3 examines the influence of the number of experts and 

number of calibration variables on the performance metrics. 
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Table 2: Spearman’s Rank Correlation Between Number of Experts and Number of Calibration Variables and Percentile 

Scores. 

  

Quantile 

Avg SA 

Quantile 

STD SA 

Quantile 

Max SA 

Quantile 

Avg. 

Comb 

Quantile 

STD Comb 

Quantile 

Max Comb 

Rank Correlation to # Experts 0.24 0.13 0.03 0.18 0.05 -0.04 

Rank Correlation to # Variables 0.40 0.39 0.39 0.31 0.34 0.31 

Note. Avg denotes average, SA is for Statistical Accuracy, STD is the standard deviation, Comb. is 

for combined score, Max is for maximum.  

 

With 49 samples, a rank correlation of 0.24 is significant at the 5% level. As also seen in Table 3, the 

number of experts is not strongly associated with any of the metrics. The number of calibration 

variables does appear to exert some influence. Table 3 implies that more calibration variables tend to 

make the differences between the performance of original experts and randomly scrambled experts 

greater. 

 

5. Co-benefit of performance weighting for prediction 

Statistical accuracy and informativeness are performance metrics for quantifications of uncertainty.  

There is nothing in these metrics that rewards proximity of the medians to the true values. If these 

performance metrics enable more accurate predictions of the true values, then this is a collateral 

benefit, or co-benefit of performance weighting.  The (square) Median Deviation for variable i from 

a distribution with Mediani  is defined as follows: 

 

MDi  = (Mediani  true valuei)
2

. 

 

Where true valuei is the true value of the calibration variable i and MDi is the squared distance 

between the median elicitation and the truth, true valuei. 

 

MDi is dependent on the scale of variable i; changing from, say, meters to kilometers will affect the 

value of MDi. To aggregate over variables with different scales, the scale dependence must be 

removed. To compare the proximity of the medians of PW and EW to the realizations, taking the 

ratio of MD for EW and PW (denoted as EWMDi  and PWMDi, respectively) per variable removes 

the scale dependence. These ratios are then aggregated over all variables in a study by taking the 

geometric mean (geomean):  

 

    

    
   =   

     

     

 
    

   
where N is the number of calibration variables. 

 

The geomean is appropriate for aggregating ratios since the geomean of inverse ratios is the inverse 

of the ratios’ geomean and the geomean of ratios is the ratio of geomeans.    
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While the mean of a linear combination of distributions is the linear combination of their means, the 

same does not hold for the median
1
. In particular, the median of the equally weighted combination of 

expert distributions is not equal to the equally weighted combination of their medians. The latter has 

been presented as “averaging quantiles” as opposed to “averaging probabilities” (Lichtendahl et al., 

2013) and has been shown to produce highly overconfident results (Colson & Cooke, 2017). This is 

so blisteringly obvious that a brief explanation suffices:  Consider two experts with 5 and 95 

percentiles of [0,1] and [10, 11] respectively. Averaging their percentiles yields a 90% confidence 

interval of [5, 6]; equally narrow but disjoint from each expert’s confidence interval.  Experience in 

expert judgment shows that such situations are not uncommon.  “Averaging the probabilities” 

requires knowledge of the entire distributions. It is more complex but produces distributions more 

evenly spread over the interval [0, 11]. For purposes of combining distributions, averaging quantiles 

is a very common and rather severe mistake. 

 

Finding simple point predictions does not require combining distributions. One could also take a 

simple linear combination of the experts’ medians rather than first combining their distributions. 

This option is worth exploring if only because people will continue combining quantiles in any case. 

It is useful to assess the loss of performance which this entails. 

 

The linear combinations of medians is denoted Q for quantile aggregation. EWMDQ/PWMDQ is the 

ratio of square deviations of an equally weighted combination of medians divided by square 

deviations of a performance weighted combination of medians.  This will be compared with 

EWMDQ/PWiMD, where PWiMD uses the medians of the performance weighted combinations 

with item specific weights and optimization (Colson & Cooke, 2017). PWiMD represents the “high 

end” predictor. EWMDQ is the “low end predictor”. PWMDQ is easy to compute and hopefully 

approximates the performance of PWiMD. 

 

Figure 7 plots EWMDQ/PWMDQ  and EWMDQ/PWiMD  per study. Values greater than 1 indicate 

superior predictions relative to EWMDQ. Both PW predictions are superior to EWMDQ, and 

PWiMD is somewhat better than PWMDQ. Taking the geomeans of these ratios over all studies, 

EWMDQ/PWMDQ gives 2.05 while EWMDQ/PWiMD gives 2.48. These are ratio’s of products of 

squared distances between the prediction and truth. Taking square roots is equivalent to taking ratios 

of absolute deviations, which we may characterize as “ratios of distance to the truth”.  PWMDQ’s 

predictions are in aggregate 43% closer to the truth than predictions of EWMDQ while those of 

PWiMD are 58% closer. Interestingly, the medians of equally weighted combinations of 

distributions (not pictured) are 29% closer to the truth, in aggregate, than equally weighted 

combinations of medians. In other words, if one insists on equal weighting, then it is much better to 

take the median of an equal weight combination of expert distributions rather than taking an equal 

weight combination of medians. Using performance weights reduces, but does not eliminate, the 

advantage of the median of combinations as opposed to the combinations of medians. 

 

In 37 of the 49 studies the ratios for EWMDQ/PWiMD are greater than 1. The probability of seeing 

37 or more ratios greater than 1 if there were really no difference between EW and PW is 2.4E-4. 

The conclusion is that the predictions based on performance weighted combinations of medians out-

                                                 
1 It is easy to see that weighting medians differs from taking the median of weighted combinations of distributions. 

Consider two lognormal distributions, each with error factor 3 and medians 1 and 9 respectively. An equal weighted 

combination of their medians is 5, but the median of an equally weighted combination of distributions is 3. 
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perform equally weighted combinations of medians. Additionally, further improvement is realized 

by taking the medians of performance combined distributions. The volatility of these ratios per 

variable is high. 

 
Figure 7: Ratios of EWMDQ / PWMDQ and EWMDQ / PWiMD per study 

 

 
Note. The ratios are the geomeans per study of ratios of squared distances between the predictions 

and the true values. 

 

Conclusions 

Without denigrating the human capacity for denial, experts do exhibit undeniable differences in their 

ability to quantify uncertainty. These differences can readily be measured and used to improve 

performance. The evidence is overwhelming, and it has been overwhelming for some time. 

However, there are two significant hurdles to applying performance based combinations: (1) Time 

and effort required for performance measurement and (2) numeracy demands on the analyst. 

 

In most applications, the greatest time and effort is spent in formulating clear questions with 

operational meaning which address the issues at hand. It is useful to think of expert judgment as a 

way of obtaining (probabilistic) results from experiments or measurements which are feasible in 

principle but not in practice. Describing a “thought experiment” is the best way of making absolutely 

clear what one is asking. These efforts should be made in any case, but the need for operational 

meaning is easier to ignore if there are no calibration questions.  Having formulated questions with 

clear operational meaning facilitates finding calibration variables from the experts’ field. The 

impractical experiments or measurements often suggest experiments / measurements which are 

already performed though not published. Often, as in the recent ‘Ice Sheet 2018’ study, more time is 
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spent agreeing on the best set of calibration variables than in generating them. That said, finding 

good calibration variables does require a deep dive in the subject matter, which is greatly aided by 

having a domain expert on the analysis team.  

 

One-on-one interviews cost time and money, although good online meeting tools bring these costs 

way down. One-on-one elicitation enables the analysts to better plumb experts’ reasoning. 

Supervised plenary elicitation in which experts meet, discuss, and then individually perform the 

elicitation offer advantages of speed and disadvantages in loss of individual engagement. 

 

Sending a questionnaire in the mail to a large set of experts in the hope that a fair number will 

respond is discouraged for purposes of uncertainty quantification. Expert surveys should be sharply 

distinguished from structured expert judgment.  

 

Despite all this, the most difficult hurdle is the second: finding qualified analysts. Mathematicians, 

statisticians, engineers and scientists know that the Classical Model is not a heavy lift
2
. Many have 

conducted successful studies in their chosen fields. The analyst must be able to explain the method 

to the experts and to the problem owners, so that they in turn can explain it up the chain. If a 

problem owner is unable to explain the method to his/her superiors, (s)he is unlikely to adopt it.  The 

analyst must be comfortable with certain relevant concepts such as statistical likelihood,  p values, 

Shannon information, scoring rules, distributions, densities, quantiles, etc. The analyst must be able 

to explain why (s)he is doing things this way and not using any of the slap dash approaches 

proliferating the blogosphere.  Some knowledge of foundations is needed to explain why uncertainty 

is represented as subjective probability and not as fuzziness, imprecision, degree of possibility, 

certainty factors, to name a few. Writing up the results in a clear an accurate fashion requires more 

than a nodding acquaintance with all these concepts.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 Cooke (2015) esp. the supplementary online information is written to bring neophytes up to speed. The TU Delft 

will launch a free online course on expert judgment in October 2019.  
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