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Overview

= Background

= What is “gene expression”?

= Basic biological background

= Current applications of RT-PCR technology
= Our Study

= Single analysis

= RT-PCR for Single Cell Analysis
= Results and Conclusions

= Future Works

= Optimizing the potential of Real-Time PCR
technology for quantitative analysis
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Background

Applications of RT-PCR | S

gene-quantification.de

Real Time - PCR (RT-PCR)

- DIREEs ame GUENIES Fene e (Quantification of gene expression

expression in a given sample
through PCR

® Polymerase Chain Reaction (PCR)  Viral quantification

o Process for amplifying a given e Drug therapy efficacy
sequence of DNA

e Pathogen detection

e DNA damage measurement

e Genotyping



Background: Real Time - PCR
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Collecting Data w/ RT-PCR
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different PCR cycles / plateau
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Our Study

Quantitative RT-PCR & Single Cell Analysis

Benefits Limitations
® Allows analysis of cellular variability ® Minimal amounts of RNA available
® Detects genetic abnormalities, viral e Efficiency of RT-PCR depends on the
pathogens, and certain kinds of quality of its primers

cancer on a cellular level

e Allows PCR amplification to be
monitored and quantified in real
time



Our Study

Underlying Question -

e Limited amount of research
conducted on RT-PCR and single cell
analysis

e Testing efficiency of RT-PCR’s current

method for single cell analysis
o Accuracy and Precision

e If not, proposing a new efficient -
statistical method for quantification —



Our Study

Data Origin

e Conducted by Dr. Livak from the
Fluidigm Corporation

Data Set

® Fluidigm Corporation e 9216 C Values
o  Works with Single-Cell Gene o 96 Genes
Expression o 96 Samples

Experimel Experimel Experimel Experimel Experimel Experimel EvaGreen EvaGreen EvaGreen EvaGreen EvaGreen EvaGreen EvaGreen

Chamber Sample Sample Sample EvaGreen EvaGreen Ct Ct Ct Ct Tm m m

ID Name Type rConc Name Type Value Quality call Threshold In Range Out Range Peak Ratic
S96-A01 40 Unknown 1 ABCC1 Test 13.09257 1 Pass 0.016724 84.77468 999 1
S$96-A02 40 Unknown 1B2M Test 6.813834 1 Pass 0.016724 82.61948 9399 1
S96-A03 40 Unknown 1 CCNB1  Test 16.393 1 Pass 0.016724 77.29588 9399 1
S96-A04 40 Unknown 1 CDKNIA Test 19.1015 1 Pass 0.016724 88.03547 9399 1
S96-A05 40 Unknown 1 CRADD Test 18.05104 1 Pass 0.016724 84.03517 9399 1
S96-A06 40 Unknown 1 E2F1 Test 19.31003 1 Pass 0.016724 85.13116 399 1
S96-A07 40 Unknown 1 HNRNPH3 Test 11.18747 1 Pass 0.016724 80.5318 999 1
S96-A08 40 Unknown 1 NDUFA4 Test 11.36832 1 Pass 0.016724 85.37928 9399 1
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e Samples:
o Different sample cell count in sets of
12 for each gene
m 1,234,510, 20,40 /i
; 2 Threshold

Delta(Rn)

TSample Cell Count |[C Value

o x*2ttoy
o  X:Sample Cell Count Number of PCR Cycles

o Y: Relative Fluorescence Threshold

Dilution Curve for Gene 1
Relative Fluorescence (Delta Rn) vs. PCR Cycle Number



Our Study

Examining Relationship

® C arelogged
o RNA doubles each cycle

® Measured C_vs. Logz(SampIe Cell
Count)

® Used-C Value for positive slope
e Model:

Logz(SampIe Cell Count)-a= - Ct

ou_”n

O a” is a relative constant

- CT Value

Scatter Plot of Gene 47

Residual = 0844 Silope = 1.023, Percent Na =0042 =

-18

Log2{Sample Cell Counts)

Standard Curve
-C, Value vs. Log,(Sample Cell Count)



Our Study

Examining Data

Ideal Plot:

e Slope
o =1

® Residual
o =0

e Recorded Percent N/A
o Not enough cycles

o Gene is not expressed
e Variance of Single-Cell
o Comparable to that of greater cell
count

Scatter Plot of Gene 47

Residual =0.844. Slope = 1.023, Perceni Na=0042

- CT Value

-18

| | | | | |
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Log2{Sample Cell Counts)

Standard Curve
-C, Value vs. Log,(Sample Cell)
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Data Analysis &
Interpretations



Data Analysis & Interpretations

Observed Results Interpretation

Scatter Plot of Gene 47
= Slope =1.023

Residual = 0.844, Silope = 1.023, Percent Na =0.042 0 ™ GOOd accuracy

= Residual error ~0.544
= Good precision

= % NA=0.042

: =  Majority of C, values were captured
_ by RT-PCR machine

12 10

14

- CT Value
-16

-18

= Opens up questions about how precise
2 RT-PCR technology is in the case of single
0 1 2 3 4 5 cells

Log2{Sample Cell Counts)



- CT Value

Data Analysis & Interpretations

Other genes showing the trend of high variance at lower sample cell counts

Scatter Plot of Gene 17

Residual - 0.624, Slope = 1.012, Percent_Na = 0.062

Log2(Sample Cell Counts)

- CT Value

-10

Scatter Plot of Gene 71

Residual = 0686, Slope =0.963, Percent Na=0062

Log2({Sample Cell Counts)

- CT Value

Scatter Plot of Gene 88

Residual = 1.163, Slope =1.179, Percent_Na=0.042 o

Log2(Sample Cell Counts)




Data Analysis & Interpretations

Observed Results Interpretation

= Slope =0.457
= Low accuracy
Residual = 0.978, Slope =0.457, Percemnt Na=0354 0 . ngh re5|dua| error (20978)
= Lacks precision
= % NA=35%
= RT-PCR captured 65% of C, values

Scatter Plot of Gene 42

- CT Value

= Raised further questions on how well
RT-PCR was able to capture the
expression levels in our samples

O

-21
|

Log2(Sample Cell Counts)



Data Analysis & Interpretations

Observed Results Interpretation

= Slope=0.513
= Not close to one
Residual = 3.914, Slope -0.513, Percent Na-0.896 o - LaCkS accuracy

< = High residual error =3.914
= Lacks precision

/ = Most of the data is NA

Scatter Plot of Gene 35

-18

- CT Value
22
|

-24

| T “ ! . ! *Note: Gene is not expressed, or gene went
0 1 2 3 4 5 undetected by RT-PCR machine when 100% of

Log2(Sample Cell Counts) the data is missing, i.e. Gene 54
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Data Analysis & Interpretations

Distributions of our data’s statistics

Residual Std. Error Distribution of 96 Genes Slope distribution of 96 Genes
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Data Analysis & Interpretations

Conclusions

e Not all of the observed outcomes match
our expected outcome
o Precise, but not accurate
o Accurate, but not precise

® Reproducibility — Consistent results
® Biological variability
e More efficient on multicellular Level

For Single Cell analysis, the Ct-threshold
method of RT-PCR is inefficient for estimating
initial starting amounts of genetic transcripts

down-syndrome.org






Future Works

Need for a Statistical Model

® The A Rnvs. PCR Cycles graphs are
a sigmoidal curve, but RT-PCR fits an
exponential model

e The model used by RT-PCR assumes
all the values of reproduction rate
“a” in the sigmoidal curve is always 2

for every gene, when it might not be.

Model Used by RT-PCR
Ct _
Xa =Y

Next Step: Sigmoidal Function

Independently fit a sigmoidal
function to each curve for a better fit

Distinguish between NAs due to
small values of “a” and NAs due to
gene non-expression



Future Works

Sigmoidal Function

Maximal reaction
fluorescence

Reaction
fluorescence at
cycle C

Cycles at which
reaction
Number of PCR fluorescence
cycles reaches half of
Fmax
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reaction
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Future Works

Sigmoidal Curve Example

Gene 1 Point 59
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Future Works

Delta Rn

0.115 0.125

0.105

Sigmoidal Curve Example

Gene 1 Point 1

Number of PCR Cycles
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