The Effects of Environmental Factors and the BRCA Genetic Mutation on Ovarian Cancer Risk

Talk Outline

Background info & study design

Analysis methods

• Results, conclusions, moving forward

Part 1: Background

Ovarian Cancer

- Ovarian cancer is a cancer that originates in the tissue of the ovaries, female reproductive gland that produces eggs.
- "The American Cancer Society estimates that in 2015, about 21,290 cases of ovarian cancer will be diagnosed and 14,180 women will die of ovarian cancer in the United States"
- "The overall five-year survival rate for women with ovarian cancer is 45%"

- Genetics
 - Breast Cancer Genetic mutations (BRCA1 and BRCA2)
 - Lynch Syndrome
- Reproductive History and Infertility
 - Oral Contraceptive Use
 - Parity
- Family History
 - Ovarian Cancer
 - Other female reproductive cancers
- Increasing Age
- Hormone Replacement Therapy
- Obesity

- Genetics
 - Breast Cancer Genetic mutations (BRCA1 and BRCA2)
 - Lynch Syndrome
- Reproductive History and Infertility
 - o Oral Contraceptive Use
 - o Parity
- Family History
 - o Ovarian Cancer
 - Other female reproductive cancers
- Increasing Age
- Hormone Replacement Therapy
- Obesity

- Genetics
 - Breast Cancer Genetic mutations (BRCA1 and BRCA2)
 - o Lynch Syndrome
- Reproductive History and Infertility
 - Oral Contraceptive Use
 - Parity
- Family History
 - o Ovarian Cancer
 - Other female reproductive cancers
- Increasing Age
- Hormone Replacement Therapy
- Obesity

- Genetics
 - Breast Cancer Genetic mutations (BRCA1 and BRCA2)
 - o Lynch Syndrome
- Reproductive History and Infertility
 - o Oral Contraceptive Use
 - o Parity
- Family History
 - Ovarian Cancer
 - Other female reproductive cancers
- Increasing Age
- Hormone Replacement Therapy
- Obesity

Research Question

Are there any significant interactions between the BRCA mutation and the environmental factors: parity and oral contraceptive use?

Research Study

- Population
 - Women in Israel (Ashkenazi Jews)
 - o 1994-1999
- Case-control Design
 - Ovarian cancer is rare
- Covariates
 - Parity, Oral Contraceptive use, BRCA mutation, Age, Ethnicity, Family History, Gynecology History, Cancer History

Descriptive Statistics

Characteristic	Cases ($N=832$)	Control ($N = 747$)
	Mean (Std)	Mean (Std)
Use of Oral Contraceptives (yrs)	0.70(2.47)	0.89(2.48)
Number of Children	2.61 (1.88)	2.81 (1.84)
BRCA Mutation	N (%)	N (%)
Present	240 (29)	12 (1.7)
Not Present	592 (71)	735 (98.3)
Age Group	N (%)	N (%)
< 40	31 (3.73)	68 (9.10)
40s	163 (19.59)	137 (18.34)
50s	205 (24.64)	155 (20.75)
60s	240 (28.85)	218 (29.18)
≥ 70	193 (23.20)	169 (22.62)

Descriptive Statistics

Ethnicita	NT (0/)	NT (0/)
Ethnicity	N (%)	N (%)
Ashkenazi	$593 \ (71.27)$	509 (68.14)
Non-Ashkenazi	193 (23.20)	$183\ (24.50)$
Mixed ancestry	46 (5.53)	55 (7.36)
Cancer History		
Yes	54 (6.49)	14(1.87)
No	778 (93.51)	733 (98.13)
History of breast or ovarian cancer in at least one first- degree relative		
None	708 (85.10)	683 (91.43)
1 relative	70 (8.41)	54 (7.23)
> 1 relative	54 (6.49)	10 (1.34)
Gynecological History		
0	757 (90.99)	639 (85.54)
2	75 (9.01)	108 (14.46)
	(3.2.3)	(====)

Part 2: Analysis

Logistic Regression Models

1. Isolating variables of interest and examining interaction terms

$$logit(P(Y = 1)) = \beta_0 + \beta_1 G + \beta_2 E_1 + \beta_3 E_2 + \beta_4 G E_1 + \beta_5 G E_2$$

Variable	Estimate	p-value
Intercept	-0.097	0.32
BRCA	3.67	< 0.0001
Oral Contraceptives	-0.32	0.025
Parity	-0.021	0.46
BRCA*Oral Contraceptives	0.36	0.61
BRCA*Parity	-0.21	0.33

 α = 0.05

Logistic Regression Models

2. Model with all variables

$$logit(P(Y = 1)) = \beta_0 + \beta_1 G + \beta_2 E_1 + \beta_3 E_2 + \beta_4 C + ... + \beta_8 C$$

Variable	Estimate	<i>p</i> -value
(Intercept)	-0.55	0.021
BRCA	3.13241	< 0.0001
Oral Contraceptives	-0.19	0.21
Parity	-0.033	0.27
Age	0.10	0.037
Ethnicity	0.080	0.41
Cancer History	0.59	0.093
Gynecological History	-0.24	0.0062
Family History	0.34	0.013

Logistic Regression Models

3. Model with all variables and interaction terms

$$logit(P(Y=1)) = \beta_0 + \beta_1 G + \beta_2 E_1 + \beta_3 E_2 + \beta_4 G E_1 + \beta_5 G E_2 + \dots + \beta_{10} C$$

Variable	Estimate	<i>p</i> -value
Intercept	-0.56	$\frac{p \text{ varae}}{0.019}$
BRCA	3.59	< 0.0001
Oral Contraceptives	-0.20	0.20
Parity	-0.030	0.32
Age	0.10	0.036
Ethnicity	0.080	0.41
Cancer History	0.57	0.10
Gynecological History	-0.24	0.0062
Family History	0.33	0.013
BRCA*Oral Contraceptives	0.28	0.69
BRCA*Parity	-0.21	0.35

Problem with Interaction

$$e^{\beta_3} = \frac{OR(G, E \mid Y = 1)}{OR(G, E \mid Y = 0)}$$

1. Sample size issue (Controls with BRCA)

Not the best estimate of interaction coefficient

Case – Only Assumptions

$$OR(G, E \mid Y = 0) \approx OR(G, E)$$

2. The BRCA genetic mutation and environmental factors are independent

$$OR(G, E) = 1$$

$$\Rightarrow$$
 $OR(G, E \mid Y = 0) = 1$

Case - Only Model

Now we need to estimate: $OR(G, E \mid Y = 1)$

$$logit(P(G=1)) = \beta_0 + \beta_1 E$$

 β_1 In the case-only model = β_3 in the general model

Part 3: Results

Research Question - Revisit

Are there any significant interactions between the BRCA mutation and the environmental factors: parity and oral contraceptive use?

Variable	Estimate	95 % CI	<i>p</i> -value
Intercept	-0.99	(-1.16, -0.82)	< 0.0001
Oral Contraceptives	0.43	(0.055, 0.79)	0.023

Interaction 2: BRCA and Parity

Variable	Estimate	95 % CI	p-value
Intercept	-0.60	(-0.86, -0.34)	< 0.0001
Parity	-0.12	(-0.21, -0.035)	0.0070

Results: With Covariates

Interactions Accounting for Covariates (N = 832)

Variable	Estimate	95% CI	<i>p</i> -value
(Intercept)	0.81	(0.065, 1.56)	0.034
Oral Contraceptives	0.24	(-0.18, 0.70)	0.27
Parity	-0.038	(-0.14, 0.061)	0.46
Age	-0.21	(-0.37, -0.061)	0.0061
Ethnicity	-0.91	(-1.28, -0.57)	0.0001
Cancer History	1.59	(0.99, 2.23)	0.0001
Gynecological History	-0.17	(-0.48, 0.12)	0.27
Family History	0.60	(0.33, 0.88)	0.0001

Conclusions

- Overall, the interaction between BRCA and the environmental variables were not significant at the 0.05 level
- Estimate for the interaction between BRCA mutation and use of oral contraceptives is positive, indicating increase in the risk of ovarian cancer
- Estimate for the interaction between BRCA mutation and parity is negative, indicating decrease in the risk of ovarian cancer
- Data suggests use of oral contraceptives reduces risk of ovarian cancer in the overall population
- BRCA mutation is the biggest indicator for ovarian cancer risk

Limitations

- Retrospective studies
 - Self-reported data
- Case-control study
 - Cannot estimate risk or rate, only odds ratio
- Case-only analysis
 - limited to analysis of interactive coefficient
- Generalizability

Future Research

- More generalizable study population
- Relating environmental factors to other types of cancer
- Better understanding of biological mechanisms

References

- 1. McGuire, V. (n.d.). Relation Of Contraceptive And Reproductive History To Ovarian Cancer Risk In Carriers And Noncarriers Of BRCA1 Gene Mutations. American Journal of Epidemiology, 613-618.
- 2. Modan, B., Hartge, P., Hirsh-Yechezkel, G., Chetrit, A., Lubin, F., Beller, U., . . . Wacholder, S. (2001). Parity, Oral Contraceptives, and the Risk of Ovarian Cancer among Carriers and Noncarriers of a BRCA1 or BRCA2 Mutation. New England Journal of Medicine N Engl J Med, 235-240.
- 3. Ovarian Cancer National Alliance. (n.d.). Retrieved July 5, 2015, from http://www.ovariancancer.org/about/statistics/

Acknowledgements

- Dr. Eric Tchetgen Tchetgen
- Ms. Kathy Evans
- Dr. Rebecca Betensky
- Ms. Tonia Smith
- Ms. Heather Mattie
- Ms. Ellie Murray
- Mr. Joshua Barback
- Harvard Summer Program in Biostatistics and Computational Biology