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Costs of Generating Data Have Plummeted

Cost per Genome
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Use genome-wide SNP data and gene expression
data together

Treat gene expression as a quantitative trait

Ask, “Which SNPs are correlated with the degree
of gene expression?”

Most people concentrate on cis-acting SNPs

What about trans-acting SNPs?
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eQTL Networks: A simple idea

# eQTLs should group together with core SNPs
regulating particular cellular functions

# Perform a “standard eQTL" analysis:
Y=08,+B,ADD + ¢

where Y is the quantitative trait and ADD is the
allele dosage of a genotype.
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Which SNPs affect function?

Many strong eQTLs are found near the target
gene. But what about multiple SNPs that are
correlated with multiple genes?

Can a network of SNP-
gene associations
iInform the functional
roles of these SNPs?

SNPs

Genes Q
John Platig
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eQTL Networks: A simple idea

# Create a bipartite graph where SNPs and genes

are nodes and significant eQTL associations are
edges.

# Use “leading eigenvector” clustering to find
‘communities” in the graph




A bipartite network has 2 types of node

Links only connect different node types

Node types: SNPs, Genes

Correlation

SNPs Genes
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Background

A quantity x obeys a power law if it is drawn from a
probability distribution:

Scale-free networks emerge through:
(1) expansion through addition of new vertices

(2) new vertices attach preferentially to sites that are
already well-connected

Emergence of Scaling in Random Networks
Albert-Laszl6 Barabasi and Réka Albert

Science 15 October 1999: 286 (5439), 509-512. [DOI:10.1126/science.286.5439.509]

Hubs dominate the topology of scale-free networks

eQTL hotspots are genomic regions that play an
important role in regulating gene expression




Results: COPD

Combined Degree Distribution

® SNP degree
® Gene degree
® Combined
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Can we use this network to
identify groups of SNPs and
genes that play functional roles
in the cell?

Try clustering the nodes into
‘communities’ based on the
network structure

John Platig




eQTL Networks: A simple idea

eQTL as a bipartite network

System/tissue/lung
development
(118/ 547)

RNA processing/splicing
Gene expression

(152/544)
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Communities are groups of highly intra-
connected nodes

« Community structure algorithms group nodes
such that the number of links within a community
IS higher than expected by chance

* Formally, they assignh nodes to communities such
that the modularity, Q, is optimized

Fraction of network
links in community i

Fraction of
links expected

by chance
Newman 2006

John Platig (PNAS)




Communities are groups of highly intra-
connected nodes

Community structure algorithms group nodes such
that the number of links within a community is
higher than expected by chance.

AN

Bipartite networks require a different null model

Implement “BRIM” algorithm
to find communities

Newman 2006 [F=is
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BRIM produces GO enriched

Communities

Term Annotated Significant Expected classicFisher Csize
1 MHC protein complex 9 8 0.11 5.3e-16 15
2 clathrin-coated endocytic vesicle membra... 7 7 0.09 9.3e-15 15
3 MHC class II protein complex 7 7 0.09 9.3e-15 15
4 clathrin-coated endocytic vesicle 7 7 0.09 9.3e-15 15
5 antigen processing and presentation 16 9 0.24 1.4e-14 15
6 integral to lumenal side of endoplasmic ... 8 7 0.10 7.4e-14 15
7 positive regulation of immune response 28 10 0.42 8.4e-14 15
8 immune response-activating cell surface ... 12 8 0.18 9.7e-14 15
9 immune response-regulating cell surface ... 12 8 0.18 9.7e-14 15
10 positive regulation of immune system pro... 29 10 0.43 1.3e-13 15
11 lymphocyte costimulation 8 7 0.12 2.1e-13 15
12 T cell costimulation 8 7 0.12 2.1e-13 15
13 response to interferon-gamma 8 7 0.12 2.1e-13 15
14 interferon-gamma-mediated signaling path... 8 7 0.12 2.1e-13 15
15 cellular response to interferon-gamma 8 7 0.12 2.1e-13 15
16 ER to Golgi transport vesicle membrane 9 7 0.11 3.3e-13 15
17 trans-Golgi network membrane 9 7 0.11 3.3e-13 15
18 regulation of immune response 33 10 0.49 5.8e-13 15
19 positive regulation of T cell activation 9 7 0.13 9.5e-13 15
20 ER to Golgi transport vesicle 10 7 0.13 1.1e-12 15
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BRIM produces GO enriched

Communities

Term Annotated Significant ATP6V1G2

MHC protein complex 9 8 ATRNL1
clathrin-coated endocytic vesicle membra... 7
MHC class II protein complex 7 HLA-DQA2
clathrin-coated endocytic vesicle 7 HL A_DQB1
antigen processing and presentation 16
integral to lumenal side of endoplasmic ... 8 H LA'DQBZ
positive regulation of immune response 28 HLA-DRA
immune response-activating cell surface ... 12
HLA-DRB1
HLA-DRB4
HLA-DRBS5

immune response-regulating cell surface ... 12
positive regulation of immune system pro... 29

MAGEA2B
MICB

lymphocyte costimulation
NCR3

T cell costimulation

response to interferon-gamma
PLEKHG6
PSORS1C1

interferon-gamma-mediated signaling path...
TAP2
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cellular response to interferon-gamma
ER to Golgi transport vesicle membrane
trans-Golgi network membrane
regulation of immune response

positive regulation of T cell activation
ER to Golgi transport vesicle
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BRIM produces GO enriched
Communities

Term Annotated Significant Expected classicFisher Csize
nucleosome 12 8 0.78 8.5e-08 74
nucleosome assembly 13 0.77 9.6e-08 74
chromatin assembly 13 0.77 9.6e-08 74
protein-DNA complex 13 0.84 2.1e-07 74
chromatin assembly or disassembly 15 0.89 4.4e-07 74
protein-DNA complex assembly 15 0.89 4.4e-07 74
DNA packaging 16 0.95 8.4e-07 74
nucleosome organization 16 0.95 8.4e-07 74
DNA conformation change 18 1.07 2.6e-06 74
protein-DNA complex subunit organization 18 1.07 2.6e-06 74
chromatin organization 39 2.32 5.6e-06 74
protein heterodimerization activity 34 2.09 1.5e-05

cellular macromolecular complex assembly 29 1.72 1.9e-05 74
protein dimerization activity 61 3.74 3.2e-05
chromosome organization 47 2.79 4.0e-05
chromatin 27 1.75 0.00017

gland morphogenesis 4 0.24 0.00076
chromosomal part 34 2.20 0.00097

fatty acid binding 5 0.31 0.0020
monocarboxylic acid binding 5 0.31

b CENTERFoRr
GCANCER
COMPUTATIONAL -
P oty John Platig

1
2
3
-
)
6
7
8

OC OC OC OC OC 00 00 00 OO

— = O =
— L [ I =Y

(0.




BRIM produces GO enriched

Communities

Term Annotated Significant Expected classicFisher Csize
1 mRNA metabolic process 31 24 8.51 5.5e-09 321
2 nucleoplasm 83 45 21.96 2.0e-08 321
3 RNA processing 38 26 10.44 9.1e-08 321
4 nucleoplasm part 50 30 13.23 3.1e-07 321
5 mRNA processing 24 18 6.59 1.2e-06 321
6 RNA splicing 17 14 4.67 3.1e-06 321
7 cellular response to stress 69 35 18.95 1.7e-05 321
8 RNA splicing, via transesterification re... 13 11 3.57 2.6e-05 321
9 RNA splicing, via transesterification re... 13 11 3.57 2.6e-05 321
10 RNA binding 53 28 14.13 2.8e-05 321
11 hydrolase activity, acting on acid anhyd... 52 24 13.86 0.00150 321
12 enzyme binding 52 24 13.86 0.00150 321
13 transcription factor binding transcripti... 28 15 7.46 0.00196 321
14 pyrophosphatase activity 50 23 13.33 0.00199 321
15 hydrolase activity, acting on acid anhyd... 50 23 13.33 0.00199 321
16 nucleoside-triphosphatase activity 50 23 13.33 0.00199 321
17 protein complex binding 23 13 6.13 0.00209 321
18 transferase activity 90 36 23.99 0.00266 321
19 protein binding transcription factor act... 29 15 7.73 0.00310 321
20
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BRIM produces GO enriched
Communities

Term Annotated Significant Expected classicFisher Csize
neurological system process 122 63 41.40 1.2e-05 422
multicellular organismal process 414 170 140.49 3.0e-05 422
system process 147 69 49.88 0.00026 422
cell-cell signaling 95 48 32.24 0.00032 422

synaptic transmission 62 34 21.04 0.00038 422
positive regulation of cell development 10 9 3.39 0.00039 422
transmission of nerve impulse 65 35 22.06 0.00050 422
single-multicellular organism process 392 157 133.02 0.00054 422
multicellular organismal signaling 67 35 22.74 0.00105 422
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Calculate Local Connectivity

Modularity of node i

Modularity of
community c




Community Structure Matters

= Are “disease” SNPs skewed towards the
top of my SNP list as ranked by the
overall out degree?
= No!
The highest-degree SNPs are devoid of
disease-related SNPs

Highly deleterious SNPs that affect many
processes are probably removed by
evolutionary sweeps.

John Platig




Community Structure Matters

= Are “disease” SNPs skewed towards the
top of my SNP list as ranked by the
community core score (Qic)?

" Yes!
KS test yields p < 10-1°,
wilcoxon rank-sum yields p < 10-°

John Platig



Genomics Is here to stay

Spitting is unaccer*aule.

Bus Operators are now equipped with
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Before | came here | was confused
about this subject.
After listening to your lecture,
| am still confused but at a higher level.

- Enrico Fermi, (1901-1954)
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