


The Promise of 

 

Petabytes of raw information 
could provide clues for 

everything from preventing TB to 
shrinking health care costs—if we 

can figure out how to use them.
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HSPH microbiologist Sarah 

Fortune went to Camden, 

Maine in late 2010 to attend 

a small but widely revered 

conference on innovation 

called PopTech. Fortune had 

for more than a decade been 

trying to crack one of the tuberculosis bacterium’s 

most infuriating characteristics: its rising resistance 

to antibiotic drugs. 

Standing on the Camden Opera House stage, 

backlit by mammoth close-ups of fluorescent cells, 

Fortune shared with her fellow PopTech attendees TB’s 

grim annual statistics: 2 billion people—nearly one-

third of the world’s population—are latent carriers. 

Every year, 15 million become sick and 1.4 million die.

Unlike most bacteria, TB cells do not replicate 

as carbon copies but in random patterns, she told 

the audience. TB cells behave more like snowflakes 

than Xeroxes. Fortune believes it is this variety that 

gives TB its extraordinary ability to defy conventional 

antibiotics. 

Using silicon chips and a special camera, Fortune, 

the Melvin J. and Geraldine L. Glimcher Assistant 

Professor of Immunology and Infectious Diseases, and 

her fellow researchers had developed a way to capture 

10,000 still images of this telltale growth every few 

days—exponentially more data than they had only a 

few years ago. continued
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The images are combined like old-fashioned flip books 

into what Fortune calls “movies.” But only the human eye 

can assess the moving pictures, one by one—a method so 

laborious that it inhibits scientific progress. 

The question troubling Fortune, and what had brought 

her to the conference, was the following: How could her 

lab swiftly analyze this unprecedented treasure trove? 

The new data could be a gold mine—one that could yield 

fundamental insights about potential diagnostic tools, 

treatments, even a vaccine—but not without ways to speed 

up analysis. Fortune needed help. 

THE DILEMMA OF BIG DATA 

What was happening in Sarah Fortune’s lab is playing 

out in laboratories, businesses, and government agencies 

Winston Hide, associate professor of bioinformatics at 

HSPH. “You can imagine what’s going to happen in the 

next five.” And this data isn’t simply linear; genetics and 

everywhere. Our ability to generate data has moved light-

years ahead of where it was only a few years ago, and the 

amount of digital information now available to us is essen-

tially unimaginable. 

“In the last five years, more scientific data has been 

generated than in the entire history of mankind,” says 

proteomics, to name just two fields of study, generate high-

dimensional data, which is fundamentally different in scale.

“Imagine a city made out of stacks of paper, each stack 

printed with sets of data,” says Hide. He flings his arms 

in the air, drawing megaspace. “Imagine a whole planet 

that size. Imagine a million planets! Imagine a galaxy full 

HSPH’s Sarah Fortune 
crowdsourced an image 

processing project. In two days, 
volunteers with no scientific 

expertise measured cell growth in 
a 5,300-image “movie” of dividing 
TB cells. Without the volunteers’ 
collective eyes, the task would 

have taken three months. 

Sarah Fortune, Melvin J. 

and Geraldine L. Glimcher 

Assistant Professor of 

Immunology and Infectious 

Diseases

The crowdsourcing process 

Fortune used generated new, 

fundamental findings about 

TB cells that may yield clues to 

drug treatments.

O
pposite and right, ©

Tony R
inaldo
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of those, and we haven’t even got there yet! That’s high-

dimensional data.”  

REVOLUTIONARY APPLICATIONS

In big data lies the potential for revolutionizing, well, 

everything. Police employing seismology-like data models 

can predict where crimes will occur and prevent them 

from happening. Astronomers using the Kepler telescope 

snag information on 200,000 stars every 30 seconds, 

which has led to the discovery of the first Earth-like 

planets outside our solar system. Businesses sifting social 

networking and supply-chain data dynamically tailor their 

products to fulfill desires we don’t even know we have. 

The same phenomena are at play in public health. For 

some time, DNA sequencing has held big data’s starring 

role—after all, a single human genome consists of some 3 

billion base pairs of DNA. Researchers at HSPH and across 

the campus at Harvard are sequencing and analyzing 

human genomes to ferret out clues to infections, cancer, 

and noncommunicable diseases. 

But the potential public health uses of big data extend 

well beyond genomics. Environmental scientists are 

a zettabyte equals 
1021 bytes or 

one trillion gigabytes

continued

capturing huge quantities of air quality data from polluted 

areas and attempting to match it with equally bulky 

health care datasets for insights into respiratory disease. 

Epidemiologists are gathering information on social and 

sexual networks to better pinpoint the spread of disease 

and even create early warning systems. Comparative-

effectiveness researchers are combing government and 

clinical databases for proof of the best, most cost-effective 

treatments for hundreds of conditions—information 

that could transform health care policy. And disease 

researchers now have access to human genetic data and 

genomic databases of millions of bacteria—data they can 

combine to study treatment outcomes. 

“In the last five years, more 
scientific data has been 

generated than in the entire 
history of mankind,” says Winston 

Hide, associate professor of 
bioinformatics. 

In just two weeks, Winston 

Hide, associate professor 

of biostatistics, joined a 

cancer database with a stem 

cell dataset—and got a big 

payoff. “We discovered a 

single gene that we think 

is responsible for the 

initiation of a whole class of 

leukemias.”
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According to McKinsey & 

Company, with the right tools, 

big data could be worth $9 billion 

to U.S. public health surveil-

lance alone and $300 billion to 

American health care in general, 

the former by improving detec-

tion of and response to infectious 

disease outbreaks, and the latter 

largely through reductions in expenditures. 

A CRITICAL BOTTLENECK

It’s hardly a given, though, that we’ll get to this nirvana any time soon. Our 

ability to generate data far outstrips our ability to analyze it. “If we really start 

trying to exploit all these databases, we will need more trained staff and more 

resources to do it,” says Victor De Gruttola, who chairs HSPH’s biostatistics 

department.

Most researchers agree that lives are lost every day that data sit in storage, 

untouched. The problems are vast and urgent. Consider just one example—

recent news that a dozen Indian patients had contracted totally drug-resistant 

tuberculosis. “Even just a few people in Mumbai is a terrible danger sign,” says 

Fortune, because it could portend the rapid spread of a highly transmissible and 

untreatable infection. 

To counter these trends, some scientists are venturing into crowdsourcing. 

Others are developing sophisticated algorithms to parse data in a keystroke. 

And still more are inventing ways to share massive, disparate datasets to yield 

surprising insights. 

WISDOM OF THE CROWD

At PopTech, frustrated with the slow pace of her research, Sarah Fortune took a 

risk that most scientists wouldn’t. She asked the audience for advice on how to 

analyze her images. “We would like to engage lots of eyes in that process,” she said. 

When Fortune walked off the stage, Josh Nesbit, a young entrepreneur in 

the audience, resolved to meet her. Nesbit had launched a company, Medic 

Mobile, that had built an emergency response system after the Haiti earth-

quake, calling on 2,500 Creole speakers to translate text messages. When the 

system was overwhelmed by victims texting for help, Nesbit turned to a Silicon 

Valley crowdsourcing company called CrowdFlower, which has signed up more 

than 2 million people to perform micro-tasks, often for pennies a task. The 

volunteers used CrowdFlower’s website to translate, map, and organize nearly 

100,000 messages, imploring rescuers for food, water, and help escaping from 

fallen buildings. a

Younger scientists—
raised in an era of 

social networking—
may embrace an 

idea that previous 
generations of 

researchers have not: 
sharing data freely.  

1 PETABYTE
=1 quadrillion bytes

enough to store approximately:

2.8 million copies of the full text of 
the Encyclopedia Britannica; 

or
1,903 years of music recorded at 
standard quality for an Apple iPod;

or
as much data as a stack of DVDs, 
each containing a two-hour 
standard definition video, roughly 
1.8 times as high as the Empire 
State Building 

1 TERABYTE 
= 1 trillion bytes 

enough to store approximately:

2,767 copies of the full text of the 
Encyclopedia Britannica; 

or
16,667 hours of music recorded at 
standard quality for an Apple iPod; 

or
1,333 hours of standard definition 
video

1 GIGABYTE 
= 1 billion bytes

enough to store approximately:

212 copies of War and Peace 
or almost three copies of the 
full text (all 32 volumes) of the 
Encyclopedia Britannica; 

or
250 songs recorded at Apple iTunes 
standard quality; 

or
80 minutes of standard definition 
video

1 MEGABYTE 
= 1 million bytes

enough to store a 500-page book in 
plain text

1 KILOBYTE 
= 1 thousand bytes

enough to store a short paragraph’s 
worth of plain text

1 BYTE
enough to store one letter of the 
alphabet

 
Sources: Apple Computer, Amazon.com, New 
York Times, Perma-bound.com, the Official 
Website of the Empire State Building
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The evening after Fortune’s talk, at a glitzy reception, Nesbit shared his 

story. Fortune instantly saw the possibilities: She could crowdsource the image 

processing of her growing TB cultures. In May 2011, CrowdFlower put one of 

Fortune’s laboratory “movies” online. Some 1,000 interested people, with no 

scientific expertise, signed on to help. They measured and labeled the distance 

between cells as one cell split into two and two split into four, shooting off 

in patterns too random for computer programs to track. In two days, they’d 

measured cell growth in a 5,300-image movie. Without their collective eyes, it 

would have taken three months.

More important, their analysis generated new, fundamental findings about 

TB cells, which are shaped like cough drops. “We discovered that mycobacterial 

cell growth is not even,” Fortune says. “One end of the cell is different from the 

other end, and in fact, it only grows from one end.” She calls the nongrowing ends 

“privileged”—that is, not terribly vulnerable to antibiotics. That crowd-enabled 

insight, she says, may yield clues to pathogenesis and drug treatment. 

FINDING ALL THE NEEDLES IN A HAYSTACK

Around the time that Fortune was wondering how to quickly analyze thousands 

of images, David Reshef was pondering an even larger problem: He wanted to 

parse millions of relationships buried in big data. An MD/PhD candidate at 

the Harvard-MIT Division of Health Sciences and Technology, Reshef and his 

brother, Yakir, spent their childhoods in Kenya with their physician parents, 

planting in David a lifelong fascination with global health. 

98 PETABYTES
Websites indexed by Google

THE SCALE 
On a computer, data is 
translated into 0s and 1s 
called bits. Eight bits make up 
one byte—enough information 
to represent one letter, 
number, or symbol.

13 PETABYTES
Amount that could be 
downloaded from the 
Internet in two minutes 
if every American got on 
a computer at the same 
time

2.5 PETABYTES
Memory capacity of the 
human brain

4.75 EXABYTES
Total genome sequences of all 
people on Earth

422 EXABYTES
Total digital data created in 
2008

1 ZETTABYTE
World’s current digital 
storage capacity

1.8 ZETTABYTES
Total digital data created in 2011

continued on page 42

Pardis Sabeti, assistant professor in the Department of Immunology and 

Infectious Diseases at HSPH and computational biologist at the Broad Institute.
©

Tony R
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In 2007, Reshef met Pardis Sabeti, an assistant 

professor in HSPH’s Department of Immunology and 

Infectious Diseases and a computational biologist at the 

Broad Institute. Reshef talked excitedly about his desire 

to apply computational methods to public health prob-

lems. Sabeti, a geneticist who has made discoveries about 

malaria and the lethal African Lassa virus by mining big 

data, found Reshef remarkably like-minded. “You should 

come work with me,” she told him.

They began developing tools for visualizing rela-

tionships in huge databases (including a World Health 

Organization database containing more than 60,000 

relationships among data from 200 countries). But visu-

alization tools work best when scientists have an idea of 

what to visualize in a pile of data. Reshef wasn’t seeking 

the proverbial needle in a haystack; he wanted to find all 

the needles. 

To discover hidden relationships in the data, he 

needed a treasure-seeking tool, the computational 

equivalent of a metal detector. Reshef and his brother, 

Yakir, who was just graduating from Harvard with a math 

degree, started to spend every spare minute together, 

scribbling equations on the glass walls of the Broad and 

consulting with Sabeti and Michael Mitzenmacher, 

professor of computer science at Harvard. One hot night, 

running the latest version of their algorithm on a PC, 

they realized their program finally worked—and fast. 

(The algorithm now produces results in minutes or hours, 

depending on the size of the dataset. Without it, the data 

could take months to analyze.) “We were so excited, we 

called Pardis,” Reshef says. It was 3 a.m. 

Over the next year, they tested the tool, called MINE, 

on several giant datasets, including the WHO data and 

a 6,700-variable database of the human gut microbiome 

that generated 22 million possible paired relationships.  

Last December, the Reshef brothers were the lead authors 

of a paper in Science that showed the tool’s range. The 

algorithm has helped pinpoint interesting associations 

between gut bacteria, demonstrating that both diet and 

gender influence gut bacteria. The tool also identified 

nonintuitive associations between female obesity and 

income. In just a few weeks, more than 50,000 visitors 

tapped the MINE website, including, says Sabeti, visi-

tors from “every imaginable field: genomics to finance to 

pharma to education and beyond.” 

BIG DATA continued from page 19

Scientists are excited by the 
potential of hypothesis-generating, 

rather than hypothesis-driven, 
science that big data mining offers.

ChieYu Lin, courtesy of Pardis Sabeti

David Reshef, right, and 

his brother Yakir teamed 

with HSPH’s Pardis 

Sabeti to create tools for 

visualizing relationships in 

huge databases. 
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HARMONIZING INCOMPATIBLE DATA

To analyze data, whether through crowdsourcing or 

algorithms, you have to start with a decent database—or 

several. Sharing massive datasets offers huge potential 

for improving public health. Biostatistics chair Victor De 

Gruttola is working on an Institute of Medicine project 

identifying indicators and methods for monitoring HIV 

care in the U.S. “There are many tremendous sources 

of information, but none are sufficient in themselves 

to gauge the prevalence of HIV care, as well as access 

to mental health and substance abuse treatment and 

support services,” he says. For example, the U.S. Centers 

for Disease Control and Prevention captures diagnostic, 

demographic, and medical information, but no data on the 

use of antiretroviral drugs. Medicaid and Medicare track 

service use through claims data, but not clinical measure-

ments such as immune function at diagnosis. De Gruttola 

posits that if researchers could join these datasets, they’d 

learn which vulnerable groups of patients aren’t getting the 

treatments they need.  

Easier said than done. That’s in part because scien-

tists employ a mélange of incompatible structures to 

create their data. Winston Hide, the biostatistics associate 

professor, has taken a step toward fixing that problem. 

He and researchers at 30 organizations, including Oxford 

University, have invented a common language and tools for 

sharing data across disciplines, called Investigation-Study-

Assay (ISA). (For information, visit isacommons.org.) The 

technology is intended to be simple for researchers to 

use—a sort of scientific lingua franca. 

In just two weeks, Hide joined a cancer database with 

a stem cell dataset—and got a big payoff. “We discovered 

a single gene that we think is responsible for the initiation 

of a whole class of leukemias,” he says. “Not until we could 

combine the information coherently could we discover 

things about the underlying molecular biology.”

 A NEW WAY OF DOING SCIENCE

These innovative methods for mining big data are trans-

forming the way science is done. Sabeti and Reshef are 

excited by the potential of hypothesis-generating (rather 

than hypothesis-driven) science, providing researchers 

with important new questions to answer. Analyzing 

genetic data for natural selection, for example, Sabeti had 

stumbled on clues to the virulence of Lassa fever, a deadly 

infection endemic in West Africa. She and Reshef believe 

that the hypothesis-generating power of big data will ulti-

mately help researchers gain insights into the most pressing 

public health problems, such as the emergence and spread 

of resistant strains of malaria. 

Meanwhile, Winston Hide believes younger scientists—

raised in an era of social networking—will embrace an idea 

that previous generations of researchers have not: sharing 

data freely. It’s an option that makes intuitive sense, he 

says, to generations raised with social networking. 

Crowdsourcing is also breaking down the walls 

between the academy and the rest of the world. For many 

scientists, though, it’s a tough transition: Academics have 

typically held their data close, because tenure, promotions, 

Most researchers agree that lives 
are lost every day that data sit in 

storage, untouched. 
and reputation rest on being the first to publish. Sharing 

research takes a leap of faith in a cutthroat academic world 

that has yet to embrace the notion of a public commons 

of data. The change also comes with ethical questions, 

including privacy dilemmas. And employing crowds to 

analyze one’s data begs the question of quality: How can 

you trust the results? 

Surprisingly, Fortune says she trusts the results more 

than those that would have come from her lab. “I think 

the power of crowdsourcing is that they’re going to give us 

better data than we can generate ourselves.” That’s because 

CrowdFlower uses redundancy to ensure quality (five 

people may analyze the same image).  

Indeed, she’s become a huge fan of speeding scientific 

progress through crowdsourcing. “I love the idea of citizen 

science,” she says. “We’re asking people to do some not very 

sophisticated tasks. You could stand in line at the bank and 

measure bacteria for me.”

To a single citizen scientist labeling a batch of images, 

the work may feel tedious. In fact, it’s transformative—a 

small contribution to what may be public health’s data-

driven revolution. “It’s just the beginning,” says Winston 

Hide. “You should watch this space.” 

Elaine Grant is assistant director of development 
communications and marketing at HSPH. 
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