

Differential Outcomes by SES in Children Undergoing Treatment for Acute Lymphoblastic Leukemia

Sergio Barrera, Randy Davila, and Emily Roberts Summer Program in Biostatistics and Computational Biology 2015

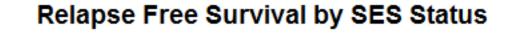
Mentors: **Dr. Donna Neuberg**, Senior Lecturer on Biostatistics, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health

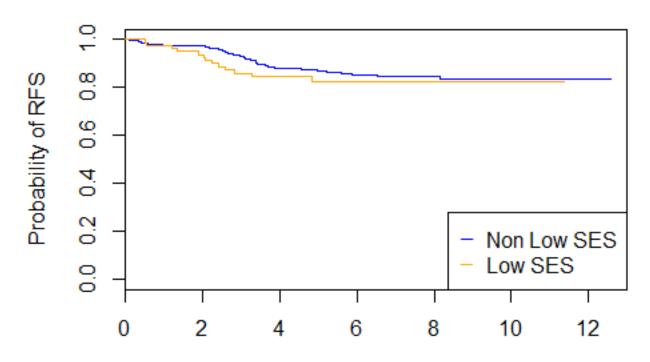
Traci Blonquist, MS Dana-Farber Cancer Institute

Graduate Mentor: Joey Antonelli, Harvard T.H. Chan School of Public Health

Pediatric Acute Lymphoblastic Leukemia: Biology

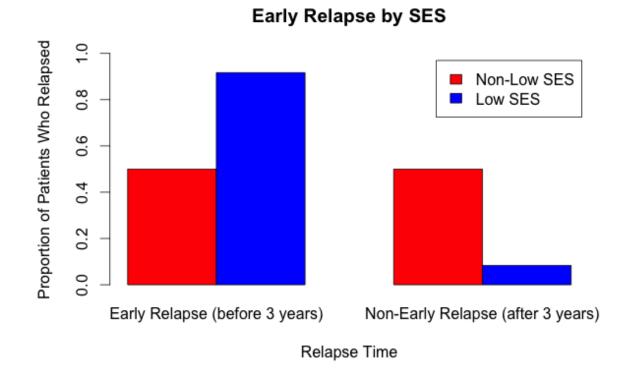
- Disease that affects white blood cell count (increased lymphocyte count)
 Median age at diagnosis: 5 years
- Increase in survival rates
- Therapy approach: decrease probability of relapse event without affecting the increase of toxicity incidence


Design of the Study


Study Phase	00-001	05-001
Induction	1 month	1 month
Consolidation/ Intensification	5 months	~ 6 months
Continuation	~ 18 months	~ 17 months

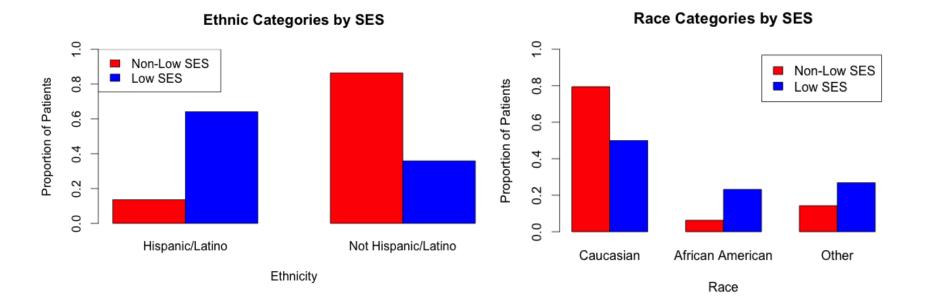
Two protocols: 00-001 and 05-001

- 00-001 randomized patients to two randomizations:
 - Fixed versus individualized dose
 - Type of steroid postinduction
- 05-001 randomized drug delivery
- Goal is to determine efficacy based on event-free survival rate
- Low SES determined by more than 20% of population below poverty level in zip code


Relapse-Free Survival time based on SES

Years since Complete Remission

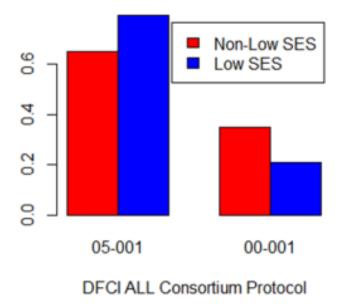
Differential Relapse Time



Fisher's Exact p-value 0.009

Hypothesis

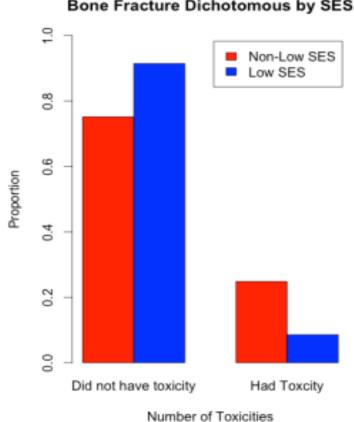
- Our question: What is driving a difference in relapse time based on SES?
- Difference in toxicity events based on SES
- Prediction: Greater number of toxicity events in low SES group


Demographic Variables by SES				
	n Low SES	n Low SES n Non-Low		
	(%)	SES (%)	P-Value	
Female	30 (36.6)	221 (47.7)	0.07	
Ethnicity(Hispanic)	20 (25.6)	53 (13.6)	0.001	
White/Caucasian	41 (50)	368 (79.5)	< 0.001	
African-American	19 (23.2)	29 (6.7)	<0.001	
Other (Asian/Other)	22 (26.8)	66 (14.3)	0.008	

Risk Stratification (Genotype Characteristics) by SES				
	n Low SES (%)	n Non-Iow SES (%)	Fisher's Exact P-value	
Age(>10 year)	25 (30.5)	109 (23.5)	0.21	
Down Syndrome Status	1 (1.2)	23 (4.97)	0.15	
Philadelphia Chromosome Status	0 (0)	11 (2.38)	0.38	
Standard risk patients	39 (43.8)	203 (47.6)	0.63	
T-cell phenotype	9 (11)	42 (9.1)	0.54	
White blood cell count greater than 50,000	21 (25.6)	81 (17.5)	0.09	

SES Group Proportions Based on Study Design				
Protocol and Study Designation	n Low SES (%)	n Non-Low SES (%)	Fisher's Exact P-value	
Patients Not Randomized	20 (24.4)	162 (35.2)	0.06	
Patients designated to 2000 study	17 (20.7)	162 (35)	0.01	

Protocol by SES


Toxicities

Variables	n Low SES (%)	n Non-Low SES (%)	Fisher's Exact P-Value
Edema	1 (1.2)	0 (0)	0.150
Pancreatitis	9 (11.0)	36 (7.8)	0.381
Allergies	7 (8.5)	53 (11.4)	0.566
Infections	22 (26.8)	118 (25.5)	0.785
Thrombosis	7 (8.5)	34 (7.3)	0.653
Abnormal Blood Lipids	3 (3.6)	25 (5.3)	0.786
Insulin-Requiring Diabetes	0 (0)	2 (0.4)	1.0

No significant differences by SES found in dichotomous outcomes for these toxicities

Bone Events

Variable	Fisher's Exact P-Value
Avascular Necrosis 1	1.0
Avascular Necrosis 2	0.837
Avascular Necrosis Follow Up	0.845
Avascular Necrosis Dichot.	0.453
Bone Fracture 1	0.625
Bone Fracture 2	0.313
Bone Fracture Follow Up	0.175
Bone Fracture Dichot.	<mark>0.0008</mark>

Bone Fracture Dichotomous by SES

□ 7 Low SES, 115 Non-Low SES

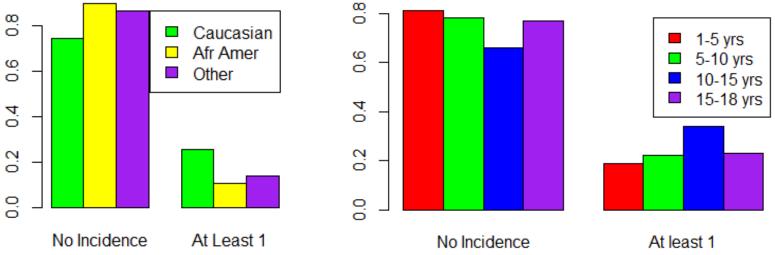
New Question?

- What could be contributing to higher bone fracture incidence among non-low SES patients?
- To answer this question we performed logistic regression analysis
- In choosing our regression model we
 - Performed Fisher's Exact Tests on explanatory variables
 - Conducted Stepwise and Bayesian Model Averaging

Other Potential Factors

- We know from previous analysis that SES groups differ by
 - Protocol
 - Race
 - Ethnic status
 - Randomization
- Other Variables include:
 - Gender
 - White Blood Cell Count
 - Age
 - Phenotype

Univariate Analysis of Potential Explanatory Variables for Bone Fracture


Variable	Odds Ratio	Fisher's Exact P-value
Randomization	1.07	0.83
Protocol	1.26	0.32
Gender (1 if Female)	1.28	0.26
Risk Category	1.35	0.15
WBC (1 if >50K)	0.82	0.51
Phenotype	0.72	0.48
Ages 5 and below	0.67	<mark>0.064</mark>
Ages 5-10	0.97	1.0
Ages 10-15	2.032	<mark>0.0091</mark>
Ages 15 and up	1.04	0.86
Non-standard Risk <10	0.80	0.44
Hispanic (Ethnic Cat.)	0.70	0.23
Caucasian	2.414	<mark>0.001</mark>
African American	0.378	<mark>0.045</mark>
Other Race	0.499	0.036

There appears to be an association between age and race with bone fracture incidence

All other variables were not associated with bone fracture incidence

Interesting Differential Results

Bone Fracture by Race

Bone Fracture by Age

- Caucasians had a higher incidence of bone fracture compared to other races
- Patients aged between 10-15 years of age also had a higher incidence of bone fracture compared to other age groups

Model Selection

- To overcome model uncertainty we performed the stepwise procedure
- This tests different models and chooses the model with the lowest estimated information loss
- Based off of prior analysis, variables included in stepwise procedure included:
 - Age at diagnosis (categorical)
 - Race Categories (African American, Other)
 - Protocol
 - Risk Status
 - Randomization
 - Ethnic Category (Hispanic/Non Hispanic)

Step-wise Procedure

- The stepwise procedure returned a model which only included SES, race, and age as explanatory variables
- This finding is consistent with our earlier analysis
- Our proposed model then was of the form $\ln\left(\frac{p}{1-p}\right) = \widehat{\beta_1} + \widehat{\beta_2}Low SES + \widehat{\beta_3}African American + \widehat{\beta_4}Other Race + \widehat{\beta_5}age(5-10) + \widehat{\beta_6}age(10-15) + \widehat{\beta_7}age(15-18)$

Bayesian Model Averaging

In order to verify if our model is an appropriate model for our analysis we conducted a BMA analysis

Reports model of the form

$$\ln\left(\frac{p}{1-p}\right) = \widehat{\beta_{1}} + \alpha_{2}\widehat{\beta_{2}}Low\,SES + \alpha_{3}\,\widehat{\beta_{3}}African\,American + \alpha_{4}\widehat{\beta_{4}}Other\,Race \\ + \alpha_{4}\,\widehat{\beta_{5}}age(5-10) + \alpha_{6}\widehat{\beta_{6}}age(10-15) + \alpha_{7}\widehat{\beta_{7}}age(15-18) \\ + \alpha_{8}\widehat{\beta_{8}}NonStan\,Risk + \alpha_{9}\widehat{\beta_{9}}Protocol + \alpha_{10}\widehat{\beta_{10}}Not\,Randomized$$

- Accounts for model uncertainty by averaging over the best models
 - Reports average value of coefficients of best models
 - Reports approximate posterior probability

BMA Results: Hispanic

BMA Model with Ethnic Variable			
	Estimate	$\%(\alpha = 1)$	
Intercept	-1.134	NA	
Low SES	-1.245	95	
Age_5-10	0	0	
Age_10-15	0.276	39	
Age_>15	0.018	3.9	
Ethnicity (Hispanic)	0	0	
African American	-0.393	32	
Other Race	-0.321	35.9	
Risk Category	0.028	7.5	
Direct Assign	0	0	
Protocol B	0	0	

- Ethnicity was never selected as an explanatory variable in any of the models
- Therefore we did not include ethnic status in our final models

Logistic Regression Results

Variables	Estimate	P-value
Intercept	-1.199	<.001
Low SES	-1.076	<mark>0.011</mark>
Age_5-10	0.174	0.51
Age_10-15	0.889	<mark>0.002</mark>
Age_>15	0.359	0.34
African American	-1.006	<mark>0.045</mark>
Other Race	-0.699	<mark>0.039</mark>

- Low SES, age 10-15, being African American and of race "other" were all statistically significant at the 5% level of significance
- Being between the ages 5-10 and being older than 15 were not

Test for Confounding

	Mod	el 1	Model 2:	Confounder
Variables	Estimate	P-value	Estimate	P-value
Intercept	-1.199	< 0.001	-1.265	<0.001
Low SES	-1.076	0.011	-1.044	0.014
Age_5-10	0.174	0.51	0.207	0.43
Age_10-15	0.889	0.002	1.002	0.005
Age_>15	0.359	0.34	0.445	0.302
African American	-1.006	0.045	-0.984	0.052
Other Race	-0.699	0.039	-0.77	0.033
Not Standard Risk			-0.082	0.78
Not Randomized			0.09	0.705
Protocol 00-001			0.107	0.641

Model Interpretation

- Socioeconomic status is significant
- Unexpected results in direction
- Highest odds of bone fracture: Non-Low SES (reference group), Caucasian (reference group), age 10-15

Limitations

Non-optimal measure of SES

Analysis done of dichotomous outcome

No frequency or time component

Some toxicity events were infrequent

Future Work

Possible explanations

Puberty, athletics, relationship with other toxicities, adherence to steroid medication

New survey

More direct questions about SES

Conclusion

There are differential outcomes

- Current measure of SES is not informative enough
- Need to address medical and social factors to best treat ALL patients

Acknowledgements!

Special thanks to our mentorship team and staff of DFCI

- Dr. Donna Neuberg
- Traci Blonquist
- Joey Antonelli
- Dr. Chris Ott
- And to our teachers and staff from the Department of Biostatistics
 - Dr. Rebecca Betensky
 - Tonia Smith
 - Heather Mattie
 - Eleanor Murray
 - Josh Barback

Questions?