Contrasting Breast Cancer Subtypes by Analyzing Differences in Network Structure

Kamrine Poels^{a,d}
Kimberly Glass^{b,c}
John Quackenbush^{a,d}

^aDana Farber Cancer Institute

^bBrigham and Women's Hospital

^cHarvard Medical School

dHarvard T.H. Chan School of Public Health

Breast Cancer

- Most common cancer among women worldwide
 - Over 230,000 new cases each year in the U.S.
- Four well-known molecular subtypes
 - Classified by the presence of hormone receptors

Biological Networks

- Graph built of nodes and edges
- Helpful for visualizing or analyzing large sets of data
- Structure of network: assortative, modules, and clustering coefficients

Assortativity

Transitivity

Modularity

PANDA (Passing Attributes between Networks for Data Assimilation)^[1]

- Message-passing algorithm
- Main objective:
 - Find concordance between different types of data represented by networks
- Two types of nodes: effectors and affected
- Three types of edges:
 - Between effectors
 - Effectors and affected
 - Between affected

Effectors \Rightarrow Transcription Factors Affected \Rightarrow Genes

Image taken from Glass et al 2014

PANDA's output

3 updated networks

- Cooperativity network (protein-protein)
- Regulatory network (protein-gene)
- Co-regulation network (gene-gene)

Methods: Running PANDA

Data and Sources

- Protein-interaction network ← Physical TF interactions measured using a mouse-2-hybrid assay^[2]
- Regulatory Network ← scanning human promoters for the core vertebrate DNA sequence motifs in JASPAR (where promoter is [-750, +250] around the TSS)

Used for all 4 subtypes

Data and Sources

- Gene expressions from a breast cancer study in 2007 that contained 198 lymph-node negative breast cancers
 - Robustly classified samples into molecular subtypes
 - 71 Luminal A
 - 60 Luminal B
 - 45 Basal-like
 - 22 HER2

PANDA

- Run PANDA four times, each time with different gene expression
- Returns the probability that an edge exists in terms of standard score units
- We accept top 5% edges
- Networks with binary edges

Network Analysis

Cooperativity Networks

Remove common edges:

Basal-like TF Cooperativity Network

HER2+ TF Cooperativity Network

- <u>Basal-like</u> network is nonassortative
 - ESR2 interacts with tumor suppressor E2F1
- HER2 network is disassortative with hubs:
 - ETS1: high expression indicative of poor prognosis
 - HOXA5: induces apoptosis

- <u>Luminal A</u> is disassortative
 - TCF3, shown to be involved in the regulation of breast cancer.
 - SMAD proteins
- Luminal B
 - ESR1 interaction with RXRA, a receptor for retinoid acid
 - Study of RXRA as potential target therapy

Luminal A TF Cooperativity Network

Luminal B TF Cooperativity Network

HNF4A NR2F1

Proteins

Regulatory Network

Regulatory Network

- Disassortative:
 protein targets
 many genes
 and genes are
 targeted by
 few proteins
- Assortative: protein targets fewer genes

- PANDA networks are smaller
 - We remove noise from motif data that is not corresponding to breast cancer

Uniquely targeted genes

Gene Ontology Analysis

Activation
 pathway
 renders
 traztuzumab
 treatment
 ineffective^[4]

Proliferation

Number of genes targeted by BC-TF in unique network

	Basal-like	HER2	Luminal A	Luminal B
AR	35	150	3	30
BRCA1	158	20	23	196
TP53	132	124	9	268
ESR1	438	648	634	454

Number of TF targeting BC-genes in unique network

	Basal-like	HER2	Luminal A	Luminal B
AR	0	1	2	2
ATM	3	0	0	1
BARD1	0	0	3	2
BRIP1	8	27	0	1
DIRAS	8	7	0	0
ERBB2	1	1	4	0
NBN	1	0	0	0
PALB2	0	1	0	10
RAD50	0	6	4	0
RAD51	0	7	3	1
BRCA1	4	1	9	2
BRCA2	0	0	0	3
CDH1	6	6	0	21
STK11	2	0	0	23
TP53	2	0	3	1
ESR1	2	0	13	0

Gene Sets Targeted by AR and ERH1 in Regulatory Network

Observations of Regulatory Network

- AR uniquely targets 150 genes in the HER2 network
 - Previous study suggested AR target therapy in this subtype
- ESR1 targets genes involved in stem cell differentiation in the Basal-like network
 - · Basal-like is estrogen receptor negative, but gene may play important role

	Basal-like	HER2	Luminal A	Luminal B
AR	35	150	3	30
BRCA1	158	20	23	196
TP53	132	124	9	268
ESR1	438	648	634	454

Co-regulation Networks

Number of Edges

Network Structure

Looking at hubs:

- Within each subnetwork, we identified the genes with highest degrees (~100 genes in each subnetwork) that most probably form hubs
- Analyzed hubs by running Gene Ontology Analysis on genes that are co-regulated with those high-degree genes

Final Network

Conclusions

- Basal-like networks show enriched sets in Wnt signaling pathway and stem cell differentiation
- HER2
 - AR protein targets many genes involved in metabolism
- Luminal A
 - SMAD proteins are of interest
- Luminal B
 - biological and cell adhesion enrichment
 - RXRA is a protein of interest

Limitations

- PANDA returns edge weights in z-scores. We took the upper 5% scores and ignored the rest
 - We repeated this with other cut-offs and saw similar results

Sources

^[1]Glass K, Huttenhower C, Quackenbush J, Yuan G-C (2013) "Passing Messages between Biological Networks to Refine Predicted Interactions". PLoS ONE 8(5): e64832. doi: 10.1371/journal.pone.0064832

[2] Ravasi, T; Suzuki, H; Cannistraci, et al. (2010). "An atlas of combinatorial transcriptional regulation in mouse and man". Cell 140 (5): 744–52. doi:10.1016/j.cell.2010.01.044

[3] Crowe D.L, Chandraratna R.A. A retinoid X receptor (RXR)-selective retinoid reveals that RXR-alpha is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator-activated receptor ligands. Breast Cancer Res. 2004;6(5):R546–R555. doi: 10.1186/bcr913

[4] Kumandan, Sreekanth et al. Activation of the unfolded protein response bypasses trastuzumab-mediated inhibition of the PI-3K pathway. Cancer Letters, Volume 329, Issue 2, 236 - 242

PANDA estimates the probability that an edge exists in a network and returns that estimate in terms of Z-score units

* Responsibility(R_{ij}): information flowing from TF i to gene j

* Availability (A_{ij}): information flowing from gene j to TF i

$$A_{ij}^{(t)} = \frac{\sum\limits_{k} W_{ik}^{(t)} C_{kj}^{(t)}}{\sqrt{\sum\limits_{k} \left(W_{ik}^{(t)}\right)^{2} + \sum\limits_{k} \left(C_{kj}^{(t)}\right)^{2} - \left|\sum\limits_{k} W_{ik}^{(t)} C_{kj}^{(t)}\right|}}$$

$$PP \text{ interaction}$$
Responsibility

Regulation

Regulation

Regulation

* Since regulation requires both that TF is responsible for the regulation of a certain gene and that gene to be available for regulation by that TF:

$$\tilde{W}_{ij}^{(t)} = \frac{A_{ij}^{(t)} + R_{ij}^{(t)}}{2} \qquad W_{ij}^{(t+1)} = (1 - \alpha) W_{ij}^{(t)} + \alpha \tilde{W}_{ij}^{(t)}$$

* Cooperation between TF's *i* and *m*:

$$\tilde{P}_{im}^{(t)} = \frac{\sum_{j} W_{ij}^{(t)} W_{mj}^{(t)}}{\sqrt{\sum_{j} \left(W_{ij}^{(t)}\right)^{2} + \sum_{j} \left(W_{mj}^{(t)}\right)^{2} - \left|\sum_{j} W_{ij}^{(t)} W_{mj}^{(t)}\right|}}$$

* Co-regulated genes *j* and *k*:

$$\tilde{C}_{kj}^{(t)} = \frac{\sum_{i} W_{ik}^{(t)} W_{ij}^{(t)}}{\sqrt{\sum_{i} \left(W_{ik}^{(t)}\right)^{2} + \sum_{i} \left(W_{ij}^{(t)}\right)^{2} - \left|\sum_{i} W_{ik}^{(t)} W_{ij}^{(t)}\right|}}$$

* Update matrices with update parameter:

$$P_{im}^{(t+1)} = (1 - \alpha) P_{im}^{(t)} + \alpha \tilde{P}_{im}^{(t)} \qquad C_{jk}^{(t+1)} = (1 - \alpha) C_{jk}^{(t)} + \alpha \tilde{C}_{jk}^{(t)}$$

Initial Network

