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Background

Introduction

In public health studies, we often want to determine a causal link
between a treatment (A) and effect (Y)

What effects does introducing vaccine regimen (A) to a population
have on average disease status (Y)?
How does moving from a high-poverty to low-poverty neighborhood
(A) affect psychological outcomes in children (Y)?
What effects does post-secondary education (A) have on expected
earnings (Y)?
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Background

Study Design Challenges

Double-blind randomized trials set the gold standard, but aren’t
always possible for ethical or practical reasons

Smoking cessation studies

Observational studies are often done in lieu of randomized trials

Challenge with observational studies: unmeasured confounders
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Background

Instrumental Variables

Approach: Study the effect of A on Y indirectly through Z
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Background

Are IVs a dream come true?
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Background

Spoilers: IVs are not a dream come true
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Background

Average Causal Effect

Average causal effect (ACE) = E[Ya=1 − Ya=0]

Ya: a person’s outcome if, possibly contrary to fact, that he or she
was to receive treatment A

Idea: ACE is the population average causal effect if one were to force
everyone to take the active treatment a = 1 vs. the control treatment
a = 0
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Background

Example: Randomized Vaccine Trial

Z

Assignment
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ACE is average difference in disease incidence if everybody took the
vaccine regimen (Ya=1) vs. nobody taking the vaccine regimen (Ya=0)

Z randomized, but A is not

So, U confounds E (Y |A = 1)− E (Y |A = 0)
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Background

Key Assumptions
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Key assumption: Z affects Y only through A

We assume this DAG holds for binary Z , A, and Y .
To measure average causal effects, one of two must be true:

E[Ya=1 − Ya=0|U,X ] does not depend on U
E[Az=1 − Az=0|U,X ] does not depend on U
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Background

Estimating Equation

If our assumptions hold, we can estimate

E[Y1 − Y0] = E

[
E[Y |Z = 1,X ]− E[Y |Z = 0,X ]

E[A|Z = 1,X ]− E[A|Z = 0,X ]

]
∈ (−1, 1)

When Y is binary, regressing each component individually and
plugging in is impractical

All 4 regression models must be correctly specified
End result may not lie between (-1,1)
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Simulation Study & Application

Our semi-parametric approach

We propose to solve for βa = E [Y1 − Y0] in three steps:

1 Fit the logistic model logit f̂ (Z = 1|X ) = γTX by regressing Z
against X

2 Fit the model E [A|Z = 1,X ]− E [A|Z = 0,X ] = tanh(αTX ) by
solving for α in the estimating equation∑

i

(Xi )(W − tanh(αTX )) = 0

where W = A(−1)1−Z/f̂ (Z |X )

3 Solve for the target estimator E [Y |Z = 1,X ]− E [Y |Z = 0,X ] = βa
by fitting the linear regression∑

i

(
1

Zi

)
(R − β0 − βaZi )f̂ (Z |Xi )

−1 = 0
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Simulation Study & Application

Simulation Conditions & Data Generation

We used an intercept-only model for α0, i.e.
E [A|Z = 1,X ]− E [A|Z = 0,X ] = tanh(α0). This equivalent to
assuming no interaction between A and covariates X .

Data generating procedure:

X ∼ Bernoulli(p0), e.g. p0 = 0.5
Z |X ∼ Bernoulli(expit(γTX ))
Pr(A|Z , x) = Zi ∗ tanh(α0)
A|Z , x ∼ Bernoulli(Pr(A|Z , x))
Y ∼ µ1A + µ2 ∗ (A− Pr(A|Z , x)) + µT

3∗X + ε, where ε ∼ N (0, 1)

Although we simulate continuous outcome Y here, our model will in
principle work for binary Y as well

The target quantity is set to µ1 = βa = 1.62
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Simulation Study & Application

Simulation Results: true βa = 1.62, intercept-only model
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Simulation Study & Application

Card(1993) Education Dataset

Z

Lives Near
4yr College
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Post-HS
Education

U
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Y

Salary > $537.50
(median)

X

Experience, Race,
Region of Residence

Data are from the National Longitudinal Survey (NLS) of Young
Men, with 3010 participants.
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Simulation Study & Application

Results: Intercept-only model, Z ,A,Y binary

Estimates with 95% confidence intervals:

α0 = 0.08(0.0386, 0.124)
β̂a = 0.25(−0.3772, 0.8772)

Interpretation: the marginal change in the probability of earning a
salary greater than $537.50 was 0.25 when comparing an intervention
that forces the population to have post high school education, to one
that forces the population to have no more than high school education

However: very large confidence interval containing 0, so this is not a
significant result
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Simulation Study & Application

Results: Intercept-only model, Z ,A binary, Y continuous

Method βa (95% CI)

IV 190.5173 (-144.175, 525.209)

OLS 68.2869 (46.346, 90.228)

Fit Y as continuous linear model on binary A and covariates X

OLS appears to underestimate the causal effect, while IVs are less
efficient

Possible negative confounding, even though we would expect earnings
to rise with post-secondary education
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Discussion

Discussion

βa = E

[
E[Y |Z = 1,X ]− E[Y |Z = 0,X ]

E[A|Z = 1,X ]− E[A|Z = 0,X ]

]
∈ (−1, 1)

In binary IV model, some estimates of
tanh(α̂0) = E[A|Z = 1,X ]− E[A|Z = 0,X ] were close to 0, causing
wide variability in the estimates

When the IV model for the denominator was allowed to depend on X ,
we observed some instability in cases where the fitted values were
close to 0

Next steps:

Devise link to ensure that estimates of the denominator are bounded
away from 0
Investigate continuous case further
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Discussion

Conclusion

Instrumental variables are not a panacea for unmeasured confounding,
as they require certain assumptions about the data to properly
establish causality

When such assumptions are met, instrumental variables can be
helpful in inferring causal effects in observational studies where
unmeasured confounders are present
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Discussion
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Discussion

Questions?

?
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