

Road Map

- Background
- Gap in Knowledge & Hypothesis
- Study Summary
- Summary Statistics
- Analyses & Results
- Conclusion
- Discussion

Background: General

- Ovarian Cancer
 - Abnormal cell growth in the ovaries
 - Stromal
 - Germ Cell
 - Epithelial
- Treatment
 - Surgery
 - Chemotherapy
 - Radiation Therapy
- Statistics
- Key Mutations

http://bionews-tx.com/news/2014/02/03/ovarian-cancer-immunotherapy-at-uthscsa-gets-900000-grant-to-explore-new-treatment-options/

http://www.sgsonline.org/assets/images/Scottsdale_2014/lab %202.ipg

http://www.ovariancancer.org/about/statistics/

Gap in Knowledge & Hypothesis

 Is there an interplay between the BRCA1/2 genes and known reproductive and gynecological risk factors for ovarian cancer?

Gene-environment interactions work on an multiplicative scale in

relation to ovari

http://www.niehs.nih.gov/health/assets/images/hands holding two puzzle pieces.jpg

Study Summary

- Population: Israeli Women
 - March 1, 1994 June 30, 1999
- Blood samples
 - Test BRCA1/2 mutation
- Two controls per case
 - Selected from central population registry
 - Matched on age within 2 years
 - Area of birth and place
 - Length of residence

http://supportisrael.us/news/wp-content/uploads/2010/07/israel-map.gif

Study Summary

Additional Data

 Age, Ethnicity, Gynecological Surgery, Personal History of Breast Cancer, Family History of Breast or Ovarian Cancer, Parity, and Oral Contraceptive Use

- Environmental factors of specific interest
 - Parity (Dichotomized)
 - 1 child or less (0) VS. More than 1 child (1)
 - Oral Contraceptive Use (Dichotomized)
 - Use for 6 or less years (0) VS. Use for more than 6 years (1)
- Ethnicity: Ashkenazi
 - Large part of data comes from Ashkenazi population
 - Higher rate of BRCA1/2 mutation

Summary Statistics

Table 1: Characteristics of Women by BRCA1/2 Mutation Status

	Factors	Number of Women with no Mutation (%) n = 1327	Number of Women with Mutation (%) n = 252
1	Cancer	592(45)	240(95)
2	Oral Contraceptive (>6yrs)	56(4)	16(6)
3	No Children	110(8)	21(8)
4	Age (>50)	994(75)	186(74)
5	Ashkenazi	883(67)	219(87)
6	Personal History of Cancer	32(2)	36(14)
7	Undergone Gynecological Surgery	164(12)	19(8)
8	No Family History of Cancer	1, 199(90)	192(76)

Table 2: Characteristics of Women by Ovarian Cancer Status

	Factors	Number of Women with No Cancer (%) n = 747	Number of Women with Cancer (%) n = 832
1	BRCA1/2 Mutation	12(2)	240(29)
2	Oral Contraceptive (>6yrs)	41(5)	31(4)
3	No Children	43(6)	88(11)
4	Age (>50)	542(73)	638(77)
5	Ashkenazi	509(68)	593(71)
6	Personal History of Cancer	14(2)	54(6)
7	Undergone Gynecological Surgery	108(14)	75(9)
8	No Family History of Cancer	683(91)	708(85)

Methods for Analyses: Case-Control Design

- Type of observational study
- Compare patients with disease (case) vs no disease (control)
- Retrospective
 - Compare frequency of exposure to a risk factor present in each group
 - Help determine relationship between risk factor and disease

Analysis: Standard Logistic Regression

- Standard Logistic Regression
 - Looks at the effects of covariates on outcome
 - Binary or dichotomous outcome
 - Odds Ratio
 - "How much more likely (or unlikely) it is to be present with y=1 than y=0"

Results: Standard Logistic Regression

						2 101 07
_	Factors	Estimate	Std. Error	p-Value	Odds Ratio	95%CI
1	(Intercept)	-0.608	0.229	7.973e - 03		
2	BRCA1/2	3.153	0.305	4.934e-25	23.417	(12.876-42.587)
3	Oral Contraceptive Use	-0.590	0.289	4.162e - 02	0.555	(0.314-0.978)
4	Parity	-0.035	0.030	2.477e-01	0.966	(0.910 - 1.025)
5	Age Group	0.114	0.046	1.335e-02	1.121	(1.024-1.228)
6	Ethnicity	0.085	0.097	3.813e-01	1.089	(0.900-1.317)
7	Cancer History	0.564	0.348	1.052e-01	1.758	(0.888-3.481)
8	History of Gynecological Surgery	-0.244	0.087	5.082e - 03	0.784	(0.661-0.929)
9	Family History of Cancer	0.323	0.135	1.100e-02	1.381	(1.059 - 1.801)

Results: Standard Logistic Regression

Table 7: Standard Logistic Regression on the Interaction Between BRCA1/2 Gene Mutation Given Environmental Factors and that Subjects have Cancer

	Factors	Estimate	Std. Error	p-Value	Odds Ratio	95%CI
1	(Intercept)	-0.616	0.229	7.230e-03		
2	Oral Contraceptive Use	-0.623	0.305	4.127e-02	0.537	(0.295-0.976)
3	BRCA1/2	3.622	0.670	6.290e-08	37.431	(10.076-139.044)
4	Parity	-0.032	0.030	2.969e-01	0.969	(0.913-1.028)
5	Age Group	0.114	0.046	1.334e-02	1.121	(1.024-1.228)
6	Ethnicity	0.085	0.097	3.796e-01	1.089	(0.900-1.317)
7	History of Gynecological Surgery	-0.243	0.087	5.140e - 03	1.739	(0.661-0.930)
8	Cancer History	0.555	0.349	1.131e-01	0.784	(0.877-3.449)
9	Family History of Cancer	0.324	0.135	1.671e-02	1.382	(1.060-1.802)
10	Oral Contraceptive Use:BRCA1/2	0.472	1.130	6.759e - 01	1.604	(0.175-14.681)
11	BRCA1/2:Parity	-0.198	0.219	3.655e - 01	0.820	(0.534-1.260)

Methods for Analyses: Case-Only Design

- Alternative to case-control design
 - Controls considered to be a sample of the general population
- Used to estimate interaction effect
- Works under two assumptions
 - Rare disease
 - Independence between gene and environmental factor

Methods for Analyses: Case-Only Design

- Back to the two assumptions...
 - Rare disease
 - Case-only estimator is well known to be efficient even when data on unaffected individuals is available
 - G-E independence
 - Condition on additional covariates
 - Also condition on covariates that confound association between disease and the gene and/or environmental factor

Analysis: Logistic Regression-Test for Independence

- Logistic Regression
 - Used to test possible independence
 - Controls only

Results: Logistic Regression-Test for Independence

Are the environmental factors independent of the

BRC

Table 8: Logistic Regression Results Table for Conditional Probabilities on BRCA1/2 and Each Environmental Factor (Controls Only)

	Environmental Factors	z-score	Alpha	p-Value
1	Oral Contraceptive Use	0.549	0.050	0.583
2_	Parity	-0.048	0.050	0.962

Analysis: Case-Only Estimator

- Standard Logistic Regression
- Will only take into account ONLY the cases in our study
- Why can we do this?

Efficiency of the Case-Only Estimator

Goal:

To show that the case-only estimator is a more efficient method to determine interaction effect than a case-control estimator

Variables:

OR = Odds Ratio

Y = Disease outcome [Controls (Y = 0) or Cases (Y = 1)]

G = BRCA1/2 Gene Mutation

E = Environmental Factors (Parity or Oral Contraceptive Use)

GE = Gene-Environment Interaction

C = Confounders

Case-Control Model:

 $Y = \beta_0 + \beta_1 G + \beta_2 E + \beta_3 GE + \beta_p C_p$

Case-Only Model:

 $G = \alpha_0 + \alpha_1 E_p + \alpha_2 E_O + \alpha_p C_p$

Consider the use of a logistic regression for analysis in a case-control design, we say that:

$$In(OR_{Y|C,E,G,GE}) = In(OR_{Y=1|C,E,G,GE}) - In(OR_{Y=0|C,E,G,GE})$$

Under the rare disease assumption,

$$In(OR_{Y=0 \mid C,E,G,GE}) = In(OR_{population})$$

Taking into account the independence assumption,

$$In(OR_{population}) = 0$$

Thus,

$$In(OR_{Y|C,E,G,GE}) = In(OR_{Y=1|C,E,G,GE}) - In(OR_{Y=0|C,E,G,GE})$$

= $In(OR_{Y=1|C,E,G,GE})$

Efficiency of the Case-Only Estimator

To put it in words,

- The case-only estimator is less variable than the case-control estimator
 - · Why?
 - Two key assumptions allow us to NOT take into account extra variability from the log odds ratio of the controls [ln(OR_{Y=0 | C,E,G,GE})]

(Note: A detailed proof can be discussed during the lunch break!)

Results: Case-Only Logistic Regression

Table 9: Case-Only Logistic Regression Assessment on the Interaction Between BRCA1/2 Gene Mutation Given Environmental Factors (Parity Dichotomized) and that Subjects have Cancer

	Factors	Estimate	Std. Error	p-Value	Odds Ratio	95% CI
1	(Intercept)	0.581	0.374	1.206e-01		
2	Oral Contraceptive Use	1.047	0.403	9.434e - 03	2.850	(1.292-6.284)
3	Parity*	0.465	0.200	1.989e-02	1.592	(1.076 - 2.354)
4	Age Group	-0.248	0.073	6.360e-04	0.781	(0.677-0.899)
5	Ethnicity	-1.000	0.176	1.310e-08	0.368	(0.261-0.519)
6	Cancer History	1.673	0.316	1.210e-07	5.327	(2.867-9.897)
7	History of Gynecological Surgery	-0.196	0.152	1.972e-01	0.822	(0.609-1.107)
8	Family History of Cancer	0.645	0.141	5.050e - 06	1.907	(1.445-2.516)

Parity Dichotomized

Objective?

- Test for an interaction
 - BRCA1/2 vs. Oral Contraceptive Use
 - BRCA1/2 vs. Parity
- Examine the effect that these factors have on ovarian cancer

Case-Control Estimator

Standard Logistic Regression (No Interactions) Standard Logistic Regression (Interactions)

Oral
Contrace live
Use Sign lcant
at a 0 level?

Signi) at at $\alpha = \beta$ vel?

Ora
Contrac tive
Use Sig icant
at = . level?

Sig. of ant at of the other states of the othe

Contract α e Use Interior Signiff and $\alpha = 1$

- Back to the drawing board...
- How do we test for an interaction?
 - We need to check off two important assumptions
 - Assumption 1: Disease under investigation is rare
 - Assumption 2: Independence between gene and each environmental factor
- Assumption 1
 - Ovarian cancer is, in fact, known to be a rare disease

How
do we check for
an independence
assumption?

Test for Conditional Probabilities with a Logistic Regression (Controls Only)

Gene and
Environmental
Factors are

- Efficiency of case-only design vs. case-control design
- Use of case-only design
 - Determine that there is indeed an interaction between gene and environment for ovarian cancer
- Oral Contraceptive Use & Parity
 - Not as effective in preventing ovarian cancer with those that have mutation as opposed to those that do not have the mutation

Discussion

- Shortcomings
 - Collection of data
 - Interview bias
 - Recall Bias
 - Generalizability
 - Statistical Power
 - Decreases because of binary/dichotomous variables

Discussion

- Future Studies
 - Run analysis on specific parts(s) of BRCA1/2 gene that are mutated
 - Use continuous data for analysis
 - Increase interests of environmental factors in relation to BRCA1/2 gene
 - Test a different population to increase external validity

Acknowledgements

- We would like to recognize the following people for the support and encouragement throughout the SPQS:
 - Dr. Eric Tchetgen Tchetgen
 - Mr. Caleb Miles
 - Dr. Rebecca Betensky
 - Ms. Tonia Smith
 - Ms. Heather Mattie
 - Ms. Ellie Murray
 - Our fellow SPQS participants

Thank You

Question

http://ivyleagueinsecurities.com/wp-content/uploads/2009/10/felt-question.jpg

Works Cited

- BRCA1 & BRCA2: Cancer Risk & Genetic Testing. (2014, January 22). National Cancer Institute.
 - Retrieved July 17, 2014, from http://www.cancer.gov/cancertopics/factsheet/Risk/BRCA
- McGuire, V., Felberg, A., Mills, M., Ostrow, K. L., DiCioccio, R., John, E. M., et al. Relation of Contraceptive and Reproductive History to Ovarian Cancer Risk in Carriers and Noncarriers of

BRCA1 Gene Mutations. American Journal of Epidemiology, 160, 613-618.

- Modan, B., Hartge, P., Hirsh-Yechiezkiel, G., Chetrit, A., Lubin, F., Beller, U., et al. Parity, Oral Contraceptives, and the Risk of Ovarian Cancer Among Carriers and Noncarriers of a BRCA1 or BRCA2 Mutation. *The New England Journal of Medicine*, *345*, 235-240.
- Statistics Ovarian Cancer. (n.d.). We work to save women's lives.. Retrieved July 17, 2014, from http://www.ovariancancer.org/about/statistics/