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Statistical collaborations in Alzheimer’s disease research

• Analysis of autopsy studies (selection bias)

• Selecting subjects and endpoints for efficient clinical trials
(clinical trial design)

• Combining amyloid PET values across data sets (latent class
analysis)

• Regression models with age of dementia onset: censored
covariates
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IPW model 
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Derivation of “mid-risk” cohort from existing 
longitudinal study 

60 
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Selection of mid-risk patients could decrease sample 
size required 

67 

• Sample sizes for 80% power to detect hazard ratio of 0.67 
 

• Without assumption that subjects within 2 years of dementia do 
not benefit, required sample sizes for unselected population would 
be 3598 and 2402 (all non-demented) and 1408 and 1370 (CDR 0.5) 

6/37



Applying Gaussian Mixture Modeling 

2 distributions selected for each cohort 

HABS (PIB) 

ADNI 
(florbetapir) 

AIBL (PIB) 
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Many more “ambiguous” cases in ADNI/florbetapir 

High Aβ: >90% 
belonging to high 
distribution 
 
Low Aβ: >90% 
belonging to low 
distribution 
 
Ambiguous Aβ: 
everyone else 
 

HABS (PIB) 
ADNI 

(florbetapir) 
AIBL (PIB) 
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Amyloid and maternal age of onset

• The risk of Alzheimer’s disease (AD) is known to increase
dramatically with age

• Another major risk factor for AD: family history (FH)

• beta-amyloid (Aβ) deposition early event in pathological
progression of AD; measurable via PET scan imaging

• A study was conducted at Mass General Hospital and
Brigham and Women’s Hospital to investigate the relationship
between maternal age of onset of dementia and beta-amyloid
deposition in cognitively normal older offspring (Maye et al,
2016).
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The study and the statistical problem:

• The family history study of dementia:
• 147 participants

• cognitively normal or mildly impaired

• maternal onset of dementia: ascertained using parental history
questionnaire, 70% censoring

• Standard linear regression analysis:
• Y : beta-amyloid deposition

• X : maternal age of onset of dementia

• controlling for Z: age of offspring, education, gender

Problem: random right censoring of age of onset means that
X is not observed for every subject
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Starting point: available methods

• Most of the literature on censored covariates addresses limit
of detection (type I censoring)

• Parametric: MLE (May et al, 2011); multiple imputation
(Lynn, 2001)

• Nonparametric: imputation (Schisterman et al, 2006);
multiple imputation (Wang and Feng, 2012)

• Methods for random censoring are lacking; recent
developments using multiple imputation (Atem et al, 2016).

• Use of censored covariate, without adjustment, leads to bias
and inflated type I error (Austin & Brunner 2003).

• Complete-case analysis:
• simplest approach and most commonly done
• omits individuals with censored covariate
• valid under some assumptions, but typically inefficient with

moderate or heavy censoring
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The Model

• Consider the linear regression model,

Y = α0 + α1X + αT
2 Z + ε, (1)

where X (the covariate of interest) is right censored by C , and
Z is a completely observed p × 1 covariate vector

• Observable: Y , Z , U = min(X ,C ) and δ = I (X < C )

• Model assumptions:

• (X ,C ,ZT )T⊥ε

• ε has mean 0 and finite variance σ2
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• Our primary scientific interest: α1, which captures the
association between Y and X

• We would like to test H0 : α1 = 0 and obtain a consistent
estimator of α1

• Two threshold regression approaches:

• deletion threshold regression

• complete threshold regression
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Deletion Threshold Regression

• Using a threshold t∗, define

X ∗ =

{
1, if X > t∗,C > t∗;

0, if X ≤ t∗,X < C

and delete non-informative observations that have
C ≤ t∗,X > C

• The linear regression model implies that

E (Y |X ∗ = 0,Z) = α0 + α1E (X |Z,X ∗ = 0) + αT
2 Z,

E (Y |X ∗ = 1,Z) = α0 + α1E (X |Z,X ∗ = 1) + αT
2 Z.

These equations justify fitting the following model conditional
on the X ∗’s:

E [Y |X ∗,Z] = β0(t∗,Z) + β1(t∗,Z)X ∗ + βT
2 Z (2)
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Hypothesis Test H0 : α1 = 0

• It follows that

β1(t∗,Z) = α1 {E (X |Z,X ∗ = 1)− E (X |Z,X ∗ = 0)} .

• Under independence of X and Z given X ∗,

β1(t∗) = α1{E (X |X ∗ = 1)− E (X |X ∗ = 0)} ≡ α1µ(t∗) (3)

Since µ(t∗) > 0, it follows that

A test of H ′0 : β1(t∗) = 0 is a valid test of H0 : α1 = 0

• Remarks:

• the test is valid even if C is dependent on X

• the choice of t∗ impacts the power of the hypothesis test
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Consistent estimation of α1: (X ∗ ⊥ Z)

• First, obtain consistent estimator of β1(t∗) fitting model (2).

• Then, estimate the bias-correction term µ(t∗) in equation (3).

• The conditional mean E (X |X ∗ = 0) can be estimated
empirically by

n∑
i=1

δiUi I (Ui < t∗)/
n∑

i=1

δi I (Ui < t∗)

• Since
∫∞
t SX (u)du =

∫∞
t ufX (u)du − tSX (t),

E (X |X ∗ = 1) = E (X |X > t∗)

=

∫∞
t∗ ufX (u)du

SX (t∗)
=

∫∞
t∗ SX (u)du

SX (t∗)
+ t∗ (4)
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Consistent estimation of α1: (X⊥C )

• ŜX (x): Kaplan-Meier estimator of SX (x).
∫∞
t∗ SX (u)du can

be estimated by
∫∞
t∗ ŜX (u)du, which can be approximated

using the trapezoidal rule.

• An estimator for α1 is thus given by α̂1 = β̂1(t∗)/µ̂(t∗), where

µ̂(t∗) =
1

2 Ŝ(t∗)

 k∑
j=1

I
{
X(j) > t∗

} [
X(j)

{
X(j−1) ∨ t∗

}]
−
[
Ŝ{X(j−1) ∨ t∗}+ Ŝ{X(j) ∨ t∗}

]
+ t∗

)

−
∑n

i=1 δiUi I (Ui ≤ t∗)∑n
i=1 δi I (Ui ≤ t∗)

,

X(1) < X(2) < ... < X(k) are the observed, uncensored failure
times in the sample, and X(0) = 0.
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Estimating the tail of SX (x)
• Problem: If the largest observations are censored, the tail of
SX cannot be estimated, but is required for accurate
estimation of E (X ) and E (X |X > t∗).

• Strategy 1: treat the largest observation of X as an observed
failure even if it is censored (Efron, 1967)

– underestimates E (X |X > t∗) if X has much heavier tail
than C .

• Strategy 2: approximate the tail of SX (x) using a parametric
function (Gong & Fang, 2012)

– parametric assumptions may not hold

• Strategy 3: increase the observed time to the upper limit of
the support of X and consider it to be an event

– requires knowledge of the upper limit of the support of X
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Asymptotic Properties

• Strong consistency: α̂1 → α1 almost surely, as n→∞;

• Asymptotic normality: n1/2(α̂1 − α1)→ N(0,Σ).

• Prove using the empirical processes theory.

• show that α̂1 is a plug-in estimator in a map from the
distribution of {Y ,Z,U,∆} to α1, and the mapping is
compactly differentiable.

• Glivenko-Cantelli theorem plus continuous mapping theorem
−→ strong consistency.

• Donsker theorem plus functional delta method −→ asymptotic
normality.
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Selection of threshold, t∗

• t∗ impacts the power of the hypothesis test H ′0 : β1(t∗) = 0.

• The test of H ′0 : β1(t∗) = 0 is essentially a two-sample test
comparing the means of two normal distributions with equal
variances, with power function

Φ

(
−z1−α/2 +

|µ1(t∗)− µ2(t∗)|
σ
√

1/n1(t∗) + 1/n2(t∗)

)

= Φ

(
−z1−α/2 +

|α1µ(t∗)|
σ
√

1/n1(t∗) + 1/n2(t∗)

)
,

where µ1(t∗) = E (Y |X ∗ = 1), µ2(t∗) = E (Y |X ∗ = 0).

• Select t∗ to maximize ψ1(t∗) = |µ(t∗)|/
√

1/n1(t∗) + 1/n2(t∗).

• Does not require a correction for maximal selection since
µ(t∗) is unrelated to the association between X and Y and
depends only on the distributions of X and C .
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Consistent estimation of α1: (X ∗ 6⊥ Z)

• When Z is categorical with K categories, Z(1), ..., Z(K),
stratify estimation on values of Z and estimate α1 as

α̂1 =
1

K

K∑
k=1

β̂1(t∗,Z(k))

Ê (X |Z(k),X ∗ = 1)− Ê (X |Z(k),X ∗ = 0)
.

• When Z is continuous

• discretize it into K distinct categories and stratify

• fit a Cox model for X given Z to calculate E (X |X ∗,Z) and
similarly average to estimate α1
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Complete Threshold Regression

• Alternative complete threshold regression method that retains
all observations.

• gains efficiency through use of all observations, especially when
adjusting for censored covariate X .

• sacrifices efficiency due to potential misclassification of
indeterminate observations.

• Derive binary covariate that indicates whether
U = min(X ,C ) ≤ t∗ or U > t∗.

• U is completely observed: no indeterminate observations and
thus no deletions.

• Fit the derived model, conditional on the thresholded U’s:

E (Y |I (U > t∗),Z) = γ0(t∗,Z) + γ1(t∗,Z)I (U > t∗) + γT
2 Z.
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Complete Threshold Regression ...

• Under independence of X and Z given X ∗,

γ1(t∗) = α1 {E (X |U > t∗)− E (X |U ≤ t∗)} = α1ν(t∗), (5)

and

ν(t∗) =

[∫ ∞
0

SX (u)du −
{∫∞

t∗ SX (u)du

SX (t∗)
+ t∗

}]/
Pr(U ≤ t∗),

where the integrals are estimated using tail approximations for
SX

• test of H ′0 : γ1(t∗) = 0 is a valid test of H0 : α1 = 0.
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Reverse Survival Regression

• An alternative approach to testing the association between Y
and X , adjusting for Z.

• We use the Cox proportional hazards model with outcome X
and covariates Y and Z, i.e.,
h(x |y , z) = h0(x) exp(α̃1y + α̃2z).

• We show that the test of H0 : α̃1 = 0 based on the Cox model
that reverses the natural roles of Y and X yields a valid test
for H0 : α1 = 0.

• However, it does not yield an estimator for α1.
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Simulation Set-up

• Simulate from model (1) with α0 = 0.5, α1 = 0.5, α2 = −0.5.

• Generate X from an exponential distribution Exp(3), Z from
an uniform distribution Unif (1, 6), εi from a normal
distribution N(0, 0.752).

• Generate C from an exponential distribution: light, moderate
or heavy censoring with censoring rate of 20%, 40%, or 60%.

• Sample sizes of 200 and 500; 1000 replications.

• Estimate type I error (setting α1 = 0 in our data generation
model) and power (setting α1 = 0.5). Compare to Wald tests
based on β̂1(t∗).

25/37



Selection of threshold to optimize power
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Simulation Results: light censoring

bias bias SD SE CP(%) SD % % %

method τx t∗ β̂1(γ̂1) α̂1 α̂1 α̂1 α̂1 α̂2 del ≤ t∗ > t∗

light censoring rate of 20%

cc 0.0031 0.227 0.228 95.2 0.0423 20.0

m1 1.75 0.40 -0.208 0.0158 0.238 0.236 94.6 0.0412 15.5 62.1 22.4

m1 1.50 0.40 -0.208 0.0198 0.240 0.239 94.7 0.0412 15.5 62.1 22.4

m1 2.00 0.40 -0.208 0.0109 0.236 0.234 94.4 0.0412 15.5 62.1 22.4

m1 obs 0.40 -0.208 0.0205 0.240 0.241 94.7 0.0412 15.5 61.1 22.4

m2 1.75 0.42 -0.236 0.0112 0.260 0.260 94.6 0.0381 0.0 79.2 20.8

m2 1.50 0.42 -0.236 0.0153 0.262 0.263 94.5 0.0381 0.0 79.2 20.8

m2 2.00 0.42 -0.236 0.0061 0.257 0.257 94.5 0.0381 0.0 79.2 20.8

m2 obs 0.42 -0.236 0.0161 0.262 0.265 94.6 0.0381 0.0 79.2 20.8

τx : the guess of the upper support of X ;
t∗: threshold value;
cc: complete-case regression;
m1: deletion threshold regression;
m2: complete threshold regression;
obs: treating the largest observation of X as an observed failure.
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Simulation Results: moderate censoring

bias bias SD SE CP(%) SD % % %

method τx t∗ β̂1(γ̂1) α̂1 α̂1 α̂1 α̂1 α̂2 del ≤ t∗ > t∗

moderate censoring rate of 40%

cc -0.0092 0.340 0.355 95.1 0.0484 40.0

m1 1.75 0.29 -0.244 0.0106 0.276 0.277 96.2 0.0453 30.6 45.9 23.4

m1 1.50 0.29 -0.244 0.0246 0.283 0.284 96.1 0.0455 30.6 45.9 23.4

m1 2.00 0.29 -0.244 -0.0029 0.268 0.269 96.2 0.0455 30.6 45.9 23.4

m1 obs 0.29 -0.244 0.0409 0.293 0.298 96.1 0.0453 30.6 45.9 23.4

m2 1.75 0.31 -0.301 0.0123 0.346 0.347 95.7 0.0385 0.0 78.8 21.2

m2 1.50 0.31 -0.301 0.0273 0.356 0.357 95.8 0.0385 0.0 78.8 21.2

m2 2.00 0.31 -0.301 -0.0022 0.336 0.337 95.9 0.0385 0.0 78.8 21.2

m2 obs 0.31 -0.301 0.0451 0.369 0.376 95.8 0.0385 0.0 78.8 21.2
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Simulation Results: heavy censoring

bias bias SD SE CP(%) SD % % %

method τx t∗ β̂1(γ̂1) α̂1 α̂1 α̂1 α̂1 α̂2 del ≤ t∗ > t∗

heavy censoring rate of 60%

cc -0.0046 0.668 0.650 95.1 0.0606 59.7

m1 1.75 0.20 -0.271 -0.0221 0.316 0.325 95.9 0.0527 46.3 31.2 22.5

m1 1.50 0.20 -0.271 0.0075 0.334 0.344 96.2 0.0527 46.3 31.2 22.5

m1 2.00 0.20 -0.271 -0.0480 0.301 0.310 95.3 0.0527 46.3 31.2 22.5

m1 obs 0.20 -0.271 0.1033 0.396 0.419 96.5 0.0527 46.3 31.2 22.5

m2 1.75 0.22 -0.364 -0.0305 0.482 0.499 96.3 0.0387 0.0 80.7 19.3

m2 1.50 0.22 -0.364 0.0004 0.512 0.529 96.1 0.0387 0.0 80.7 19.3

m2 2.00 0.22 -0.364 -0.0574 0.457 0.473 96.3 0.0387 0.0 80.7 19.3

m2 obs 0.22 -0.374 0.1049 0.621 0.656 96.4 0.0387 0.0 80.7 19.3
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Simulations: power and type I error

n m1 m2 m1 m2

light censoring heavy censoring

hypothesis test based on: β1 α1 γ1 α1 β1 α1 γ1 α1

Power

200 complete-case 60.4% 13.0%

optimal threshold 57.5% 58.4% 50.9% 51.7% 32.7% 30.4% 14.9% 13.8%

500 complete-case 94.6% 27.5%

optimal threshold 93.0% 93.2% 87.8% 88.0% 69.8% 69.2% 35.5% 35.9%

Type I error

200 complete-case 5.14% 5.74%

optimal threshold 5.42% 5.44% 5.32% 5.10% 5.48% 4.22% 5.34% 4.06%

500 complete-case 5.36% 4.70%

optimal threshold 5.26% 5.26% 5.52% 5.62% 4.92% 4.72% 5.56% 5.06%
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Alzheimer’s study: identification of optimal threshold for
maternal age of dementia onset
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Alzheimer’s Study Results

p-value p-value on

method τx α̂1 (SE) on α̂1 β̂1 or γ̂1 (SE) β̂1 or γ̂1 %del

the variable of interest: Maternal age of demential onset (in years)

cc -0.00981 (0.00498) 0.057 – – 70.21%

m1 105 -0.00379 (0.00245) 0.122 -0.0775 (0.0499) 0.121 34.75%

m1 obs (100) -0.00367 (0.00245) 0.135 -0.0775 (0.0499) 0.121 34.75%

m2 105 -0.00309 (0.00323) 0.339 -0.0306 (0.0347) 0.378 0%

m2 obs(100) -0.00304 (0.00335) 0.365 -0.0306 (0.0347) 0.378 0%

rs 0.001 0%
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Conclusions

• Threshold regression is simple and avoids extensive modeling.

• It allows for estimation of the regression coefficient of
censored covariate, as well as efficient hypothesis testing of
censored covariate effect.

• The optimal threshold can be easily identified through an
objective function.

• Deletion threshold regression versus complete threshold
regression: comparable type I error; higher power (especially
under heavy censoring).

• Deletion threshold regression versus complete case analysis:
higher power under moderate or heavy censoring.
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Conclusions

• Assumes censoring mechanism is independent of X .

• Extend to the case of multiple censored covariates.

• Extend to generalized linear regression model.
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Alternative Approach: Multiple Imputation

Under linear model (1), we develop a proper multiple imputation
approach that also does not impose distributional assumptions on
the X , but rather uses a Cox model for the distribution of X given
other covariates in the model.

1. Sample with replacement from the original data.

2. Fit model (1) using the uncensored observations to sample
from the distribution of the coefficients (α0, α1, α2) and
obtain estimates (α̂c

0, α̂
c
1, α̂

c
2).

3. Fit a model to the sampled data for X given Z to estimate β
and fβ(x |z), the model based estimate of the density of X
given Z , with corresponding survivor function, Sβ(x |z).

4. Generate X from its predictive distribution,
P(X = x |C = c ,X > c ,Y = y ,Z = z).
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5. Fit a linear regression model of Y on the completed data
(X ,Z ) and estimate the parameters of the model,
(α̂m

0 , α̂
m
1 , α̂

m
2 ), where the superscript m labels the estimates

from the mth imputation.

6. Repeat Steps 1-5 M times.

7. Obtain multiple imputation estimates and variances.

We have extended this multiple imputation method to logistic
regression analysis (Atem et al, 2016).
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