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Most GWAS samples are still European

GWAS samples by ethnicity
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(Sirugo, Williams, Tishkoff 2019 Cell)

GWAS is becoming more diverse

Number of non-European GWAS samples

e 2009: 0.1 million )
> 70X

e 2016: 7.0 million

(Popejoy & Fullerton 2016 Nature)



Trans-ethnic genetic risk prediction has limited accuracy

Relative to Europeans, trans-ethnic genetic risk
prediction is less accurate for non-Europeans Factors impacting prediction accuracy
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(Marquez-Luna et al. 2017 Genet Epidemiol)

Prediction accuracy
(relative to Europeans)
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- P & e Different causal effect sizes?

(Martin et al. 2019 Nat Genet)



Trans-ethnic genetic correlations are less than 1

e Schizophrenia: 0.6 (AFR American — EUR)
(de Candia et al. 2013 AJHG)
* Prostate cancer: 0.9 (EAS — EUR)
(Mancuso et al. 2016 Nat Genet) 0.6 (AFR American — EUR)
 Rheumatoid arthritis: 0.5 (EAS — EUR)

(Brown et al. 2016 AJHG;
Galinsky et al. 2019 Genet Epidemiol)

e Average across 22 traits: 0.8 (EAS — EUR)
(Martin et al. 2019 Nat Genet)

Why is trans-ethnic genetic correlation imperfect?



Stratifying trans-ethnic genetic correlation
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(Finucane et al. 2015 Nat Genet) ' (Shi et al. 2019 bioRxiv)




Outline

 Method to stratify trans-ethnic genetic correlation (S-LDXR)
* Analysis of 30 complex diseases and traits

* Interpretation: potential role of positive selection
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S-LDXR stratifies squared trans-ethnic genetic correlation
from GWAS summary statistics

GWAS summary statistics

(in 2 populations)
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S-LDXR with baseline-LD-X model
(62 genomic annotations)

S-LDXR models per-allele
effect sizes, accounting
for MAF differences,
different from S-LDSC

enrichment of
trans-ethnicr2 in  1%((C) =
annotation C

(Finucane et al. 2015 Nat Genet; Gazal et al. 2017 Nat Genet; Gazal et al. 2019 Nat Genet)

r5(C)

2
Ig

Genomic annotations

(binary and continuous)

'4

Conserved
B Stat

! F Coding
[ ]
[ ]

SNP

use shrinkage to
reduce noise




Product of Z-scores is higher for SNPs tagging annotations
enriched for trans-ethnic genetic covariance

() SNP enriched for trans-ethnic genetic covariance
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(Finucane et al. 2015 Nat Genet; Gazal et al. 2017 Nat Genet; Gazal et al. 2019 Nat Genet)



S-LDXR is unbiased in null simulations

simulated A2(C) = 1 for all annotations

A%(C): enrichment of squared trans-ethnic genetic correlation in annotation C

Quintiles of continuous-

valued annotations
(Gazal et al. 2017 Nat Genet)
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S-LDXR is conservative in causal simulations

simulated A2(C) informed by real traits

A%(C): enrichment of squared trans-ethnic genetic correlation in annotation C

Quintiles of continuous-

valued annotations
(Gazal et al. 2017 Nat Genet)

estimates are shrunk

towards the null: 12(C)=1
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Analysis of 30 complex diseases and traits

 We obtained GWAS Summary statistics from

! af
E(aI\ISi»253';3‘(')1 Biobank Japan (Kanai et al. 2018 Nat Genet) BlOB’NM\APAN
(IIEVUZO;;:I?) UK Biobank (Bycroft et al. 2018 Nature) biobamkk

‘ The method can be generalized to analyze other populations. ‘
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Trans-ethnic genetic correlation is depleted in top
quintile of background selection statistic

e 8 continuous-valued annotations (Gazal et al. 2017 Nat Genet)

A%(C): enrichment of squared trans-ethnic genetic correlation in annotation C
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(Lee et al. 2012 Bioinformatics; Brown et al. 2016 AJHG; Galinsky et al. 2018 Genet Epidemiol) H



Trans-ethnic genetic correlation is depleted in top
quintile of background selection statistic

in top quintile of
background selection statistic
= 0.8 x genome-wide 15
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(Gazal et al. 2017 Nat Genet)

ethnic genetic correlation in annotation C

A%(C): enrichment of squared trans-

Other continuous-valued
annotations mirror background
selection statistics
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Trans-ethnic genetic correlation is depleted
in functionally important regions

‘ A%(C) < 1 for most functional annotations ‘

A%(C): enrichment of squared trans-ethnic genetic correlation in annotation C
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* Positively correlate with background selection statistic, enriched for heritability
(Finucane et al. 2015 Nat Genet; Gazal et al. 2017 Nat Genet)
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Trans-ethnic genetic correlation is most depleted near skin
and immune genes and least depleted near brain genes

* Top 10% genes (+ 100 kb) specifically expressed in 53 tissues (Finucane et al. 2018 Nat Genet)

A%2(C): enrichment of squared trans-ethnic genetic correlation in annotation C

1 Blood/Immune ™ CNS 1 Other B Skin

Immune < 53 tissues > ‘ Brain (CNS) ‘

positive selection negative selection
(Sabeti et al. 2006 Science) (O’Connor et al. 2019 AJHG)
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Interpretation: potential role of positive selection

* Trans-ethnic genetic correlation is depleted in functionally
important regions.

* This is likely due to stronger G x E. (Robinson et al. 2017 Nat

Genet ) Dominance and G x G are less likely. (Hill et al. 2008
Plos Genet; Zhu et al. 2015 AJHG)

e Results for immune and skin genes suggest G x E may be
linked to positive selection.
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