

Pollutants, Food & Climate

Lindsay Jaacks, PhD, Assistant Professor of Global Health Twitter: @LindsayJaacks Email: jaacks@hsph.harvard.edu Summer School on Human Rights and Development, 9 July 2019

Food Systems & Climate Change

- 19-29% of global greenhouse gas emissions
- 70% freshwater withdrawals
- ~33% ice-free land

Outline: The Evolving Food System in India

1947 Independence **1960s** Green Revolution Period **Present & Future** Climate Adaptation Period

1950s

Drought, famine, reliance on food aid

1990s – Present Nutrition Transition Period

Outline: The Evolving Food System in India

1947 Independence **1960s** Green Revolution Period **Present & Future** Climate Adaptation Period

Pre-independence – 1950s Drought, famine, reliance on food aid & imported foods **1990s – Present** Nutrition Transition Period

> HARVARD T.H. CHAN

Green Revolution in India

International Rice Research Institute (Philippines)

Map of global cropland, 2015

SCHOOL OF PUBLIC HEALTH

USGS, accessed 8 July 2019

Adverse Consequences of the Green Revolution

1. Paul Ehrlich (author of *The Population Bomb*), 2009:

"The reduction of the hungry portion of the world population may well have been bought at a high price of **environmental devastation** to be paid by future generations"

2. Improved yields of cereal grains, but at cost of **diet quality**

SCHOOL OF PUBLIC HEALTH

World Resources Institute, 2015

State / Indicator	1	2	3	4	5	6	7	8	9	10	11	12	Legend	
Jammu and Kashmir	1.86	3530	Н	9%	24%	100%	18%	2	238		39	MSD	1	Pesticide consumption (kg/ha)
Himachal Pradesh	0.37	3792	Н	29%	51%	75%	50%	2	52		35	MSD	2	Use of Farm Yard Manure (kg/ha)
Uttarakhand	0.12	2078	L	1%	50%	89%	23%	2	314		138	Yes	3	Organic carbon content of soils
Arunachal Pradesh	0.06	65	н	0%	0%	100%	0%		0		0	MSD	4	% of degraded agricultural land
Sikkim		3749	Н	0%	26%	100%	0%		0		0	Yes		% of groundwater development
Manipur	0.09	494	Н	3%	1%	100%	0%		4		24	No	5	
Meghalaya		375	Н	4%	0%	100%	0%		1		0	MSD	6	% wells classified as "safe"
Mizoram		6	L	2%	3%	100%	25%		0		17	Yes		% districts with nitrate concentration
Nagaland		5	Н	0%	2%	100%	0%		0		16	No	7	over permissible limits
Tripura	0.62	2169	Н	64%	7%	100%	0%		61		25	No		No. of most sown crops to cover
Assam	0.07	227	Н	5%	16%	100%	0%	1	9	11%	27	No	8	50% of Total Cropped Area
West Bengal	0.27	1559	Н	24%	45%	71%	9%	1	122	47%	82	MSD		Per hectare electricity use in
Bihar	0.11	621	М	6%	45%	97%	26%	2	42	63%	139	MSD	9	agriculture (kWb/ba)
Uttar Pradesh	0.39	144	L	3%	74%	74%	63%	2	391	83%	104	No	10	% area of paddy under irrigation
Punjab	0.74	928	L	0%	149%	19%	9 1%	2	1301	100%	178	No	10	% area of paddy under imgation
Haryana	0.62	324	L	5%	135%	25%	86%	2	1306	100%	164	No		Per nectare use of nitrogen fertilizer
Rajasthan	0.05	442	L	41%	140%	18%	100%	5	712		40	Yes	11	(kg/ha)
Gujarat	0.13	243	L	39%	68%	78%	67%	5	1153	62%	91	Yes		Existence of sustainable/natural/
Jharkhand	0.35	597	L	93%	23%	94%	4%	1	59	5%	34	No	12	organic farming policy
Chhattisgarh	0.26	336	L	11%	37%	<mark>86</mark> %	44%	1	435	35%	59	MSD	MOD	Mission/Schome/Draft Deligy
Odisha	0.15	1306	L	66%	30%	98%	93%	1	33	33%	35	Yes	MSD	Mission/Scheme/Drait Policy
Madya Pradesh	0.03	425	М	2%	57%	73%	96%	3	498	30%	51	Yes		
Maharashtra	0.57	727	L	36%	54%	92%	83%	4	948	26%	63	Yes		
Telangana	0.72	1110	L	42%	58%	70%	100%	2	2842	97%	164	MSD		
Andhra Pradesh	0.24	1110	Н	10%	44%	74%	100%	4	2842	97%	124	MSD		
Karnataka	0.10	1379	L	38%	66%	56%	73%	6	1476	75%	88	Yes		
Tamil Nadu	0.33	1497	L	0%	77%	38%	84%	3	2051	93%	87	MSD		
Goa	0.14	129	Н	22%	37%	100%	0%		133		22	MSD		
Kerala	0 41	711	н	1%	47%	86%	79%	4	121	77%	15	Yes		

Has the West "locked farmers in [unsafe] pesticide technology"?

- 1997-2000: US pesticide companies exported >30K metric tons of pesticides banned for use in the US (Raven et al. 2008)
- Safe use of pesticides requires ability to read labels and use personal protective equipment
- Ag development agencies typically use surplus supplies, not appropriately matched supplies
- Dependence on external outputs (e.g. pesticides) → indebtedness of farmers

Consumers Are Concerned About Safety

- "They [fruits] are full of chemicals. It is so poisonous, that we will get other diseases...." (older adult man in Kerala, India)
- "When you consider the price you have to pay for the chemicals in fruits, it is better not to eat it at all" (older adult woman in Kerala, India)
- "Fruits, green leafy vegetables are good for health, now-adays fresh vegetables are not available because of impurity...pulses are also adulterated but we have to eat, we don't have any choice" (young adult woman in Delhi, India)

Heavy Metals in Vegetables from Azadpur

SCHOOL OF PUBLIC

- 222 spinach samples tested:
 - 72% exceeded India standard for lead of 2.5 mg/kg
 - 100% exceed Codex standard for lead of 0.3 mg/kg

Indian Grape Crisis in the Netherlands (2003)

- In midst of dispute with grape exporter in India, Dutch private company had samples tested for pesticides
- Contained residues of methomyl exceeding EU limit of 0.05 ug/kg
- Dutch government was alerted and tested 28 grape containers from India
 - 75% exceeded limit (for either methomyl or acephate)
- Price of grapes from India dropped

Policy Response

- All farmers growing grapes for export to EU must register with state Department of Agriculture
- 3 mandatory field inspections during the growing season
- Mandatory pesticide residue testing
- Phytosanitary certificate requirement

In the News...

Tuesday, July 24, 2018

Home India World Cities Opinion Sports Entertainment Lifestyle Technology Viral Parenting Photos Videos Audio ePaper

Home > India > How maximum residue levels have become a tool to block our farm produce exports

How maximum residue levels have become a tool to block our farm produce exports

India has no system to monitor pesticide residues in imported foods, even as its own shipments are getting detained in overseas ports.

Many Challenges

NATIONAL

All you need to know about the debate over pesticide residue tests

Vegetables and fruits that may have high levels of pesticide residue and other chemicals can make their way into the kitchens of Nepali households.

- CHANDAN KUMAR MANDAL, Kathmandu

The Role of Urbanization

- As people move to cities, distance from farm to fork increases
- Urban agriculture and community gardens unlikely to provide substantial benefits
- Growing demand for "riskier" foods (vegetables and animal products) but lack of strong food governance
- Urgent need for stronger linkages between rural production and urban consumption

Pesticides & Diabetes? First Observations in India

	Category 1 (n=121)	Category 2 (n=91)	Category 3 (n=48)
Body mass index (BMI)	24.2 kg/m ²	23.8 kg/m ²	23.1 kg/m ²
Prevalence of diabetes	24%	17.5%	39.5%

Category 1 = no or minimal exposure group (participants working in offices or people at home) Category 2 = intermediate exposure group (participants involved in weeding, pruning, picking and harvesting) Category 3 = high exposure group (participants involved in mixing and spraying pesticides)

Swaminathan and Thangavel Practical Diabetes 2015;32(3):111-113

Persistent Organic Pollutants and Diabetes in India (POPDIAB)

Exposure = p,p' isomer of DDE (parent compound: DDT)

Outcome = incident type 2 diabetes

Baseline Comparisons of p,p-DDE

Jaacks et al. (under review)

Association of p,p-DDE with incident type 2 diabetes in India

	Qı	Quartile of p,p-DDE, odds ratio (95% CI)							
	1	1 2 3 4							
Unadjusted	1.00	1.13 (0.65, 1.99)	1.08 (0.59, 1.96)	2.30 (1.19, 4.43)					
Adjusted*	1.00	0.78 (0.20, 3.07)	1.06 (0.34, 3.34)	0.87 (0.30, 2.55)					

* Specifically, adjusted for age, occupational status, monthly household income, ever use tobacco products, waist circumference, and fasting blood glucose.

Pesticides and Child Growth

Pesticide biomarkers among pregnant women in rural Bangladesh (n=289)

Pesticide	>LOD,	Geometric Mean (95% CI),	U.S. Population, Non-pregnant Females, Geometric Mean (95% CI),
	56(16)	μg/g creatinine	$\mu g/g$ creatinine 0.33/ (0.302 - 0.360)
	3.0(10)		0.004 (0.002 - 0.003)
TCPY	97.9 (283)	3.17 (2.82–3.56)	0.855 (0.765 – 0.954)
4-nitrophenol	100 (288)	18.66 (17.03–20.46)	0.480 (0.430 – 0.536)
MDA	2.8 (8)	-	Not calculated
IMPY	16.1 (46)	-	Not calculated
4-F-3-PBA	0 (0)	-	Not calculated
3-PBA	19.8 (57)	-	0.505 (0.453 – 0.564)
trans-DCCA	6.2 (18)	-	Not calculated

Abbreviations: 2,4-dichlorophenoxyacetic acid (2,4-D); 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA); 2isopropyl-4-methyl-6-hydroxypyrimidine (IMPY); limit of detection (LOD); malathion dicarboxylic acid (MDA); 3-phenoxybenzoic acid (3-PBA); 3,5,6-trichloro-2-pyridinol (TCPY); trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (trans-DCCA).

PEAC Grow Results

Relative Ri	sk (95% CI)	Preterm Birth	Low Birth Weight
	Quartile 1 (n=73)	Ref	Ref
ТСРҮ	Ouartile 2 (n=71)	1.07	1.98
(metabolite of		(0.60, 1.92)	(0.86, 4.58)
chlorpyrifos and	O_{μ} ortilo 2 (p=72)	0.97	0.76
chlorpyrifos methyl)	Quartile $3(n-72)$	(0.52, 1.82)	(0.25, 2.27)
	O_{μ}	1.67	2.17
	Qualtile 4 $(\Pi - 2T)$	(0.92, 3.04)	(0.90, 5.24)
	Quartile 1 (n=72)	Ref	Ref
4-nitrophenol	O_{μ}	1.21	0.79
(metabolite of	Quartile $Z(n=7Z)$	(0.48, 3.06)	(0.25, 2.49)
parathion and	Ouartila 2 (n=72)	2.98	2.30
methyl parathion)	Qualtile $5(1-72)$	(1.37, 6.48)	(0.93, 5.71)
	Ouartile $(n-27)$	2.84	1.95
	Qualtile 4 (11-27)	(1.29, 6.24)	(0.76, 5.00)

Adjusted for household income (≤4,000 tk or >4,000 tk), gravidity (0, 1, or 2), and hemoglobin level (mg/dl).

Link to Climate Change

- Changes in amount and intensity of rainfall may increase leaching of pesticides into environment
- Increase in temperature may counteract leaching by increased pesticide degradation rate
- Increase in temperature and moisture → increase in weeds → increase in application of herbicides
- Greater need for insecticides and fungicides expected in absence of wide adoption of alternative management systems

Outline: The Evolving Food System in India

1947 Independence **1960s** Green Revolution Period **Present & Future** Climate Adaptation Period

1950s

Drought, famine, reliance on food aid

1990s – Present Nutrition Transition Period

Adverse Consequences of the Green Revolution

1. Paul Ehrlich (author of *The Population Bomb*), 2009:

"The reduction of the hungry portion of the world population may well have been bought at a high price of **environmental devastation** to be paid by future generations"

2. Improved yields of cereal grains, but at cost of **diet quality**

Shift in Crop Production Due to Green Revolution in India

		1965-1966	1995-1996
	Pearl millet	46%	27%
	Rice	13%	34%
Rainy	Sorghum	12%	5%
season	Sugarcane	8%	6%
	Maize	6%	1%
	Pulses	3%	3%
	Wheat	43%	64%
	Chickpea	42%	14%
Winter	Barley	7%	2%
	Oilseeds	6%	19%
	Pulses	2%	1%

SCHOOL OF PUBLIC HEALTH

Indian Council of Agricultural Research, 1998

Global Food Supplies Have Become Increasingly Similar

What is the "nutrition transition"?

Pattern 1: Collecting Food		Pattern 2: Famine	Pattern 3: Receding famine	Pattern 4: Degenerative diseases	Pattern 5: Behavioral change	
•	Plants Wild animals Varied diet	 Cereals predominant Diet less varied 	 Fewer starchy staples More fruits, vegetables, animal protein Low variety continues 	 More fat (especially from animal products) More sugar and salt from processed foods Less fiber 	 Less fat and processing ("whole foods" diet) Increased high- fiber carbohydrates, fruits, and vegetables 	

Popkin Population and Development Review 1993;19:138-15

Characteristics of Nutrition Transition in India

- Carbs still account for a large proportion of total energy intake (~70%) but coarse grains (millet, barley, sorghum, and maize) are being replaced with refined grains (wheat and rice)
- Increased processed foods (salted snacks and prepared sweets), edible oils, and animal products (milk, egg, chicken, and fish)
- Groundnut oil is being replaced with palm and soybean oil
- Increased meal frequency (esp. snacking)
- Increased eating away from home

What the heck is this "food"?

Fortified biscuits: Britannia for a healthy business

Amrita Nair Ghaswalla | Mumbai | Updated on September 18, 2014 | Publishe

		% Daily Value*
Total Fat 4g		6%
Saturated Fat 2g		10%
Trans Fat 0g		
Cholesterol Omg		0%
Sodium 150mg		6%
Potassium Omg		0%
Total Carbohydra	nte 24g	8%
Dietary Fiber 0g		0%
Sugars 8g		
Protein 2g		4%
Vitamin A 0%	•	Vitamin C 0%
Calcium 0%	•	Iron 2%
* Percent Daily Values are b	ased on a	2.000 calorie diet. Your

daily values may be higher or lower depending on your calorie

needs

ne launch of Britannia Healthy Start.

ng a sustainable business i inia's interest in tackling n osite of three factors — the itrition in India, the compa ne biscuit category it opera ed its largest power brand

It started with an order from the United Nations World Food Programme to make fortified biscuits, which sparked the idea of producing fortified biscuits for the domestic market. "Britannia's association with the World Food Programme began in the early 2000s, and lasted until 2011. Over 32,000 tonnes of our Glucose product was supplied through this programme," said Harris. Innovation has fuelled growth at the company. Stating that Britannia has been working with many non-government organisations (NGO) to supply specially formulated iron fortified biscuits to school-going children, Harris added: "Our desire is to reduce the prevalence of iron deficiency among children. The efficacy of our iron-fortified product in bringing down anaemia has been validated both by in-house research as well by external agencies."

Why not just eat cashews?

	Cashew (n=	Nut Group 129)	Control	P- value	
Mean Values	Baseline	12 weeks	Baseline	12 weeks	
Weight, kg	67.6	67.9	67.3	67.2	0.07
SBP, mmHg	125.5	121	123.6	122	0.04
DBP, mmHg	82.3	81.2	80.9	81.4	0.09
Total cholesterol, mg/dl	161.5	165	171.7	170	0.10
LDL cholesterol, mg/dl	94.6	95.8	102.2	99.2	0.18
HDL cholesterol, mg/dl	38.4	40.1	40.1	40.2	0.01

Fruit and Vegetable Intake in 28 Low- and Middle-Income Countries (174,650 adults)

Frank et al. Journal of Nutrition 2019 Jun 1 [Epub ahead of print]

Market Basket Survey of Fresh Fruits and Vegetables in Cities in 7 Countries

	# vendors selling F&V in 1-km	Supermarket	Small stationary vendor	Mobile vendor	Other
Location	radius	% (N)	% (N)]% (N)	% (N)
Overall	130	16.2 (21)	58.8 (76)	19.2 (25)	6.2 (8)
Brookline, United States	3	100 (3)			
Mexico City, Mexico	12	33.3 (4)	16.7 (2)	0	50.0 (6)
Bangkok, Thailand	7	57.1 (4)	42.9 (3)	0	0
Visakhapatnam, India	31	12.9 (4)	35.5 (11)	48.4 (15)	3.2 (1)
Kathmandu, Nepal	40	5.0 (2)	75.0 (30)	20.0 (8)	0
Addis Ababa, Ethiopia	17	17.6 (3)	82.4 (14)	0	0
Dar es Salaam, Tanzania	20	5.0 (1)	80.0 (16)	10.0 (2)	5.0 (1)

Variety of Fresh Fruits and Vegetables Available in Cities in 7 Countries

Food Waste: Fruits and Vegetables

Over 50% of fruits and vegetables produced are not eaten!

Figure Source: FAO 2011

Low-Hanging Fruit

Why invest in increasing crop production only to have food rot?

Environmental Impacts of Dietary Shifts in India

Aleksandrowicz et al. Environment International 2019;126:207-215

Environmental Impacts of Dietary Shifts in India

HARVARD

SCHOOL OF PUBLIC HEALTH

Aleksandrowicz et al. Environment International 2019;126:207-215

Outline: The Evolving Food System in India

1947 Independence **1960s** Green Revolution Period **Present & Future** Climate Adaptation Period

1950s

Drought, famine, reliance on food aid

1990s – Present Nutrition Transition Period

Supply Side

- Closing yield gaps
- Multiple
 cropping
- Improving efficiency of livestock production
- Reducing food waste

Back to Crop Diversification

Andhra Pradesh, India 2019

Father of Green Revolution in India: MS Swaminathan

- "A one-degree Celsius rise in mean temperature will reduce the duration of the wheat crop by one week in the heartland of the green revolution in India" (Swaminathan, 2010)
- "Evergreen Revolution"
 - Emphasizing importance of biodiversity preservation

Many Challenges

- Between 2001-2011 ~2358 people/day left farming in India
 - 2018 survey by Centre for Study of Developing Societies: 76% of farmers would prefer to do something else
- Average age of farmers (Jöhr *IFAMA* 2012):
 - US = 58 years
 - Japan = 67 years
 - >1/3 European farmers are older than 65

Concluding Remarks

- We cannot assume that economic growth will improve nutrition
- Goal: provide nutritious, safe and culturally appropriate food to a growing population that is also getting wealthier
 - AND minimize the environmental impact
- Need platforms for accountability

Concluding Remarks

- Call for a Framework Convention on Healthy Diets
 - Legally-binding global treaty similar to FCTC for tobacco
- All of the easy, important wins are gone now the easy stuff is not very important, and the important stuff is tough

THINK BEYOND

LIVE WITHIN

SCHOOL OF PUBLIC HEALTH

UN Environmental Assembly